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Abstract— We consider the network control problem for wire-
less networks with flow level dynamics under the general k-
hop interference model. In particular, we investigate the control
problem in low load and high load regimes. In the low load
regime, we show that the network can be stabilized by a regulated
maximal scheduling policy considering flow level dynamics if the
offered load satisfies a constraining bound condition. Because
maximal matching is a general scheduling rule whose implemen-
tation is not specified, we propose a constant-time and distributed
scheduling algorithm for a general k-hop interference model
which can approximate the maximal scheduling policy within an
arbitrarily small error. Under the stability condition, we show
how to calculate transmission rates for different user classes such
that the long-term (time average) network utility is maximized.
This long-term network utility would capture the real network
performance due to the fact that under flow level dynamics, the
number of users randomly changes so instantaneous network util-
ity maximization does not result in useful network performance.
Our results imply that congestion control is unnecessary when
the offered load is low and optimal user rates can be determined
to maximize users’ long-term satisfaction. In the high load regime
where the network can be unstable under the regulated maximal
scheduling policy, we propose the cross-layer congestion control
and scheduling algorithm which can stabilize the network under
arbitrary network load. Through extensive numerical analysis
for some typical networks, we show that the proposed scheduling
algorithm has much lower overhead than other existing queue-
length-based constant-time scheduling schemes in the literature,
and it achieves performance much better than the guaranteed
bound. In addition, using congestion control in the low load
condition results in much lower average utility compared to that
due to the optimal transmission rate derived in the paper.

Index Terms— Flow level dynamics, capacity region, constant-
time scheduling, network stability, maximal matching, k-hop
interference model

I. INTRODUCTION

Resource allocation in communication networks has been an
active research topic for the last several years. While optimal
rate control in wired networks can be achieved by a distributed
algorithm [1]-[4], solving this problem in wireless networks is
much more challenging. In fact, the bottleneck of the resource
allocation problem in wireless networks lies in the scheduling
sub-problem [5]-[6]. The difficulty of the scheduling sub-
problem comes from the interference coupling of simultaneous
transmissions from different wireless links in the network.

In general, interference coupling in wireless networks de-
pends on the communication technologies employed at the
physical layer. For example, the node exclusive interference

model can be assumed for Bluetooth networks or FH-CDMA
networks [7], [8]. This interference model is also referred to
as one-hop interference model. Also, for the 802.11 WLAN
with four-way handshake (i.e., with RTS/CTS), the two-hop
interference model is implicitly assumed in the MAC protocol.
Moreover, it has been shown in [9] that in certain network
settings and QoS requirements, neither one-hop nor two-hop
interference model is optimal to achieve the maximum number
of simultaneous transmissions in the network.

In [9] the authors proposed a general interference model
called k-hop interference model which is determined by a
single parameter k. For this interference model, wireless links
k + 1 or more hops away from one another can be scheduled
to transmit data at the same time. Developing a joint resource
allocation and scheduling algorithm for this k-hop interference
model is, therefore, much more desirable than working with a
special case of this general interference model. This is indeed
what we will pursue in this paper.

Regarding the scheduling problem in wireless networks,
there are several optimal and suboptimal schemes proposed
in the literature. In a seminal paper [10], Tassiulas and
Ephremides proposed an optimal back-pressure policy which
achieves the maximum network throughput. This scheduling
policy is, however, centralized and computationally expensive.
In [11], a randomized linear-complexity scheduling algorithm
was proposed where a transmission schedule in time slot t
was constructed by choosing the schedule with larger total
weight between the schedule in time slot t − 1 and a newly-
generated one in time slot t. This idea was used to develop
distributed throughput-optimal scheduling policies in [12]-
[14] for one-hop and two-hop interference models. Note that
these scheduling algorithms achieve full utilization of wireless
networks with respect to what remains in the data transmission
phase only. Specifically, a large amount of bandwidth has
been wasted to exchange control information in the schedule
construction phase which would otherwise be used for data
transmission. In general, the amount of scheduling overhead
grows with the network size for these throughput-optimal
scheduling policies.

Due to implementation constraints, the time slot interval is
usually limited to a few milliseconds as in most current wire-
less systems. Therefore, developing a scheduling algorithm
with low and constant-time overhead would be very desirable.
In fact, some queue-length-based constant-time scheduling
algorithms were proposed for one and two hop interference
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models [15]-[17] recently in the literature. These scheduling
algorithms only achieve a guaranteed faction of the capacity
region but they have constant time overhead. For practical
implementation, collecting queue length information may be
difficult, and it will create further overhead. A more general
maximal scheduling policy was considered in [19], [20] where
several throughput performance bounds were investigated.
However, implementation of this general scheduling policy
and investigation of its actual performance in typical wireless
networks were not conducted in these papers.

In practice, it is desired that each wireless node only com-
municates with its neighbors (e.g., those whose transmissions
interfere with that of the underlying node) to construct a
transmission schedule in each time slot. Also, scheduling
algorithms should work for a general class of interference
models (e.g., k-hop interference model [9]). Another aspect
which was ignored by most existing works in the literature is
that no conflict-free schedule is available to exchange control
information at the beginning of each time slot. Therefore, con-
trol information can only be exchanged by using contention-
based transmissions which renders information exchange more
than one hop away a time-consuming operation. Also, it
is important to quantify amount of time/overhead used to
construct the schedule and to develop explicit procedure to
exchange control information in each time slot.

In this paper, we show the performance guarantee of the
regulated maximal scheduling policy in wireless networks
considering flow level dynamics. In fact, regulated maximal
scheduling is a combination of the maximal scheduling policy
[19], [20] and a traffic regulator implemented at each wireless
link. Because regulated maximal scheduling is a general
rule, we propose a constant-time and distributed algorithm
to implement it in each time slot. We show that the pro-
posed scheduling algorithm can approximate the regulated
maximal scheduling policy within an arbitrarily small error.
The proposed scheduling algorithm works for a general k-
hop interference model and does not require queue length
information. Moreover, we explicitly describe how wireless
links coordinate their contentions to construct the schedule in
each time slot.

The afore-mentioned performance guarantee result implies
that we do not need to perform congestion control even with
flow level dynamics if the traffic load lies within a region
which can be stabilized by the underlying scheduling algo-
rithm. This is an interesting finding given the fact that there are
existing works which employ congestion control algorithms to
stabilize the network [5], [21] under low network load. Given
the fact that the scheduling algorithm is a randomized one
and the number of users dynamically changes, instantaneous
network utility maximization would not result in good network
performance. Because of this, we are interested in finding
transmission rate for each user class which achieves maximum
long-term (time average) utility. In fact, we show that there
exists optimal transmission rates for all user classes to achieve
such maximum long-term utility. When the network load is
high, we propose a cross-layer congestion control algorithm
which can stabilize the network for arbitrary network load.

The results presented in this paper have several important

implications for system implementation. First, we do not
need to perform congestion control in low network load even
with flow level dynamics. Hence, communication overhead
as well as implementation issues such as asynchronous [8]
and noisy [24] feedback due to congestion control operations
can be completely avoided. Second, the problem of network
utility maximization can be decoupled from that of stabilizing
the network. Specifically, the network can be stabilized by
implementing traffic regulators at wireless links together with a
suitable scheduling mechanism. In fact, we show via numerical
examples that using congestion control algorithm to stabilize
the network in low load actually degrades the long-term
network utility considerably.

