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Abstract—In this paper, we present simple performance bounds traffic streams are usually statistically independent and rarely
for multiplex_ed regulated traffic streams, Whi(;h are Ieaky-bucket perfectly synchronized, which is what is assumed for comput-
regulated with peak, mean rate and burst size constraints. We g the envelope of the multiplexed streams. This negates the
consider independent, heterogeneous streams, which are multi- - . . .
plexed in a common buffer. We derive bounds on the mean delay effect of statistical multlplexmg and Ie_ads tg very conservative
in the deterministic context and we then obtain a simple stochastic @nd wasteful allocation of resources if statistical QoS guaran-
bound, which is exact when the number of sources increases. Atees are only required to be met.
byproduct is a characterization of the worst case sources formean | et us illustrate this point by considering a concrete exam-
delay, when they are leaky bucket regulated. ple. ConsiderN independent regulated traffic streams which
are multiplexed into a common buffer which is drained bits
per sec. Let4;(s,t) denote the total number of bits emitted by

i ) the jth stream in the intervals,t). The (o, p) constraint en-
With the emergence of the need by users for quality of serviggq thatA;(s,t) < o, + p;(t — s). The parameter; and

(QoS), the basic idea of controlling traffic at the network accegs genote the regulation bounds of the leaky-bucket and define

has played a crucial role over the past few years in the desigly \nds on the long-term average rate and the instantaneous size
of broadband integrated networks [1]. Even though such gpihe bursts from the stream. L(s, 1) = Z;\le A;(s,t) de-

approach is constraining because of the difficulty encountergge the aggregate multiplexed stream. Then it is trivial to note

by users to declare traffic parameters, it has prevailed in §g;; the regulation bounds ot(s, ¢) are provided by = 3" p;
development of ATM networks but also in the evolution of thg 4 _ S o;. Assuming thap ; ¢, it can be readily seen tzhat

Internet, for instance with the IntServ model and more recen{lp(e worst-case delay bounddge. In the case ofV identical
with the standardization of MPLS. Traffic generated by Usef§aams. this upper bound beconés /c whereo; = o
) g — Y-

will thus be conforming to some traffic parameters enforced at| this paper, we consider the situation, whan statisti-

netwr?rk sccess ; tEese pararge;[]ers are nigotlated IN ON€ WY, independent regulated traffic streams are multiplexed into

another between the user and the network. a common buffer. We assume that each stream is regulated by
One of the simplest regulation mechanisms is the so-callgq 5| jeaky-bucket, one bucket controlling the peak raded

leaky bucket mechanism, which has gained enormous pPOoRs qiher one the achievable mean ratelefined with the as-

larity in ATM, networks. This mec.h:_;mism has been studi_ed igbciated bucket size. We thus consider each stream specified
great depth in the context of providing guaranteed QoS in ngg; the regulation parametefs;, p;,7;), j = 1,..., N where

works. These regulators are often referred t¢ap) regula- ne cymulative inputd; (0, ¢) in the interval [0,t) from stream
tors and a very powerful formalism to study worst-case del@étisfies

bounds callechetwork calculushas been developed for such
inputs. The systematic approach goes back to the seminal work

of Cruz [2], [3], but has been greatly extended in the works afhis model allows us to introduce the peak rate, denoted;by
Le Boudec [4] and Chang [5]. The recent monograph of Chagg an explicit part of the envelope characterization.
[6] gives an excellent account of the approach. Recently, there has been much effort in studying the statis-
Network calculus is essentially a deterministic worst-case afea| effects of multiplexing regulated sources. The reason for
proach. An advantage of the approach is that it readily leagis is the aggregation of individual flows, in the DiffServ cat-
to a calculus valid for obtaining an end-to-end worst case dggories for example. Most of the emphasis has been on try-
lay bound knowing the regulation bounds on the individughg to characterize the tail distributions of the queueing delay
streams. However, one important drawback is that, being a gasuming that independent regulated sources enter a common
terministic approach, it fails to take into account the fact thgjffer. In [7], using the fact that the sample-paths are bounded,
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I. INTRODUCTION

A;(0,t) <min{nm;t, pjt+o;}.



