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Abstract—In this paper we consider the downlink power alloca-
tion problem for multi-class CDMA wireless networks. We use a
utility based power allocation framework to treat multi-class ser-
vices in a unified way. The goal of this paper is to obtain a power
allocation which maximizes the total system utility. In the wireless
context, natural utility functions for each mobile are non-concave.
Hence, we cannot use existing techniques on convex optimization
problems to derive a social optimal solution. We propose a sim-
ple distributed algorithm to obtain an approximation to the social
optimal power allocation. The proposed distributed algorithm is
based on dynamic pricing and allows partial cooperation between
mobiles and the base station. The algorithm consists of two stages.
At the mobile selectionstage, the base station selects mobiles to
which power is allocated, considering the partial-cooperative na-
ture of mobiles. This is called partial-cooperative optimal selec-
tion, since in a partial-cooperative setting and pricing scheme con-
sidered in this paper, this selection is optimal and satisfies system
feasibility. At the power allocationstage, the base station allocates
power to the selected mobiles. This power allocation is a social op-
timal power allocation among mobiles in the partial-cooperative
optimal selection, thus, we call it a partial-cooperative optimal
power allocation. We compare the partial-cooperative optimal
power allocation with the social optimal power allocation for the
single class case. From these results, we infer that the system util-
ity obtained by the partial-cooperative optimal power allocation
is quite close to the system utility obtained by the social optimal
allocation.

I. I NTRODUCTION

Radio resources are scarce and the demand for wireless ser-
vices keeps increasing, hence the efficient management of the
radio resources in wireless networks is important in achieving
a high level of utilization. Power control is an important com-
ponent in the resource management problem.

In recent years, power control has been given extensive at-
tention in both academic and industrial research, because of its
critical role in code division multiple access (CDMA) networks.
Most research efforts have been devoted to voice systems, since
voice service has been the main service provided by wireless
networks. In a voice system, all users have the same quality of
service (QoS) requirements and it is important that the signal
to interference ratio (SIR) exceeds some minimum threshold.
Hence, the main purpose of power control in such systems is to
eliminate the near-far effect by equalizing the SIR of each user
setting it at the minimum SIR threshold [1], [2].
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In the next generation of wireless networks, it is expected
that services will have significantly differing characteristics
from the current voice-dominated wireless networks. Already,
the demand for various services with different QoS require-
ments such as video and data is increasing. The required band-
width for these services is much higher than that for voice ser-
vices, further compounding the scarcity of resources in wire-
less systems. Therefore, to accommodate services with dif-
ferent characteristics more efficiently, we need a different ap-
proach to power control in the next generation wireless net-
works. Moreover, such services are highly asymmetric, re-
quiring more bandwidth in the downlink than the uplink. This
implies that, in next generation wireless networks, efficient re-
source allocation of the downlink becomes a very important is-
sue.

Recently, utility (and pricing) based network control algo-
rithms have extensively been studied in the literature. These are
not new concepts and have been studied in economics. The util-
ity represents the degree of a user’s satisfaction when it acquires
certain amount of the resource and the price is the cost per unit
resource which the user must pay for this resource. The basic
idea of these algorithms is to control a user’s behavior through
the price of resources to obtain the desired results, e.g., high
utilization for the overall system and fairness among users.

In wired networks, utility and pricing based algorithms are
well studied for distributed flow control of best effort services.
Kelly et al. [3] obtain the social optimal solution which max-
imizes the summation of all the users’ utilities by allocating
the resources according to the notion ofproportional fairness
per unit charge. Yäicheet al. [4] obtain a Nash bargaining
solution which is Pareto-optimal and yields theproportionally
fair solution. In these works, the utility function is assumed to
be a concave function of the allocated rate, which makes the
problem a convex programming problem. Hence, the Karush-
Kuhn-Tucker (KKT) conditions are used to obtain the optimal
solution.

The utility (and pricing) based control algorithms can also be
applied to the power control problem in wireless networks. But,
the main difficulty in solving the problem is that, in general, the
problem cannot be formulated as a convex programming prob-
lem. Thus, the KKT condition cannot be used for the sufficient
condition of the optimal solution. In most of works on utility
and pricing for power control, only Nash equilibria, which are
inefficient [5], have been obtained.



Utility based algorithms without pricing are considered in
[6], [7]. Oh and Wasserman [6] consider an uplink power and
spreading gain control problem for the non-real time services.
They use an instantaneous throughput for each mobile as a util-
ity function and obtain a global optimal solution which max-
imizes the aggregate throughput by jointly optimizing power
control and spreading gain. But, their algorithm can be ap-
plied only for the system with one class of mobiles. Moreover,
they do not consider any constraint on the spreading gain. Ji
and Huang [7] formulate an uplink power control problem as a
non-cooperativeN -person game in which each user transmits a
power level maximizing its utility without considering the be-
havior of other users. Under certain assumptions on the utility
function, they show that there exists a Nash equilibrium.