The remaining of this paper is organized as follows. We
describe the system models and performance bound in section
II. Performance guarantee of the regulated maximal scheduling
policy is presented in section III. In section IV, we present the
distributed scheduling algorithm to approximate the maximal
scheduling policy. We derive the optimal transmission rates
to achieve long-term utility maximization in section V. The
cross-layer congestion control and scheduling algorithm in the
high load regime is described in section VI. Some numerical
results are presented in section VII and section VIII states the
conclusion. For notational convenience, we will put elements
of different measures into the corresponding vectors. For
example, the vector of transmission rates will be denoted by
~x where xs is its s-th element which is the transmission rate
of class-s users.

II. SYSTEM MODELS AND PERFORMANCE BOUND

We model a wireless network as a directed graph G =
(V, E) where V is the set of wireless nodes and E is the
set of wireless links. A wireless link from node i to node j
exists if node j can correctly receive information transmitted
by node i. In practice, existence of such a link depends on
transmission power, path loss, fading, interference, desired bit
error rate and other factors.

We assume that there are S classes of users each of which
associates with a fixed routing path from a source node to a
destination node. The user routes are stored in an incidence
matrix [Hk

s ] where Hk
s = 1 if link k is on the route of class-s

users and Hk
s = 0 otherwise. Users of class s arrive to the

network with rate λs and each brings a file for transfer whose
size is exponentially distributed with mean 1/µs. The offered
load by class-s users is, therefore, ρs = λs/µs. The vector
of offered load will be denoted as ~ρ = [ρ1, ρ2, · · · , ρS ]. We
assume that users of each class transmit at the same rate.

Interference constraints are denoted by a contention matrix
[Cij ]i,j∈E . Specifically, link i is said to interfere with link j if
Cij = 1 and Cij = 0 otherwise. This general notation of the
interference relationship is used to describe the capacity region
and to derive the performance guarantee of the regulated
maximal matching policy in this section and section III only.
The k-hop interference model is a special class representing
this general interference relationship. The k-hop interference
model is assumed in all remaining sections of this paper. Time
is divided into slots of unit duration. Link l can transmit at
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rate Rl if its interfering links are not scheduled to transmit in
a same time slot. In the following, we provide some important
definitions which will be used in the sequel.

Definition I: Interference set Il of link l is the set of links
which interfere with link l, i.e.,

Il = {k ∈ E : Ckl = 1} . (1)

Definition II: Interference degree dI(l) of link l is the max-
imum number of links in its interference set which do not
interfere with each other.

Definition III: Interference degree dI(G) of graph G is the
maximum interference degree of its links, i.e., dI(G) =
maxl∈E dI(l).

Capacity region is defined to be the set of traffic load
such that the network can be stabilized by some scheduling
policy. In [10], capacity region for wireless networks is well
characterized. In particular, capacity region is given by the set

Ω =

{
~ρ :

[
S∑

s=1

H l
sρs

Rl

]

l∈E

∈ Co(R)

}
(2)

where Co(R) is the convex hull of all link schedules R that
satisfy the constraints imposed by the underlying interference
model. A scheduling policy is said to be throughput optimal if
it stabilizes the network for all offered load within the capacity
region Ω. Transmission queueRegulator buffer Regulator Wireless linkWireless link
Fig. 1. Regulator implementation at each wireless link.

We assume that a new schedule is constructed in the first
phase of each time slot which is used to transmit data in the
second phase of each time slot. Traffic flows in the network
may traverse one hop or multiple hops. For the multiple-hop
case, we assume that traffic of each user class is regulated
before entering a transmission queue for being transfered over
each wireless link. The employment of regulators was previ-
ously proposed by Humes to stabilize manufacturing systems
[22] which have been shown to be unstable in some cases
due to cycles of material flow [23]. Regulators were recently
used in wireless networks [8], [19]. A λ-regulator associated
with link l generates packets to transmission queue of link l
with a maximum rate of λ. A regulator can be implemented
as follows. In each time slot, a λ-regulator associated with
link l checks the corresponding regulator queue. If the queue
length is greater than link capacity Rl then it transfers Rl

units of data to the transmission queue with probability λ/Rl.
Otherwise, it transfers nothing. The regulator implementation
is illustrated in Fig. 1.

In this paper, we assume a maximal scheduling policy
which was investigated in [19], [20]. The maximal scheduling
rule can be described as follows. For any link l ∈ E with
transmission queue length larger than the link capacity in any

time slot, it is required that at least one link in its interference
set Il be scheduled. Specifically, if Ql/Rl ≥ 1 (where Ql is
the queue length of transmission queue for link l), we require

∑

k∈Il

πk ≥ 1 (3)

where πk = 1 if link k is scheduled and πk = 0 other-
wise. Due to the combination of maximal scheduling and
regulator implementation, the resulting scheduling will be
called regulated maximal scheduling in the sequel. Note that
maximal scheduling is a general scheduling rule without
specific implementation. We will present a constant time
and distributed scheduling algorithm which approximates the
maximal scheduling in section IV. The following performance
bound of the maximal scheduling policy was proved in [20],
[21], it is restated here for completeness.

Lemma 1: For all traffic load ~ρ within the capacity region
defined in (2), we have

∑

k∈Il

S∑
s=1

Hk
s ρs

Rk
≤ dI(l), ∀l ∈ E. (4)

This upper bound will be used to quantify the throughput
guarantee of the regulated maximal scheduling policy in the
next section.

III. PERFORMANCE OF THE REGULATED MAXIMAL
MATCHING SCHEME

In this section, we show that the network is stable under the
regulated maximal scheduling when the offered load satisfies
a specific condition. We assume that a (ρs + kε)-regulator
is employed at k-th hop on the route of class-s users. It
is worth to mention that the following stability result is
similar in spirit to that in [19], although there is an important
difference here. In fact, we capture flow dynamics in this
paper while the authors in [19] only considered dynamics at
the packet level. In [5] and [21], the authors captured flow
dynamics but their stability results were achieved by a cross-
layer congestion control algorithm. In this paper, network
stability is achieved by a simple regulator implementation so
communication overhead involved in the congestion control
operation can be avoided. The stability result is stated in the
following proposition.

Proposition 1: If the traffic load satisfies

∑

k∈Il

S∑
s=1

Hk
s ρs

Rk
< 1, ∀l ∈ E (5)

then the network is stable under the regulated maximal
scheduling policy. This condition will be called a constraining
bound in the sequel.
Proof: The proof is in Appendix A.

This result was also stated in [21] where the network
was stabilized by a cross-layer congestion control algorithm.
Note that this constraining bound is tight in the sense that
the network can become unstable with any arbitrarily small
increase of the bound (i.e., the right hand side of (5) becomes
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1 + κ for any κ > 0). This fact was proved in several papers
(for example, see [19], [20]). In the following, we state the
performance guarantee for the regulated maximal scheduling
policy.

Lemma 2: The regulated maximal scheduling policy achieves
1/dI(G) capacity region.