In network design, especially for dimensioning and band- Let w; denote the amount of fluid in the queue at time
width allocation for best-effort networks, one quantity of inwhich is also a{ F; }-adapted stochastic process defined on the
terest is the mean delay [1]. The above mentioned approactregerence stochastic bagi€, 7, P, {¥;}). The procesgw;}
which are essentially asymptotic in nature, are not appropriaatisfied the evolution equation
in this context as the initial part of the complementary distribu-
tion rather than the tail contributes the most significantly to the dwy = (re — ¢) (1 - ][{wtzo,m<c}) dt, ()
mean values and the tail asymptotics do not provide this imCor_herefr is the instantaneous arrival rate of the superposition of
mation, and, moreover are technically not valid in the regiot o N sireams defined b Perp
of interest. Hence, there is a need for a fresh approach. ' y

The goal of our work is to provide simple, useful results,

N
which can be used for network dimensioning based on mean ry = Zr;
values of the delay given that the traffic streams are regulated. j=1

Replacing the mean delay by the delay bound obtained from ] )
network calculus is too conservative and hence wasteful of re-1hroughout this paper, we assume that the input processes
sources [11]. For more stringent delay requirements, estimatebi (0, 1)} are with stationary and ergodic increments and that
of the delay tail distribution are required. However, in this papf€ l0ad of the queue, defined by
we restrict our attention to the mean values. The principal con- N
tribution is to provide tight estimates for the mean delay when n def 1 Zp. <1
. . L ) J
only the(p, o, ) envelope is given and yet exploiting the fact 3
that the sources are statistically independent.

The outline of the paper is as follows: In section Il, we for- Note that for a given trajectory € Q,t — A;(0,t)(w) for
mulate the problem and outline the various quantities to be calt j = 1,... N andt — w,(w) are functions defined oR .
culated. In Section I, we first consider the deterministic cas#d taking values iR, .
of a single flow and we show that the worst case input meanA(dt) can be seen as a stationary random measure on
delay can be described by an ON-OFF type process given tRat. Let {6;};>0 be a measurable flow oft which is PP-
it satisfies the regulation bounds. This result adds to the wilvariant. Letp, be the average intensity of(dt), i.e.,pa =
known result for bufferless systems due to Doshi [12]. In SeB{A(0,1)] = Zévzl pj.
tion IV, we extend the results to the case of multiple streams.Associated with the random measutés a Palm measui@,

In Section V, we obtain a bound on the stochastic mean del@ge [13, Chap. 12.2] and [14], [15], [16]), which is defined as
and show that the bound is tight when the number of sourcegafiows: for all { F; }-measurable stationary procesgeft)}
large. This is based on the worst case characterization obtaifgatch thatZ(s) = Z(0) o ;)
earlier. Section VI concludes the paper with some general ob- .
servations on extending the result to a more general situation. E U Z(S)A(ds)} — patEA[Z(0)], @3)

0

Il. PROBLEM FORMULATION whereE 4 andE denote the expectations with respecPtpand

ConsiderN independent flows multiplexed in a single FIFQp, respectively.
server queue with server rateand assume that flow, j = Under the assumption < 1, there exists a stationary regime
1,...,N is constrained by &o;,p;, ;) traffic descriptor, for {w,} [14], i.e., there is a uniquéd; }-consistent solution of
whereo;, 7; andp; are the parameters of the dual leaky-buckep), defined on the same probability spdte 7, P).
used to regulate the flows;; is the bucket sizer; is the peak  In the following, we are interested in the mean delay of data
rate, andp; is the achievable mean rate. Throughout our dighrough the system. Consider a time inter{al: + dt), the
cussion, we assume a fluid queueing model. number of bits generated in this time intervakjgt, wherer,

The amountA;(0,¢) of data which is offered by strearh s the instantaneous arrival rate. These bits experience a delay
over the time interval0, t] is a stochastic process defined omf w, /c time units, since the server rate-isNote that ifw; = 0,
some reference stochastic bafiy 7, P, {F;}), where{F;} which is possible in a fluid queue even if data enter the system,
is the natural filtration generated by the procesgés(0,¢)} these bits experience no delay. Over the time inteifzal, the

forj = 1,...,N. We assume that for afl, {4,(0,¢)} is @ total amount of delay experience by all the bits generated in this
continuous increasing process with stationary increments. time interval is

The (o}, pj, ;) constraint for streani consists of assuming 1/t Ald
that for (almost) every trajectory € €2, the amount of data c /0 wsA(ds)

which can be generated by this stream over the time intervg|y ihe mean delay for the total amount of bits generated over
(s,t), denoted byA; (s, t) is such that this time interval is

Let r{ be the instantaneous arrival rate of streamwvhich equal cA(0,1)
to the right derivative of the procegsl;(0,¢)}. By definition, The performance measure of interest is the long-term average
0<r! <mj. of the above quantity, which under ergodicity, corresponds to