Proof: The proof follows directly by comparing the upper
and constraining bounds on capacity region in (4) and (5),
respectively, and using the definition of dI(G). ¤

IV. DISTRIBUTED SCHEDULING ALGORITHM

As mentioned before, maximal scheduling is a general rule
whose implementation is not specified. In this section, we
present a distributed scheduling algorithm which approximates
the maximal scheduling policy in each time slot within an
arbitrarily small error. In fact, the proposed algorithm will
include the BP-SIM scheduling algorithm [17] proposed for
the node exclusive (i.e., one-hop) interference model as a
special case. Our proposed algorithm works with the general k-
hop interference model. Also, in contrast to the existing queue-
length-based scheduling algorithms [16], [17], in our algorithm
each node with incident backlogged links does not require
queue length information of other links in its neighborhood to
construct the transmission schedule. In addition, the proposed
algorithm is fully distributed and it has constant time overhead
which does not grow with the network size. Our proposed
algorithm is, therefore, much more flexible and general than
existing ones in the literature. For ease of reference, we will
refer to our scheduling algorithm as random approximate
maximal matching (RAMM) scheduling in the sequel.

A. Algorithm Description

The RAMM algorithm is run in the first phase of each
time slot. Specifically, we divide each time slot into two
phases: a scheduling phase and a data transmission phase. The
transmission schedule is constructed in the scheduling phase,
and it is used to transmit data in the data transmission phase.
The scheduling phase is further divided into K rounds each
of which contains B mini-slots. In each round, new links are
added to the current transmission schedule. The transmission
schedule obtained at the end of the K-th round will be used
to transmit data in the data transmission phase. In addition,
only wireless links whose queue lengths are larger than the
link capacity are scheduled by the algorithm in each time slot.
The time slot structure of the RAMM algorithm is illustrated
in Fig. 2.

….Time slot Time slotScheduling phase Transmission phaseScheduling round
Fig. 2. Timing diagram of the RAMM scheduling algorithm.

Links are added to the schedule in each round through
a matching request and matching acknowledgment message
exchange as follows. At the beginning of each round, each
active node (the notion of active/inactive nodes will be
clarified shortly) decides to be left or right with probability
1/2. Nodes becoming right wait to receive matching requests
from their neighboring nodes. Backlogged links are added
to the schedule in each round as follows. Each left node
with at least one backlogged outgoing link (i.e., a link from
this node to one of its neighbors) will choose a random
backoff in [1, B]. When the backoff expires, a left node will
choose one of its backlogged neighbors randomly to send a
matching request if it has not heard any matching requests
transmitted by other nodes so far in the round. A right node
which receives a matching request will reply with a matching
acknowledgment message and the corresponding link is added
to the schedule. We assume that if two or more matching
requests are transmitted in one mini-slot, collision occurs and
no matching acknowledgment message is transmitted.C6C1 C5BAC2 C4C3
Fig. 3. Illustration of the contention resolution of RAMM scheduling under
two-hop interference model.

In each round, we require that if a link is added to the trans-
mission schedule, all wireless links in its interference set be
not added to the transmission schedule in subsequent rounds.
This requirement guarantees that we will obtain a conflict-
free transmission schedule at the end of the scheduling phase.
It is observed that this requirement can be easily achieved
by one-hop and two-hop interference models. Specifically, for
the one-hop interference model after a link is added to the
schedule, both its transmitting and receiving nodes will not
transmit and reply any matching requests. For the two-hop
interference model after a link is added to the schedule, all
their one-hop neighboring nodes (i.e., one hop away) of both
transmitting and receiving nodes will be aware of this (through
hearing the matching request or matching acknowledgment)
and will not transmit or reply any matching requests until the
end of the scheduling phase.

For a general k-hop interference model with k ≥ 3, we
assume that a large enough power level is used to transmit
matching request/acknowledgment messages in the scheduling
phase so that if a link is added to the schedule in one round,
all nodes within k − 1 hops from both the transmitting and
receiving nodes of the link are aware of this so they will not
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transmit or reply any matching requests in subsequent rounds.
Nodes within k − 1 hops from the transmitting and receiving
nodes of any links in the schedule are called inactive nodes.
All other nodes are active ones. Note that any inactive node
will remain inactive until the end of the scheduling phase.
In general, the number of nodes participating in the schedule
construction process reduces rapidly over consecutive rounds.
Because new links are kept added to the existing schedule
in each round, the transmission schedule in the last round
would approximate well the maximal schedule if B and K
are large enough. We will show the performance guarantee of
the proposed scheduling algorithm in the next subsection.

The contention resolution of the RAMM scheduling algo-
rithm under two-hop interference model is illustrated in Fig. 3.
In this figure, if link AB is added to the schedule, all nodes
Ci (i = 1, 2, · · · , 6) will be aware of this through hearing
either the matching request or matching acknowledgment
message from A or B. Hence, after link AB is added to
the schedule, these nodes (Ci, i = 1, 2, · · · , 6) will become
inactive. Consequently, all the links in this figure except AB
which are conflict with link AB will never be added to the
schedule in the subsequent rounds.

B. Analysis

Now, let degree di of node i be the number of nodes
having links directly connecting to node i (i.e., one-hop
neighbors of node i). Let d∗ be the maximum of di for all
nodes in the network (i.e., d∗ = maxi∈V di). In addition, a
matching request transmitted by one node may collide with
those transmitted by other nodes. Let Ii be the number of
nodes whose transmitted matching requests may collide with
that of node i if node i and one or more of these nodes
transmit simultaneously under the corresponding power level
used in the scheduling phase. Let I be the maximum of Ii

(i.e., I = maxi∈V Ii). Also, let I∗0 be the maximum number
of nodes which are at most k − 1 hops away from either A
or B including A and B for any link AB in the network. We
have the following result.

Proposition 2: For any µ ∈ (0, 1), we can choose the number
of scheduling rounds K which depends only on B, d∗, I ,
I∗0 , and µ but independent of network size such that for any
backlogged link l, the probability that at least one backlogged
link in its interference set Il is scheduled after K rounds is
larger than or equal to µ.
Proof: The proof is in Appendix B.

Using RAMM scheduling algorithm together with regulator
implementation as described in section II, we have the follow-
ing stability result.

Proposition 3: If the traffic load satisfies

∑

k∈Il

S∑
s=1

Hk
s ρs

Rk
< µ, ∀l ∈ E (6)

and under the condition stated in proposition 2, the network
will be stable when RAMM algorithm is used together with
the regulator implementation as described in section II.

Proof: The proof follows the same line with that of Proposition
1. However, the right hand side of the constraining bound
becomes µ instead of one due to the performance bound
achieved by RAMM scheduling scheme. ¤

The result in this proposition means that we can achieve the
performance bound of the regulated maximal matching stated
in proposition 1 within an arbitrarily small error by using the
RAMM scheduling algorithm with constant-time overhead.