Aj(s,t) < min{m;(t —s), 05 + p;(t — s)}. 1) L /t ws A(ds).
0



the mean delay seen by an arriving bit, i.e., [1l. SINGLE SOURCE CASE

ey 1 t In this section, we consider the case of a queue fed by a single
D = lim m/ w, A(ds) fluid source satisfying 4o, p, 7)-constraint. The goal of this
’ 0 section is to prove the following result.
= %EA [wo), (4) Theorem 1:The mean delayD in a queue fed by a single

fluid source satisfying &, p, )-constraint and drained at con-
whereE 4 [.] denotes the expectation w.r.t. the Palm probabilitstant rate- such thaip < ¢ < = is bounded as:
defined above.
In the following, we are interested in finding upper bounds ~def

lef O w(c— p)
for the mean delay defined by equation (4). K&t} denote D=<D= P 1- cor—p) " (7)

the sequence of times at which the bus_y periods of_ the queug, the above lemma, we assume that ¢ o that the queue
begin and letr; denote the length of thgth busy period, SO ¢ap fill up; otherwise, in a fluid model, the queue would always
that 7 + 7; is the ending time of thgth busy period. Let pe empty. Moreover, we assume that ¢ so as to ensure the
Ny =3 ][{Tk_gt}; {N;} is the (stationary gnd ergodic) PO'”tstabiIity of the system.

process counting the number of busy periods. T&h} iS 1o show Theorem 1, we prove a series of technical lemmas.
also{0; }-consistent. We start the analysis by determining the traffic pattern which

_ Noting that the amount of data waiting in the queue up {Qaximizes the average delay in a busy period with fixed length
time timet is equal toA(Ty, Ty + 71) + ... + A(Twn,, (TN, + - defined by
7, )At) is less than or equal td(0, t), since all the bits arriving 1

in a fluid system does not necessarily queDés less than or d(r) = 5= /0 wsA(ds). 8

I to the limit as f th it o
equal to the limit ag — oo of the quanti
g g Y Lemma 1:In the case of a single source, the traffic pattern,

N; which satisfies théo, p, ) constraint and which maximizes the
AT, Ty +11) + ...+ A(Tw,, (T, + 7n,) A t) x mean delayl(7) in a busy period with fixed lengthis defined
N, (T4 fw as follows:
1 EANE ) .
i / w, A(ds), o If 7 <mo/(c(m — p)), the extremal traffic pattern is com-
Ny j=1"Tj posed of a burst at the peak ratavith lengthcr/m, fol-

lowed by silent period with length(1 — ¢/7).

whichis equal to (see [14]) o If 7> mo/(e(m — p)), the extremal traffic pattern is com-

def 1 T posed of a burst at the peak ratavith lengtho /(7 — p),
D= En [¢A(0, 7)] En {/0 wSA(dS)} ‘ ®) followed by an activity period at rateand with length
whereE v [.] denotes expectation w.r.t. the Palm probability as- c(_ Tmo
sociated with the processV;} andr is the length of a busy p cr—p))’
period in the stationary regime. By taking into account the fact ) ) ] ]
that the volume of informationl (0, 7) served in a busy period ~ and followed in turn by a silent period with length
with lengthr is equal tocr, D can be rewritten as c—p -
1 T p (cp_ >
D = 7]]11 A .
e |, v

Moreover, the length of the busy period is such that
Using the inequality
5 < D, (6) T < Tmax d;{ 0’/-(0 - p) (9)

Proof: Let us fix a realizationv € Q of the stochastic
we now address the question of obtaining a bound on the mguincess{w, } and let us consider a given busy period starting,
delay and more precisely on the quantldy For this purpose, say, at time 0 and ending at timre What we have to determine
we fix a given trajectoryw € Q and we determine the extremalis the traffic pattern which maximizes the quantity ), defined
behavior of the proceséw;} under the(o, p, ) constraint, by equation (8). In other words, we have to find a realization of
which maximizes the quantit§p as defined by equation (5).w = {w; }+[o,-) SO thatd(r) is maximal.w has to satisfy the
This procedure allows us to obtain a bound on the quantity constraint:

1 T

. def .
o wyA(ds) wy < min{ (7 — ¢)t,o + (p — )t} = Wy, (10)
27 o

over a busy period of length Then, by using the ergodicity of which corresponds to the, p)-constraint. Of course, since the
the workload proceséw, }, we derive an upper bound for thequreoue TUSt n(;t_riﬂpty (:]:Jrlntgbtge bgﬁ}[/h‘;imf', Weihg,/ve 0
stationary mean delay. In other words, we perform a samBPeSinie iﬁ z:buls )e/'r?(; d L:ls - su wr:)e:e Wr =1

path analysis of the extremal behavior of the workload, which yp (ds) =z + ¢,

yields a bound for the stationary mean delay via the ergodicity ) dw,

of the system. Wy =~



the problem under consideration can be formulated as an opti- w;

mization problem as follows:
4 T —c)t
max J(w) = / fwy)dt, (11) ( )
w Jo
where |
flw, i) = w(i +¢); |

w has to satisfy conditions (10), and must be such that- 0 :
fort € (0,7) andwy = w, = 0. !