V. LONG-TERM UTILITY MAXIMIZATION UNDER LOW
LOAD CONDITION

Proposition 3 also means that when regulators and RAMM
scheduling algorithm are implemented and traffic load satisfies
the condition stated in (6), the network is stable as long as user
rates are bounded away from zero. As a consequence of this
result, it is clear that we do not need any congestion control
algorithm as long as the traffic load in the network is low.
Hence, communication overhead due to message exchange of
the congestion control algorithm can be avoided if regulators
are implemented in the network. In addition, the number of
users for each class changes dynamically due to the flow level
dynamics, so instantaneous network utility maximization may
not lead to good network performance. Therefore, under this
stability condition, it is natural to ask: how to choose user rates
such that optimal long-term (time average) network utility can
be achieved? Specifically, our objective is to maximize the
long-term network utility which can be explicitly stated as

max
~x(t)

lim
τ→∞

1
τ

∫ τ

t=0

[
S∑

s=1

nt
s(t)Us(xs(t))

]
dt (7)

where nt
s(t) and xs(t) are the number of class-s users trans-

mitting in time slot t and their transmission rate, respectively;
Us(xs) is the utility function, which can, for example, reflect
the level of satisfaction for class-s users. We assume that
users arriving during time slot t can only transmit from time
slot t + 1 onward. Suppose that the queueing process at each
source node is ergodic (this fact was justified in [25]). Let
f(~nt, ~x) denote the joint probability density function of ~nt

and ~x in equilibrium. Because elements of ~nt are pairwise
independent, we have f(~nt, ~x) =

[∏S
s=1 f(nt

s|~x)
]
f(~x). Thus,

we can rewrite (7) as

max
~x

∫

X

S∑
s=1




∞∑

nt
s=0

nt
sUs(xs)f(nt

s|~x)


 f(~x)d~x. (8)

Let us define

g(~x) =
S∑

s=1

∞∑

nt
s=0

nt
sUs(xs)f(nt

s|~x)

=
S∑

s=1

Us(xs)
∞∑

nt
s=0

nt
sf(nt

s|~x)

=
S∑

s=1

Us(xs)E
[
N t

s |~x
]

=
S∑

s=1

ρs

xs
Us(xs)
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where we have used Little’s law in deriving E [N t
s |~x] in

the above equation. Specifically, the expected waiting time
for a class-s user is 1/(µsxs), using Little’s law we have
E [N t

s |~x] = λs/(µsxs) = ρs/xs. Thus, we can rewrite (8)
as

max
~x

∫

X

g(~x)f(~x)d~x (9)

Now, suppose we wish to find optimal user rate xs ∈
[0,Ms]. Let x∗s be the maximum of gs(xs) = ρs/xsUs(xs)
in [0,Ms] and the corresponding optimum rate vector is ~x∗.
Then, it is easy to see that choosing f(~x) = δ(~x − ~x∗) will
maximize (9) where δ(.) is the delta function. Thus, the long-
term utility maximization can be achieved by allowing users
of class s to transmit at the optimal rate x∗s . In summary,
when the traffic load satisfies (6), the network is stable under
the proposed scheduling policy and no congestion control is
needed. In addition, we can decouple the long-term utility
maximization from stability under this stability condition.
Example: When the utility function is Us(xs) = ln(xs) which
corresponds to proportional fair rate allocation among users,
we have gs(xs) = ρs/xs ln(xs). The global maximum of
gs(xs) is x∗s = e. Thus, if Ms > e, the optimal transmission
rate to achieve maximum long-term utility is x∗s = e. We will
compare long-term utility under this solution and for the case
where cross-layer congestion control algorithm is used [21].

VI. CONGESTION CONTROL UNDER HEAVY LOAD

In this section, we consider the heavy load regime where
the bound stated in (5) is violated. This may be the case when
there are many long-lived flows in the network.

A. Cross-Layer Congestion Control Algorithm

In this subsection, we present a cross-layer congestion
control algorithm which can stabilize the network under any
offered load. We assume that the flow dynamics are slow
compared to the time scale of a congestion control algorithm.
Hence, we assume that there are fixed number of users of
each class s in the network which will be denoted by Ns.
Our proposed cross-layer congestion control algorithm works
as follows.

• User rate is determined by

xs(t) =


min



U

′−1
s


∑

l∈E

ql(t)
∑

k∈Il:Hk
s =1

1
Rk


 , Ms








+

where U
′−1
s (.) is the inverse of derivative of utility

function Us(.) and [x]+ = max[x, 0].
• The implicit costs are updated by

ql(t + 1) =

[
ql(t) + αl

(∑

k∈Il

S∑
s=1

Hk
s Nsxs

Rk
− 1 + κ

)]+

where κ > 0 is a small number and αl is the step-size.
• Transmission scheduling: The regulated maximal

scheduling policy is employed in each time slot.

We assume that the utility function Us(xs) is increasing,
strictly concave, twice differentiable. The proposed congestion
control algorithm implicitly solves the following optimization
problem.

maximize
∑S

s=1 NsUs(xs)
subject to

∑
k∈Il

∑S
s=1

Hk
s Nsxs

Rk
≤ 1− κ, ∀l ∈ E

(10)

Note that constraints of this optimization problem come
from the constraining bound stated in (5). Here, the transmis-
sion rate of class-s users is used instead of its offered load.
We introduce a small κ > 0 on the right hand side of these
constraints to ensure that feasible solutions of this optimization
problem strictly satisfy the constraining bound. By introducing
Lagrange multipliers ql for the constraints in (10), we have the
following Lagrangian

L(~x, ~q) =
S∑

s=1

NsUs(xs)−
∑

l∈E

ql

[∑

k∈Il

S∑
s=1

Hk
s Nsxs

Rk
− 1 + κ

]

Using the standard dual decomposition technique, we can
calculate the user rate from

xs(t) = argmax
0≤xs≤Ms


NsUs(xs)−

∑

l∈E

ql(t)
∑

k∈Il:Hk
s =1

Nsxs

Rk




which gives the user rate update rule presented in the al-
gorithm. Also, implicit cost update step of the proposed
algorithm comes from the dual update of the underlying
optimization problem. Now, let x∗s be the optimal solution of
the presented algorithm, we implement a (x∗s + kε)-regulator
in the k-th hop of class s users. We have the following results
on the stability of the presented algorithm.

Proposition 4: If the stepsize is chosen to be small enough,
the presented algorithm can stabilize the network under any
offered load.

Proof: The proof is in Appendix C.
It is expected that a congestion control algorithm should

stabilize the network under any offered load. In this respect,
the proposed congestion control algorithm does a good job
compared to those in [5], [21]. Note that in practice where the
RAMM scheduling algorithm is implemented to approximate
the maximal matching policy (RAMM instead of maximal
matching is used in step 3 of this algorithm), we can modify
the proposed congestion control algorithm by replacing 1 on
the right hand side of the constraint in (10) by µ and modify
the algorithm accordingly.

B. Some Implementation Issues

In practice, there is no simple way to know whether or
not the constraining bound in (5) is satisfied. Therefore, it is
unknown when the congestion control algorithm proposed in
section VI.A should be activated. Moreover, it would be wise
to avoid performing congestion control if it is unnecessary.
Also, users in the network should transmit at their optimal
rates as calculated in section V to maximize the long-term
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utility if the network is known to be stable by the regulated
maximal scheduling policy.

To achieve such goals, users would attempt to transmit at
their optimal rates assuming that the offered load is low and
the network is stable. If this is not the case, the network
should be equipped with an appropriate mechanism to detect
and inform all users about the ongoing congestion and request
them to activate the congestion control algorithm. Congestion
can be detected at network nodes through observing frequent
buffer overflows and/or large end-to-end delay. Upon detecting
network congestion, network nodes should send appropriate
feedback to inform all users in the network and request them
to run the congestion control algorithm. These operations
ensure that the best performance can be achieved and the most
appropriate operations are performed at all times.