Let Y denote the set of admissible solutions to the above op- | time
timization problem. Since we deal with a fluid systep,is
defined as 131 T

Y={we Cl[()’ 7]t wp = w,; = 0, and Fig. 1. Graph of the functiom* whent < wo/(c(m — p)) (represented by

thick lines).
0 < we < wy, O<IJ)§7'}7
w*

whereC! |0, ] is the set of functions which are continuous over t
[0, 7] and derivable ovef0, 7).

Forw € Y, itis easily checked that

J(w) = c/ wydt,
0

and we see that the optimization problem under consideration \ o+ (P - C>t
consists of finding the elementof Y such that the area swept : :
under the function — w; is maximal. )

Let us define or) the partial order< as follows: tlme

w=v Iff w <wvyforallo<t<r 1 T2 T

Itis easily seen thaf (w) < J(v) if w < v and then that the rig 2. Graph of the function* whenr > mo/(c(r — p)) (represented by
functional.J is monotonic increasing. thick lines).

Letw* be the element q¥ defined as follows:

o if 7 <mo/(c(r —p)), possible since the drain rate from the queue cannot excetsl
def a consequence, for evety € ), we havew < w*. Since the
. (r—o)t, 0<t<t, = cr/m, (12) functionalJ is increasing, the element* is the unique solution

w, =

to the optimization problem (11).
or—t), n<t<T Now coming back to the input process, wher. 7o /(c(m—
p)), the input process which maximizes the delay in the busy

o it 7270/ (c(r = p)), period with lengthr is thus the classical On/Off process; during

¥ the On period the arrival rate is equal to the peak rate and the
(m—o)t, 0<t<m = o/(m—p), length of the On period is equal t9 = cr /7. This is the
. classical result stating that the optimal control is “bang-bang”.
We= o+(p—0ot, mn<t<m = (et —0)/p, In the case when > wo/(c(m — p)), the input process,
which realizes the optimal trajectory over a busy period, is as
o+ pra—ct, o <t <, a consequence composed of a burst at the peak ratel with

(13) durationT;, followed by an activity period at rate of length
The functiont — w; is illustrated in Figure 1 in the caser: — 71, and a silent period of lengt given by
whent < 7o /(c(m — p)) and in Figure 2 in the case > o .
wo/(c(m —p)). S=7—-—7= P ( —T) . (14)
The elementy* is extremal in) in the sense that every € AN
Y is such thatv < w*. Indeed, in the case < 7o /(c(m — p)) Note thatS is positive if and only ifr < o/(c — p). The
(resp.T > o /(c(m — p))), owing to the(a, p, ) constraint, length of the busy period of a queue with an input process sat-
wy < wy forallt € [0,t1] (resp.t € [0,72]). Now, assume isfying a(c, p)-constraint is thus necessarily upper bounded by
that there exists somg < [t1,7] (resp. ty € [2,7]) such o /(c — p). This completes the proof. [ |
thatw;, > w;. Then, from Rolle’s theorem, there exists some As a consequence of Lemma 1, we have the following result.
to € [to, 7] such thatw,, = —(7 — to)iy > wi = (T — Lemma 2:1f the duration of a busy period is, the mean
to), which implies thati;, < —c. This latter inequality is not delayd(r), whatever be the realization of the input process, is




bounded by the quantit®(7), where the functiorD is defined D

by
BT 1 e 0, 2 2%5),
D(r) =
20+(p—c)T _ wo? re [ o o ]
2p 2pc(m—p)T’ c(r—p)’ (p—c)

(15)
Proof: Consider a busy period with duratian From

Lemma 1, we know that the realizationof which maximizes

the mean delayi(7) defined by equation (8), is given, when

T < mo/(c(m — p)), by the On/Off process composed of bursts — : > :
fe(m=p)

at the peak rater with durationcr /7, followed by a silence
period with durationr(1 — ¢/7). The quantityd(r), whatever
be the realization of the input process as long as the lengthgf 3. Graph of functiond defined by equation (15) (represented by thick
the busy period is < 7o /(c(m — p)), is in this case bounded lines).
by:
by = (m — C)T_ Proof: [Proof of Theorem 1We consider a queue fed by a
2m single stationary and ergodic fluid stream satisfyirig g, 7)-
Whenrt > 7o /(c(m — p)), we have to compute the integralconstraint. Let{w,} denote the stochastic procesges } de-
o~ wsA(ds) along the optimal trajectory illustrated in Fig- scribing the amount of fluid in the queue at timeSincep < c,

ure 2. This integral is equal to the system is ergodic and the mean delageen by bits in the
system in the stationary regime verifies inequality (6).
we(p — ) 2y A(m—p) S (p—c)c? 2 From the ergodicity of the system, we have
2p p 2p 1 | Tt
S D= ———— lim —Z/ wsA(ds),
wherer; = o/(m — p). After simplification, we have CEN[T] n—oon &= [,
. 2 From Lemma 2, we know that
d(T)SbQZ(pic)TJrgfiﬂg .
2p p 2pc(m—p)T 1Tt
— wsA(ds) < D(1)1i < D(77) Tk,
This completes the proof. | 1
The graph of the functio is represented in Figure 3. ThiswhereT}, andr, are the starting time and the length of tté&
function reaches its maximum value at point busy period, respectively and whelbdr*) is defined by equa-
tion (18). It follows that
* ™ *
TN = pe—p)e (16) D < D(r),
] o and the result follows. This completes the proof. [ |
and the maximal value is given by To conclude this section, we can make the following points.
1 So far, we have taken into account constraints on the peak rate
D(t*)=—(c+ (p—)T"). (17) and the achievable mean rate. If we relax the constraint on the
P peak rate, then for a busy period of lengththe traffic pattern
As a consequence, we have foralt [0,0/(c — p)] which maximizes the mean delay for the busy period is defined
as follows:
o ( (e — p)> o If 7 < o/c, the traffic pattern y is composed of batches of
D(r)<D(r")=—|1- (18) magnitudecr followed by silence periods.
P c(m = p) o It 7 > o/c, the traffic pattern is composed of batches of

magnituder followed by activity periods at rateand with
duration(cr — o) /p, and then by silence periods.
The mean delay in a busy period of lengtlis upper bounded
by D () defined by

It is easily checked that* > o7 /(c(m — p)) and™* < Tiax
sincem > ¢, wherer, ., is defined by equation (9). Finally,
note that

D(Tmax) = M.
2c(m = p) Do () 7/2, T<0o/c
o0o\T) = o —c 7> o
The remarkable property of the functi@nis that its reaches i (”2—[))7 T eprr ¢ =TS 5,

its maximum value at point* < 7,.,. Hence, the maximum

value of the upper bound for the mean delay in a busy perio

not attained for the maximum length of the busy period (equ

to Tmax) but when the length of the busy period is equatto D = g <1 - (c— P)) , (19)
We are now ready to prove Theorem 1. P c

d‘é}%e mean delay in the stationary regime is then upper bounded



which is equal to the upper bouri@lin Theorem 1 forr = co.  we see that we can get an upper bound for the global delay if
The boundD, coincides with the bound reported in [2, Thwe maximize the mean delay for traffic sourgekeeping the

4.7] where it is obtained via direct optimization. other sources unchanged.

Note thatD < D., whenw < oco. Finally, whenc > p, Let us fix a realization € 2 of the system (i.e., a realiza-
D ~ o/2¢ and then, the upper bound is equivalent to the caien of the different input and queueing processes) and let us
when data arrive in batches with length consider traffic sourcg. For the realization, ¢t — w] (w) and

Finally, note that the method used to maximize the mean de— w(w) are functions of time. Let us define a busy period
lay in a busy period with length can also be used to maximizefor source; as follows.
the quantitnyT T, >qydt for z > 0. We can then obtain an  Definition 1: A busy period for sourcg is a time interval
upper bound for the probability distribution of the workload irover which the function — w? is positive, wherew! is the
the stationary regime. This issue has been addressed by Kesadi®unt of data of sourcgin the queue at time

and Konstantopoulos in [8]. As in the previous section, we ha®®; < D; whereD; is
the mean delay experienced by bits in a stationary busy period,
IV. MULTIPLE SOURCE CASE defined by
So far, we have considered the case when there is only one 1 j

traffic source. Let us now consider the case whéestationary Dj=———— / wsAj(ds)

ergodic fluid traffic sources are multiplexed in a FIFO queue B [A(0,77)] 0 '

drained at constant rate The amount of data offered by each ,

source is a stochastic process, which satisfies constraint (1). Werer” is the length of a sourcgbusy period in the station-
assume that the offered load by soujdéseffectivelyp, andwe ary regime andE v, is the expectation with respect to the Palm

denote byp = 3" p; the total offered traffic. We assume thaprobabilityPy;; associated with the point proceSd’ } count-
/ ing the sourcg busy periods.