VII. NUMERICAL RESULTS

In this section, we show some illustrative numerical results
for the proposed scheduling algorithm and the long-term utility
maximization. We consider grid networks with one-hop and
multihop flows. We assume that transmission rate on each
wireless link equals Rl = 10 units/time slot, average length
of each file brought by any user class is 1/µs = 10 units.
Users of each class arrive according to Poisson process with
arrival rate λs. We vary arrival rate to adjust the traffic load
ρs = λs/µs. Here, a unit of data is a block of information
bits of suitable size. We assume all flows have the same load
ρ in all the results.1 2 3 4 5 610 11 12987 16 17 18151413 22 23 24212019 28 29 30272625 34 35 36333231
Fig. 4. Grid network of 36 nodes with 60 one-hop flows or 12 multihop
flows.

A. Performance of Scheduling Algorithms

In Fig. 7, we show the minimum probability of achieving
a maximal schedule due to the RAMM algorithm versus the
number of rounds K under different maximum backoff values
B for the grid and random topologies shown in Fig. 4, Fig. 6
under the one-hop interference model. For both topologies,
we assume there are two flows in two different directions on
each links (i.e., for any link AB, there are one flow from A
to B and one flow from B to A). We assume that all the flows
are always backlogged which is the worst case scenario. The
probability of achieving a maximal schedule for a backlogged

1 2 3 4 5 610 11 12987 16 17 18151413 22 23 24212019 28 29 30272625 34 35 36333231
Fig. 5. Grid network of 36 nodes with 30 one-hop flows or 6 multihop flows.
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Fig. 6. Random network of 36 nodes with 198 bidirectional links (99
undirectional links), d∗ = 9, I = 24.

link is the probability that it is scheduled or at least one link
in its interference set is scheduled. The minimum matching
probability is the smallest probability for all links in the
network. We have obtained this probability by averaging over
104 time slots. It is observed that with B = 3, to achieve a
minimum matching probability of 0.9, we need K = 4 and
5 rounds for the grid and random topologies, respectively.
Also, with B = 3 and K = 9, (i.e., the total number of mini-
slots required is M = B ×K = 27), the minimum matching
probability is almost 1.

Similarly, we show the minimum probability of achieving
a maximal schedule due to the RAMM algorithm versus
the number of rounds K under different maximum backoff
values B for the grid and random topologies under two-hop
interference model in Fig. 8. This figure shows that with B = 4,
we only need K = 11 for the grid topology and K = 13 for the
random topology to achieve minimum matching probability
very close to 1. It is also shown that even the size of the node
interference set is very large (I = 22 for the grid topology and
I = 24 for the grid topology), the improvement of minimum
matching probability is very marginal when the maximum
backoff B is larger than 8. In fact, it is more beneficial in
terms of overhead (i.e., M = B ×K) to use small values of
B (e.g., B = 4 or 5 is a good choice).
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Fig. 7. Minimum probability of achieving the maximal scheduling versus
number of rounds for a grid topology in Fig. 4 with 120 one-hop flows or
random topology in Fig. 6 with 198 one-hop flows under one-hop interference
model.
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Fig. 8. Minimum probability of achieving the maximal scheduling versus
number of rounds for a grid topology in Fig. 4 with 120 one-hop flows or
random topology in Fig. 6 with 198 one-hop flows under two-hop interference
model.

B. Comparison of Different Scheduling Algorithms

In this sub-section, we compare performances of the pro-
posed RAMM scheduling algorithm with the other two queue-
length-based constant-time scheduling algorithms in [16],
namely policy V and policy W for one-hop and two-hop inter-
ference models, respectively. For ease of reference, we briefly
describe these two scheduling algorithms here. Before doing
so, let us introduce some necessary notations. Let s(l) and
r(l) denote the transmitting node and receiving node of link l,
respectively. Also, let E(i) denote the set of links connected to
node i, and N(l) denote the set of neighboring links sharing a
common node with link l (i.e., N(l) = E(s(l))∪E(r(l))\{l}.
In addition, let N(l)+ denote the union of N(l) and {l}, and
nl and n+

l denote the number of links in N(l) and N(l)+,
respectively.

For the comparison purposes, we assume single-hop flows
so data traffic will be directly buffered in the transmission
queue for each link (i.e., no regulator implementation). In the
scheduling policies V and W, each time slot also consists
of scheduling phase and data transmission phase. There are
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Fig. 9. Performance of RAMM scheduling algorithm under two-hop
interference model (for maximum backoff value B = 4, grid network with
36 nodes and 30 one-hop flows in Fig. 5).
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Fig. 10. Performance of policy W [16] under two-hop interference model
(for M = 44, 128, 512, 1024, grid network with 36 nodes and 30 one-hop
flows in Fig. 5).

M mini-slots in the scheduling phase. The two scheduling
algorithms work as follows.
Policy V: In each mini-slot of the scheduling phase, each
backlogged link contends with probability α xl

M where α =
(
√

M − 1)/2 and

xl =
Ql/Rl

max
{∑

k∈E(s(l)) Qk/Rk,
∑

k∈E(r(l)) Qk/Rk

}

where Ql is the queue length and Rl is the transmission rate
of link l, respectively.
Policy W: In each mini-slot of the scheduling phase, each
backlogged link contends with probability β yl

M where

β =
√

M − 1
n∗

(11)

where n∗ = maxl∈E n+
l and

yl =
Ql/Rl

maxk∈N(l)+
∑

h∈N(k)+ Qh/Rh
.

In Fig. 9, we show the performance of RAMM scheduling
algorithm in a grid network with 36 nodes and 30 one-hop
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Fig. 11. Performance of RAMM scheduling algorithm under two-hop
interference model (for B = 4, grid network with 36 nodes and 6 multihop
flows in Fig. 5).
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Fig. 12. Performance of RAMM (with B = 3, K = 9) and policy V [16]
scheduling algorithms under one-hop interference model (for grid network
with 36 nodes and 60 one-hop flows in Fig. 4).

flows as in Fig. 5. For the RAMM algorithm, we show the
performance with different transmission rounds K while we
fix the maximum backoff value of B = 4 (the number of
mini-slots in the scheduling phase is M = B × K). We
also present performance of Pick-and-Compare (P&C) [11],
[13] and greedy maximal matching (GMM) [5] scheduling
schemes. For the P&C scheme, a new schedule is generated
in each time slot by using RAMM algorithm. Then the total
weights of the old schedule and the newly generated schedule
are compared where the weight of a link is the length of its
transmission queue, and the schedule with larger weight is
chosen for transmission in the time slot. In fact, the huge
complexity of the P&C scheme incurs in the “compare” step.
For the GMM scheme, the schedule is constructed by adding
one feasible link with the largest weight to the schedule and
removing all conflicting links with the added link in each step.
This procedure is repeated until no further link can be added
to the schedule.

Note that both P&C and GMM scheduling schemes are
either centralized or require huge overhead to implement
in a distributed manner. Also, it is known that these two

scheduling schemes achieve almost the capacity region. It
is confirmed in this figure that P&C and GMM schemes
achieve similar performance although GMM has a bit smaller
total queue length for traffic load close to the boundary of
the capacity region. It is evident that when we increase the
number of rounds for the RAMM algorithm, we achieve better
performance. Moreover, in the considered network dI(G) = 4,
so the performance guarantee stated in proposition 1 is just 1/4
capacity region. However, the actual performance achieved by
the proposed RAMM scheduling algorithm is much better than
the performance bound as can be seen in Fig. 9.

In Fig. 10, we present the performance of the queue-length-
based constant time scheduling policy W for the two hop
interference model [16]. We show the performance of this
scheduling scheme for different number of mini-slots used in
the scheduling phase M (the first phase of this scheduling
policy corresponds to the first phase of our RAMM scheduling
algorithm). As is evident, with M = 44 mini-slots, policy W
achieves much lower performance than the RAMM algorithm.
Even with M = 1024 mini-slots, performance of policy W
is still worse than that of RAMM algorithm with only M
= 44 mini-slots. Note that due to practical implementation
constraints, the time slot duration is usually limited to few
milliseconds as in most current wireless systems. If the du-
ration of a mini-slot is 20 µs as in the WLAN standard,
M = 100 corresponds to 2 ms which is already quite large.
Our scheduling algorithm, therefore, presents a significant
advantage compared to policy W because we cannot make
the time slot interval arbitrarily large in practice.

In Fig. 11, we show performance of the RAMM scheduling
algorithm for the grid network with 6 multihop flows in Fig. 5.
Similar performance to the single-hop case presented in Fig. 9
is observed for this setting. It is evident that although multihop
flows contribute more traffic to the network because each flow
traverses multiple links, scheduling algorithm is still the key
to determine performance of the network.

In Fig. 12, we compare performance of RAMM and policy
V [16] under one-hop interference model for the grid network
with 60 one-hop flows in Fig. 4. It is evident that RAMM
scheduling with only M = 27 mini-slots achieves similar per-
formance with policy V for M = 1024 mini-slots. The RAMM
scheduling algorithm, therefore, has significantly lower over-
head compared to policy V. Note that the RAMM scheduling
algorithm does not require queue length information, so it
is much easier to implement compared to policy V and W.
In addition, collecting queue length information will create
further overhead which may also be very significant, especially
for the two-hop interference model (because each node needs
to forward queue length information of its incident links two
hop away).

C. Long-term Utility

We compare the long-term (time average) utility under the
optimal transmission rate derived in section V and under
the case where a cross-layer congestion control algorithm is
used. Specifically, we will consider the cross-layer congestion
control algorithm proposed in [21] which is the extension of
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that for one-hop interference model in [5]. The cross-layer
congestion control algorithm works as follows:
• Congestion price for each link l is updated as

ql(t + 1) = [ql(t) + αl∆ql(t)]
+ (12)

where αl is the step size and

∆ql(t) =
∑

k∈I(l)

[
S∑

s=1

Hk
s

∫ t+1

t

ns(t)xs(t)
Rk

− 1k∈S(t)

]

and S(t) denotes the set of links belonging to the
schedule in time slot t, 1(.) is the indicator function.

• Transmission rate of class-s user is updated as

xs(t + 1) = min





1
∑

l∈E ql(t + 1)
∑

k∈I(l)
Hk

s

Rk

,Ms



 .

(13)
• Transmission scheduling: The network is scheduled in

each time slot by the corresponding scheduling algo-
rithms (GMM or RAMM algorithm).
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Fig. 13. Average utility of the proposed optimal transmission rate and
with congestion control algorithm under one-hop interference model (for grid
network with 36 nodes and 12 multihop flows, GMM and RAMM scheduling
with B = 3, K = 9 in Fig. 4).

We consider the utility function Us(xs) = ln(xs). Hence,
for the proposed approach the optimal transmission rate for
each user is x∗s = e (i.e., we assume that Ms > e). We will
illustrate performance of the cross-layer congestion control al-
gorithm under both GMM and RAMM scheduling algorithms.
Long-term average utility is obtained by averaging the utility
over 15.104 time slots. For the cross-layer congestion control
algorithm, we fixed the transmission rate at x∗s = e for the
first 103 time slots while still updating the congestion prices
and generating a new schedule in each time slot. This initial
period provides time for the congestion prices to converge to
“better” values. The step size is initialized as α = 0.1 and it
is updated as α = max

{
α/t, 10−3

}
.

We show the average utility achieved by the optimal
transmission rate and by the congestion control algorithm in
Figs. 13, 14 for one-hop and two-hop interference models,
respectively. It is evident that the proposed approach achieves
higher average utility then those using congestion control

0.5 1 1.5 2 2.5
−200

−150

−100

−50

0

50

Load ρ

A
ve

ra
ge

 u
til

ity

Congestion control, RAMM
Congestion control, GMM
Optimal transmission rate

Fig. 14. Average utility of the proposed optimal transmission rate and
with congestion control algorithm under two-hop interference model (for grid
network with 36 nodes and 6 multihop flows, GMM and RAMM scheduling
with B = 4, K = 11 in Fig. 5).

algorithm for all traffic load under both interference models.
In fact, the average utility with congestion control decreases
significantly when the traffic load is close to the boundary
of the region which can be stabilized by the underlying
scheduling algorithm. This observation confirms the argument
that performing congestion control is unnecessary if the net-
work can be stabilized by the underlying regulated scheduling
algorithms.

VIII. CONCLUSIONS

We investigated the network control problem using constant-
time scheduling under the k-hop interference model. With flow
dynamics consideration, we have shown that the network can
be stabilized by using a regulated maximal scheduling policy if
the offered load satisfies the constraining bound. We have pre-
sented a constant-time and distributed scheduling algorithm for
a general k-hop interference model. The scheduling algorithm
does not require queue length information and has overhead
not growing with network size. Our proposed scheduling
algorithm achieves performance arbitrarily close to that of the
regulated maximal scheduling. Under the stability condition,
we have derived optimal transmission rates which achieve
the maximum long-term network utility. For the high load
regime, we have proposed a cross-layer congestion control
algorithm which can stabilize the network for any offered load.
Numerical results have shown that the proposed scheduling
algorithm achieves much better performance than the existing
constant-time scheduling algorithms in the literature, and it
has much better performance than its performance guarantee.
Also, performing congestion control under low load condition
actually degrades performance in terms of long-term utility
significantly compared to the optimal transmission rate.

APPENDIX I
PROOF OF PROPOSITION 1

Let Qs
l (t) and Ql(t) be transmission queue lengths for class

s and for all user classes at link l in time slot t, respectively.
Similarly, let P s

l (t) and Pl(t) be regulator queue lengths
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for class s and for all user classes at link l in time slot t,
respectively. Let us denote by bs

l and as
l the previous link and

next link of link l on the route of class-s users. Also, let Cs
l (t)

and Ds
l (t) be the number of packets transmitted from regulator

and transmission queues in time slot t, respectively. We have
the following queue update equations

Qs
l (t + 1) = Qs

l (t)−Ds
l (t) + Cs

l (t) (14)
P s

l (t + 1) = P s
l (t)− Cs

l (t) + Ds
bs

l
(t). (15)

Thus, we have

Qs
l (t+1)+P s

as
l
(t+1) = Qs

l (t)+P s
as

l
(t)+Cs

l (t)−Cs
as

l
(t). (16)

We will use the following Lyapunov function for the system

V (~P , ~Q) = V1( ~Q) + ξV2(~P , ~Q) (17)

where

V1( ~Q) =
∑

l

Ql(t)
Rl

∑

k∈Il

Qk(t)
Rk

V2(~P , ~Q) =
∑

l

∑
s

(
P s

as
l
+ Qs

l

)2

.