The interaction of sourcg with the other sources in the
gqueue is seen by sourgevia the modulation over time of the
D_Plip. 4 Pip (20) seryice rate. Let(t) denote.the service rate Qf sourtcéaffic
Ty I T T at timet. ¢(t) takes values iff0, ¢|. For the trajectory under
considerationt — ¢(t) is a given function fronR . in [0, ¢].
whereD; is the mean delay for sourgeD; is the mean delay ~ Lemma 4: For a sourcej busy period with length?, the

Ey;

)

i = p/c < 1so that the system is stable and ergodic.
Lemma 3: The mean dela® in the global queue verifies:

for all the other sources, ang = >, . px. traffic pattern ofw] which maximizes the mean deldy; is
Proof: Since the system is ergodic, we have defined as follows:
. o If fOT] c(t)dt < mjo;/(m; — p;), the optimal traffic pattern
D — lim 1 / ws A(ds) is composed of burst at the peak ratewith duration
t—o0 A(0,1) Jo ° .
1 t =L 7
— 1 A- A = — c(t)dt.
vﬂ&mwmmﬂAMMMHJW» YT o

whereA;(0,t) (resp.A4;(0,t)) is the amount of data generated  followed by a silence period with lengtti — ¢.
by sourcej (resp. all the other sources) over the time interval '

If [T c(t)dt > m;0;/(n; — p;), the optimal traffic pattern
(0,1). The above equation can be rewritten as Jo c®)dt = mjo;/(m; = ps) P P

is composed of burst at‘the peak ratgfollowed by an
activity period of lengthr{ = o;/(m; — p;), followed by

— A;(0,) 1 i T T .
D = lim wy A, (ds) an activity period with duration
t—oo A(0,t) A;(0,t) Jo /
A;(0,8) 1 /t 1 /TJ Tj0;
+ 22— | wyA(ds — c(t)ydt — ——— |, (22)
A0.0) 4,00,0) Jy o) o s oy
Then, by using the definition of the mean delays, we get and a silence period with duration
D="Lip, + D R
P P S; =1+ p—f_ s c(t)dt.
This completes the proof. ] ! 70
From the above lemma, we easily deduce that Moreover, note that the duratiori of a sourcej busy pe-
N riod must be such that
_ 1 — .
D=-> pD;. (21) N
P j=1 7J 7—_] ; L(t)dt —Pj S gj.

The total mean delay is thus the weighted sum of the mean de- Proof: Letus consider a sourgebusy period starting, say,
lays for the different traffic sources. From the above equatioat,time 0 and ending attime’. As in the proof of Lemma 1, we



have to find the realization oﬁ{, which maximizes the mean Lemma 5:If the duration of a sourcg busy period is;, the

delayD; given by meand, (77) delay for sourcg over this busy period, given by
e iy L Y
D; = ;/0 wyAj(dt) (23) dj(r?) = m/o wsAj(ds) (24)
In fact, a sourcg busy period may be composed of severa$ bounded, whatever be the realization of the input process, as
activity periods of sourcg. Indeed, when sourgebecomes ac- follows: If fO t)dt < mjo;/(mj — pj),
tive and a sourceg busy period starts, some backlog due to the ,
other sources could be present in the queue and bits of spurce j 1 j j v 5
will have to wait before being served. The cumulative waiting d;(r7) < Q_CA(O’T )+ A0, 79) /O wyds  (25)
time could be sufficiently large so as there is an overlap with
the next activity period of sourcg To study the complete busy gnd |ff t)dt > mo;/(n; — pj), there exists two constants

period, we have to decompose the busy period into eIemq/p andkf such that
tary time intervals over which sourges active (i.e., bits from
sourcej arrive at the queue). Over each of these elementary in-

e : i . ; ; : 1 , K
tervals, it is easily checked that the integral in equation (23) isd;(77) = ~% (1 + i) A;(0,77) + kjl + ﬁ
maximal when the input process follows the curve correspond- ¢ Pi ,J( )
ing to the(o;, p;, 7;) constraint, as in the single source case. T v ids. (26)
The optimahi; must then be equal t; — ¢(t), or p; — ¢(t) or cA(O i) Ws@s:
—c(t), depending on the value of the parameters. Proof: The proof exploits the evolutlon of the workload
Moreover, one remarkable property is that the time at whighiring busy periods and relies on the fact that a superposition
the two functiong — fo 7, — c(t))dt andt — o + fo _ of regulated streams is a regulated stream. Details are omitted
¢(t))dt intersect does not depend on titend is given by for the sake of brevity. u
From the above lemma, we see that
=%
b Ty = Pj . uy ! 5
| d;(7j) < D;(A(0,75)) + A0,79) J, wlds,
If the length7? of the busy period is such that _ ) )
where the functiorD; is defined by
77
| et <masfin; = ) o<
0 Dj(z) = 1 c i K ™0
— 1+P_j rt+ki+ 32 > —
the optimaki/ is such thati; = m; —c(t) over the time interval o .
0 rj) where The remarkable property of the functi@h is that it is bounded
o i over the interval0, o). It follows that there exists a constant
= E c(t)dt. K; su_ch thatD_j (x) < ICj_for all = = 0. By using the same
5 Jo technique as in the previous section, we obtain the following
» . i result.
= J J
andu; ; —c(t) over the time intervalry, 7). ) Corollary 1: The mean delayD; for source#; is upper
If fo t)dt > m;o;/(m; — p;), the optimaki] is equal to  pounded as
i — (t) over the time interval0, ¢{), to p; — c(t) over the time »
interval [{, 7 + 7], and finally equal to-c(t) over the time D <K, + #Em / wids| . (27)
interval [7{ 4 7J,77); 7J is chosen so that Ni [cA;(0,77)] 0
The asynchronism between the different sources comes
7473 T through the second term on the right hand side of equation (27),
oj +/ (pj —c(t))dt / c(t)dt =0, where we have to take the expectation of the workload due to
0 0 the other sources with respect to the Palm probability measure
which implies that associated with the busy periods of the source considered. This
last term is unfortunately extremely difficult to estimate. This
, 1 ™ - is the main reason why the stochastic bounds developed in the
J _— C(t)dt J-J . . .
T3 Py — next section are very useful in the context of multiple sources.
J 0 Jj P
The input process which corresponds to this realization,oé V. STOCHASTIC BOUNDS
as described in Lemma 4. This completes the proof. N In the previous sections, we characterized the extremal traf-

A direct consequence of the above lemma is the following rée, which satisfies théo, p, 7) bound, and then found the worst
sult which yields bounds on the mean delay for soyrdering case deterministic delay. We then used this bound to upper-
a busy period of length’. bound the mean delay exploiting the ergodicity of the system.



Another approach is to use the worst case source charactetn the particular case when there is no peak rate constraint
ization to obtain a stochastic bound based on the observat{@a., 7 — o), it is easy to see that
thatdeterminism minimizes waiting timfist]. Essentially, the o
result states that the waiting time in a station&hyG /1 queue Dp(o0) < ———. (30)
dominates (in an increasing convex ordering sense) the wait- 2y/¢c(e = p)

ing time in aG//D/1 or D/G/1 queue with the same mean It can readily be seen th@ < D, so it is indeed a bound.

interarrival and service times [14, Chapter 5.4]. This has beﬁpFigure 4, we have plotted the bounds given by equation (23)
shown for stochastic orders associated with point processesg_% and a E)ound based on a simple batch Poisson model whe’re

we conjecture that this result can be extended to the cas§,Biches with size arrive according to a Poisson process with
fluid queues [15]. To the best of our knowledge the correspo teo/p. Itis clear the above estimate provides a much better
ing results have not been fully developed for fluid systems. proximation.

Using this result, we can now use the results for fluid queueg

with On/Off type of inputs, which have been developed in [15],

[17], [16]. Note that the mean delay we are interested in is given 4 ' ' ' ' ' Bound eq. (33). ]
by E 4[wo]/c and from the fluid version of the Little’s formula 4r Bound batch Poisson—-- 71
[16, Corollary 4], we havé& 4 [wo] = E[w]/n wheren = p/c. 35 Bound eq. (23) ---- /|

Using the above, we state mean delay result without proo
below.