In fact, this Lyapunov function was also used in [19]. Now,
let us consider

V1( ~Q(t + 1))− V1( ~Q(t))

= 2
∑

l

Ql(t)
Rl

(∑

k∈Il

(Qk(t + 1)−Qk(t))
Rk

)

+
∑

l

(
(Ql(t + 1)−Ql(t))

Rl

)

×
(∑

k∈Il

∑
s

(Qk(t + 1)−Qk(t))
Rk

)

= 2
∑

l

Ql(t)
Rl

(∑

k∈Il

∑
s

(Cs
k(t)−Ds

k(t))
Rk

)
(18)

+
∑

l

(Cs
l (t)−Ds

l (t))
Rl

(∑

k∈Il

∑
s

(Cs
k(t)−Ds

k(t))
Rk

)
.(19)

Since the number of packets transmitted from regulator and
transmission queues in each time slot are bounded, the second
term in (19) can be bounded by a constant B1. Thus, we have

E
[
V1( ~Q(t + 1))− V1( ~Q(t))|~P (t), ~Q(t)

]

≤ 2E

[∑

l

Ql(t)
Rl

(∑

k∈Il

∑
s

(Cs
k(t)−Ds

k(t))
Rk

)

|~P (t), ~Q(t)
]

+ B1

≤ 2E


 ∑

l:Ql(t)≥Rl

Ql(t)
Rl

(∑

k∈Il

∑
s

Cs
k(t)
Rk

−
∑

k∈Il

Dk(t)
Rk

)

|~P (t), ~Q(t)
]

+ B2.

Let L be the largest number of hops traversed by any user
class, we have

E


 ∑

l:Ql(t)≥Rl

Ql(t)
Rl

∑

k∈Il

∑
s

Cs
k(t)
Rk

|~P (t), ~Q(t)




≤
∑

l:Ql(t)≥Rl

Ql(t)
Rl

∑

k∈Il

∑
s

Hk
s ρs + Lε

Rk
. (20)

Also, due to the definition of maximal scheduling policy,
we have

∑

l:Ql(t)≥Rl

Ql(t)
Rl

∑

k∈Il

Dk(t)
Rk

≥
∑

l:Ql(t)≥Rl

Ql(t)
Rl

. (21)

For traffic load satisfying (5), we can find ε and δ small
enough such that

∑

k∈Il

S∑
s=1

Hk
s ρs + Lε + δ

Rk
≤ 1, ∀l ∈ E. (22)

From (20), (21), (22), we have

E
[
V1( ~Q(t + 1))− V1( ~Q(t))|~P (t), ~Q(t)

]

≤ −δ
∑

l:Ql(t)≥Rl

Ql(t)
Rl

+ B2 ≤ −δ
∑

l

Ql(t)
Rl

+ B3. (23)

Now, using the procedure as in [19], we can obtain

E
[
V2(~P (t + 1), ~Q(t + 1))− V2(~P (t), ~Q(t))|~P (t), ~Q(t)

]

≤
∑

l

∑
s

RlQl(t)− η
∑

l

∑
s

P s
as

l
(t) + B4. (24)

Combining the results in (23), (24), we have

E
[
V (~P (t + 1), ~Q(t + 1))− V (~P (t), ~Q(t))|~P (t), ~Q(t)

]

≤ −
∑

l

∑
s

[
δ

Rl
− ξRl

]
Qs

l (t)− ξη
∑

l

∑
s

P s
as

l
(t) + B5. (25)

We can choose ξ small enough such that δ
Rl
− ξRl > 0.

Thus, the drift will be negative if the regulator and/or trans-
mission queues become large enough. Therefore, the stability
result follows by using theorem 2 of [26]. Note that the chosen
Lyapunov function does not take regulator queue on the first
hop of each user class into account. These regulator queues
are, however, stable because their output rate is ρs + ε which
is larger than the average input load (i.e., ρs).

APPENDIX II
PROOF OF PROPOSITION 2

Consider any link AB between node A and B. We will find
the probability that at least one link in the interference set IAB

is scheduled. This event will be denoted as MAB in the sequel.
As mentioned before, RAMM scheduling algorithm includes
BP-SIM scheduling algorithm for the one-hop (node exclusive)
interference model proposed in [17] as a special case. In the
following we prove proposition 2 for k ≥ 2. For the special
case of k = 1, we refer the readers to [17] for the proof and the
corresponding analysis. Note that the proof for the case k ≥ 2
is very challenging and completely different from that for the
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case k = 1 in [17] due to the more complicated interference
relationship.

We will illustrate some important definitions used in the
proof in Fig. 15. Let I0 be the set of nodes which is at most
k− 1 hops away from either A and B including A, B. For the
grid network and link AB shown in Fig. 15 under the two-
hop interference model, I0 = {A,B,C1, · · · , C6}. Also, the
interference set for node C6 (i.e., IC6) consists of all nodes
in I0 and all “blank” nodes. Note that the notion of node
interference set is different from that of link interference set
provided in definition I. Here, all nodes in IC6 are at most
3 hops away from C6. We observe that all links incident to
any nodes in I0 will belong to IAB because they are within k
hops from link AB. In the following, we will find the lower
bound for the probability of MAB by considering sub-cases in
which there are i left nodes in the set I0. For convenience, we
will use I0 to denote both the set itself and the corresponding
number of nodes in I0. Let Li be the event that there are i
left nodes in the set I0. The probability that at least one link
in the interference set of link AB is scheduled can be lower
bounded as

Pm ≥
I0∑

i=1

Pr(MAB |Li)Pr(Li). (26)

Recall that for any particular node A, there are at most I nodes
whose matching request can collide with that transmitted from
node A with the power used in the scheduling phase. Note
that these I nodes will be at most k + 1 hops away from
mode A for the interference models with k ≤ 2 where the
same transmission power level is used in both scheduling
and transmission phases of each time slot. To find the lower
bound for the probability of MAB , we will assume the worst-
case scenario where each node has I interfering nodes. For
convenience, we also use IA to denote the set of these
interfering nodes whose transmissions can collide with that
from node A. We now consider the following cases.

C6C1 C5BAC2 C4C3
Fig. 15. Interference set IC6 under two-hop interference model.

A. There is only one left node in I0

We consider the following two sub-cases.
• If this left node is either A or B, then the left node will

have at least one neighbor which is a right node. This case
occurs with probability 2(1/2)I0 . For ease of reference,
we will refer to this left node as node C (i.e., C is either
A or B). Also, there are at most I − I0 nodes whose
matching requests can collide with that from node C. To
find the lower bound for Pr(MAB), we assume that there
are I − I0 such interfering nodes.
Now, suppose there are i left nodes among these I −
I0 interfering nodes. The matching request transmitted
by node C will be successfully received if the backoff
values of these i left nodes are larger than that of node
C. Specifically, the matching request from node C will
be successfully received and the corresponding link will
be scheduled with a probability which is lower bounded
by

F1 =
I−I0∑

i=0

(
I − I0

i

)(
1
2

)I−I0 1
B

B∑
m=1

(
1− m

B

)i

where we have broken the event into sub-cases where
there are i left nodes among I− I0 interfering nodes and
these i left nodes have backoff values larger than that of
node C.

• If this left node is any node other than A and B then it
can be any node among (I0 − 2) nodes. Again, we refer
to this left node as node C. Note that all nodes which
are within one hop from A or B including A and B are
at most k + 1 hops away from C so they all belong to
the interfering set IC . Let x be the total number of nodes
within one hop from A and B including A and B, then
there are at most I − x nodes whose matching requests
can collide with that from node C. This is because these
x nodes belong to I0 and they are all right nodes except
C if C is in I0. We will assume this worst-case scenario
to calculate the lower bound of the matching probability
in the following. Note that node C will have at least one
neighbor which is a right node because it is the only left
node in I0.
Again, suppose there are i left nodes among potential
interfering nodes in IC . The matching request transmitted
by node C will be successfully received if the backoff
values of these i left nodes are larger than that from node
C and the matching request from node C is transmitted
to a right node. Now, we consider the following two sub-
cases. For the first case, if C is one of x nodes (i.e., x
one-hop neighbors of A or B) but not A and B. Then, this
case occurs with probability (x− 2)(1/2)I0 . In this case,
the matching request from node C will be successfully
received and the corresponding link will be scheduled
with a probability which is lower bounded by

F2 =
I−x−1∑

i=0

(
I − x− 1

i

) (
1
2

)I−x 1
B

B∑
m=1

(
1− m

B

)i

where i is the number of left node. Also, in calculating
the lower bound for Pm we assume that C transmits its
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matching request to a right node which is not an one-hop
neighbor of A or B. Hence, there are at most I−x−1 left
nodes which can collide with the matching request from
C. For the second case, if C is not one of x nodes (i.e., x
one-hop neighbors of A or B). Then, this case occurs with
probability (I0 − x)(1/2)I0 . In this case, the matching
request from node C will be successfully received and the
corresponding link will be scheduled with a probability
which is lower bounded by

F3 =
I−x−2∑

i=0

(
I − x− 2

i

)(
1
2

)I−x 1
B

B∑
m=1

(
1− m

B

)i

where in calculating the lower bound for Pm we assume
that C transmits its matching request to a right node which
is not an one-hop neighbor of A or B. Hence, there are
at most I − x− 2 left nodes which can collide with the
matching request from C.

B. There are two or more left nodes in I0

Suppose node C in the set I0 becomes left and wins the
contention. Then node C should have the smallest backoff
value among all the nodes whose matching requests can collide
with the matching request from C. Also, node C should send
the matching request to a node which is a right one. For ease
of reference, we will refer to this right node as node D in the
sequel. In general, D can belong to set I0 or not. However, to
find the lower bound of Pm, we assume that D belongs to I0;
therefore, there are at most I0 − 2 other left nodes besides C
and D in I0.

As before, we assume the worst-case scenario where there
are I nodes whose transmissions can collide with that of node
C. Recall that all x nodes which are one-hop neighbors of
A or B belong to the set I . Similar to the previous case, we
consider the following two sub-cases. For the first case, C is
one of x nodes (i.e., x one-hop neighbors of A or B). In this
case the matching probability can be lower bounded as

F4 = x

I0−2∑

i=1

I−x−1∑

j=0

(
I0 − 2

i

)(
1
2

)I0
(

I − x− 1
j

)

×
(

1
2

)I−x 1
B

B∑
m=1

(
1− m

B

)i+j

where i is the number of left nodes besides C and D in the
set I0. And j is the number of left nodes which belong to I
but are not one-hop neighbors of A or B (i.e., there is no link
between these nodes and A or B). We will denote this set as
I \ x in the sequel. In general, D can belong to I \ x or not;
however, to find the lower bound for Pm, we only allow j
takes values from 0 to I − x − 1. In addition, C can be any
node among x nodes so we have a factor of x before the sum.
Also, we require that all left nodes (i left nodes belonging I0

and j left nodes belonging to I \ x) achieve larger backoff
values than that of node C.

For the second case, C belong to the set I \ x. In this case,
the matching probability can be lower bounded as

F5 = (I0 − x)
I0−2∑

i=1

I−x−2∑

j=0

(
I0 − 2

i

)(
1
2

)I0
(

I − x− 2
j

)

×
(

1
2

)I−x 1
B

B∑
m=1

(
1− m

B

)i+j

where C can be one of I0 − x nodes so we have the factor
(I0 − x) before the sum. Also, to calculate the lower bound
for the matching probability, we assume D always belong to
I \ x, so j can be at most I − x− 2.

Substitute results of all considered cases into (26), the
matching probability is lower bounded by

Pm ≥ P 0
m = 2(1/2)I0F1 + (x− 2)(1/2)I0F2

+(I0 − x)(1/2)I0F3 + F4 + F5 (27)

where F1, F2, F3, F4, and F5 are defined above.
From the lower bound of the matching probability P 0

m

derived above, we can calculate the lower bound of Pm for
any link AB as

p∗ = min
x, I0

P 0
m

where we find the minimum of P 0
m over all possible x and

I0. Note that possible values of x and I0 will be in the range
of [3, 2d∗] and [3, I∗0 ], respectively. Here, x and I0 are at least
three for the network to be connected (i.e., A and B should
have at least one one-hop neighbor). It is observed that p∗ is
independent of the network size and depends only on B, d∗,
I , I∗0 . Now, we can choose K such that at least one link in
Il of a backlogged link l is scheduled with probability greater
than µ after K rounds as follows:

K = min
k≥1

{
k : (1− p∗)k ≤ 1− µ

}
. (28)

Thus, we can choose K which is independent of network
size and only depends on B, d∗, I , I∗0 , µ such that performance
guarantee arbitrarily close to the constraining bound can be
achieved.

Example: For the grid network and two-hop interference
model, we have I = 22, I0 = x can take values of 5, 6, 8.
With maximum backoff value B = 10, by using the analysis
presented above, the minimum number of scheduling rounds
to achieve µ = 0.9 is K = 60. In fact, this calculation is quite
conservative because it considers the worst case scenario. In
practice, the size of interference sets decreases quickly over
scheduling rounds, so the required value of K is much smaller.

APPENDIX III
PROOF OF PROPOSITION 4

The proof is similar to that of Proposition 1 (i.e., we use the
same Lyapunov function and proof procedure). In particular,
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we have a similar bound as in (20) as follows:

E


 ∑

l:Ql(t)≥Rl

Ql(t)
Rl

∑

k∈Il

∑
s

Cs
k(t)
Rk

|~P (t), ~Q(t)




≤
∑

l:Ql(t)≥Rl

Ql(t)
Rl

∑

k∈Il

∑
s

Hk
s x∗s + Lε

Rk
. (29)

Due to the constraints of the optimization problem in (10),
we can find ε and δ small enough such that

∑

k∈Il

S∑
s=1

Hk
s x∗s + Lε + δ

Rk
≤ 1, ∀l ∈ E. (30)

From (29) and (30), we have

E
[
V1( ~Q(t + 1))− V1( ~Q(t))|~P (t), ~Q(t)

]

≤ −δ
∑

l:Ql(t)≥Rl

Ql(t)
Rl

+ B6 ≤ −δ
∑

l

Ql(t)
Rl

+ B7. (31)

The remaining steps to obtain negative drift when regulator
and/or transmission queues become large enough are the same
as in the proof of Proposition 1.
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