Theorem 2:In a fluid queue withV heterogeneous indepen
dent On/Off sources as inputs, with exponentially distribute
On periods, under the assumption tpat ¢, the mean delay

Sk

3
25

Norm%zed del
N

iting ti i o oy 15
(or waiting time under a FIFO service schedule) is given by:
1 N o !
= S5 B[ FHLEY = p, LE12 05
o= 2p(c — Z m; En:lFo(Lo) = piLo]

Ll
- Z B | [ () - g (2
wherem; denotes the mean value of a cycle of sourdefined Fig. 4.
as an On period + Off periodyj(t) is the cumulative input on
[0,¢] for the source when On undePy;,, L is the length of
an On period of sourcg p; = E[A;(0,1)] is the average rate

pmy;

Accuracy of the stochastic boutitj.

Let us now address the case of multiplexiNgndependent,
regulated streams. We assume that each source corresponds to
he extremal in fined in ion Ill. For this, wi I
ofAz,andp—valp, the extremal inputs defined in Sectio or this, we apply

e formula (28) assuming each source is a worst-case source
Remark 1: The above result assumes that the source n (28) 9

times are stationary, independent r.v's while the silence perth mean periodn; = cE[r]/p;. We take the corresponding

ods are exponential. Also it is assumed thatt) > ct (i.e., mean delay to be the delay bound which we denot®}y

a non-zero workload for the fluid queue can form). This leads N ) )
to a natural interpretation of the above formula as a PollaczekpN — 1 Pi%i Z Pigi (31)
Khinchine type of formula for ad//G /1 queue, wherd; (L}) 2(c — p) = cpElri] = 2pcE[ri|(mi — pi)
are the"marks”, which arrive at the Poisson times correspond-
indg ;o the end of the Off periods (or beginning of the On peri- Now takingE|[r;] = 7 = o; m we obtain
ods
Let us first consider the case of a single source &k the
mean of the On+Off periods of the source adjusted such that_ 1 oipi | (mi — pi)(c— p:)
the mean number of bits js. Assume that the source corre- Dy = 2(c —p) Zl p mic
sponds to the extremal source in Section Ill. THgn= 7 = = N
(et —o)/p and Fy(Ly) = cr. Hence,m = cE[r]/p and ap- B Z Tipi c—pi
plying the formula above we obtain: —~ 2p emi(mi — pi)
Dy, = E[F(Lo) — pLoJ® _ (m -~ p)E[3] In the case when there is no peak rate constraint, the above
2cE[r](c = p)m cE[r] formula reduces to:
0'2 0'2 N
2¢(c = p)E[r]  2cE[r](m — p) DY (00) = Z Tibi, / 7' (32)
Now we takeE[r] = 7*, which gives the worst pathwise iz P

bound, and we get: . . .
g Remark 2:When N is large, 22 ~ 0, in which case the

D, < o(m—c) (29) above bound corresponds to the Pollaczek-Khinchine Formula
(c—p)(m—p V7 for delay in theM /G /1 queue, where the arrivals of typere

| o




of sizeo; and arrive at a rate;/p;, and the probability, that bounds are rather difficult to compute explicitly. Hence, we
an arrival is of a type, is given byp;/p. Indeed, whenV in- have developed stochastic upper bounds, which rely on a rea-
creases, the load of individual sources decreases and thenstiregable conjecture. The stochastic upper bound obtained via
bursts of a given source are more and more spread and a Piis conjecture is given by equation (32). We have showed that
son approximation is then justified the bound is exact when the number of sources increases and

Figure 5 shows the simulated mean delay as a function ecdn be identified as a simple Pollaczek-Khinchine formula for
the number of sources keeping the total Igg@ fixed. The an M/G/1 queue. Moreover, there is substantial gain to be
number of sources was assumed ta\bwith peak ratel.01 of obtained over using the max delay bound when dimensioning
which 50% hadr = 20 while the remaining had = 45. The buffers for mean delays. A rigorous proof of the conjecture for
server speed was assumed to be 1 unit/sec. It is clearly séeit queues will be addressed in further studies.
that the mean delay approaches the bound giveRPyoo) in Finally, note that g0, p, 7)-constrained source multiplexed
equation (32) above as is to be expected. Itis worth pointing owmith other (e, p, 7)-regulated sources should certainly be more
that the worst case deterministic delay bound cannot be plottedular at the output of the queue than a Poisson batch arrival
on the same scale in the graph. process. It follows that the stochastic bound conjectured in this
paper could be used to develop a network calculus for mean
delay through a network of FIFO queues.

Although we have only addressed the mean delay issue in
| T e this paper, the results obtained have a very important bearing
e - Avesgelowi09 | on obtaining bounds on the delay tail distribution and will be

o oo W it ot s s addressed elsewhere.
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