Utility based algorithms with pricing are considered in [8],
[9], [10], [11]. Saraydaet al. [8] formulate an uplink power
control problem for a single-class wireless data system as a
non-cooperativeN -person game. They use the number of bits
which can be transmitted using a Joule of energy as a utility
function. They show that there exists a Nash equilibrium but it
is inefficient in the sense that there exists another power alloca-
tion which Pareto dominates the Nash equilibrium allocation.
To improve efficiency, they introduce pricing. The base station
informs each user of a fixed price for unit power. Each user
transmits a power level which maximizes its net utility (utility
minus cost for power allocation). They show that the game with
pricing converges to Nash equilibria under some conditions on
the strategy set and present an algorithm which converges to a
Pareto-dominant equilibrium, even though the social optimum
cannot be obtained. In addition, they show that the choice of
price impacts on the system utilization significantly. However,
they do not provide a systematic algorithm to find an optimal
price. Xiaoet al. [9] formulate a downlink power control prob-
lem for multi-class wireless networks as a non-cooperativeN -
person game with pricing. In this setting, they do not allow
constraints on the power. They use a sigmoid function as a util-
ity function. By adjusting parameters of the sigmoid function,
the utility functions for heterogeneous services are treated in a
unified way. As in [8], the base station informs each user of a
fixed price for unit power and each user requests a power level
which maximizes its net utility value. They show that their al-
gorithm isstandard[2] under mild conditions and that the al-
gorithm does not diverge even when the system is infeasible.
In the numerical results, they show that the system utilization
depends on the price, but they too do not provide an algorithm
on how to obtain the optimal price. Liuet al. [10] consider
a downlink resource allocation problem for the voice service.
They use a step function as a utility function and as a pricing
scheme, they use price per unit power and price per code. They
obtain the optimal prices to maximize either total system utility
or total revenue. This work is extended by Zhanget al. in [11].

In this paper we study downlink power allocation problem
in multi-class CDMA based wireless networks. We use a utility
based framework mentioned above. However, the situation con-
sidered here differs from the previous works in many aspects.
Primarily, we consider a multi-class system while a single class
data system is considered in [6] and a voice system in [10],
[11]. This heterogeneous case requires much more and differ-

ent analysis. We study the problem of maximizing total sys-
tem utility for heterogeneous users which is a social optimum
and differs from the Nash equilibrium considered in [7], [8],
[9]. In general, the operating points are different. Furthermore,
we consider the downlink case which imposes a global power
constraint rather than the uplink case treated in [6], [7], [8] for
which there are only individual power constraints on each user.
This completely changes the structure of the optimization prob-
lem for which the previous (and simpler) algorithms are not
applicable. It can be shown that in the absence of a total power
constraint, the algorithms developed in [9] can be used with
some modification. However, in practice, any transmitter has a
maximum power level that it can transmit at and so it is neces-
sary to develop algorithms for the power constrained case as is
done in this paper.

As mentioned before, the goal of this paper is to obtain
a power allocation which maximizes the total system utility.
However, due to the non-convexity of the problem, it is difficult
to obtain a social optimal power allocation and even if we could
obtain it, it could require a very complex algorithm. Therefore,
in this paper, we propose a simple algorithm to obtain a power
allocation which is Pareto optimal as well as a good approxi-
mation of the social optimal power allocation. This algorithm
can be implemented in a distributed way and, in this case, our
problem can be expressed as apartial-cooperativeM -person
power allocation game with dynamic pricing. From the utility
and pricing point of view, dynamic pricing is one of the distin-
guishing features of this work compared with other utility and
pricing based power control algorithms [8], [9].

The rest of the paper is organized as follows. In Section II,
we describe the system model considered in this paper and for-
mulate the basic problem. In Section III, we present the pro-
posed power allocation algorithm which consists of the mobile
selection stage and the power allocation stage. We generalize
the algorithm to the case when each mobile has the minimum
SIR requirement in Section IV. In Section V, we study a spe-
cial case when all mobiles are homogeneous and compare our
power allocation with the social optimal power allocation for
this case in Section VI. Finally, we conclude in Section VII.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider downlink power allocation in a multi-class
CDMA wireless network and focus on a single cell, consist-
ing of a single base station andM mobiles. Each mobile com-
municates with the base station. For downlink communication,
the base station has a maximum power limit,PT . It allocates
power to each mobile within the power limit (i.e., the summa-
tion of the power allocated to each mobile cannot exceed the
power limit). Each mobilei, i = 1, 2, · · ·M , has its own utility
function,Ui, which represents the degree of mobilei’s satisfac-
tion of the received QoS. We assume thatUi has the following
properties.

Assumptions:
(a) Ui is an increasing function ofγi, the SIR of mobilei.
(b) Ui is twice continuously differentiable.
(c) Ui(0) = 0.
(d) Ui is bounded above.



(e) ∂2Ui(γi)
∂γ2

i

(Ni+γi)+2∂Ui(γi)
∂γi

= 0 has at most one solution

for γi > 0, whereNi is processing gain, which is defined
by the ratio of the chip rate to the data rate.

(f) If ∂2Ui(γi)
∂γ2

i

(Ni + γi) + 2∂Ui(γi)
∂γi

= 0 has one solution at

γo
i > 0, ∂2Ui(γi)

∂γ2
i

(Ni + γi) + 2∂Ui(γi)
∂γi

> 0 for γi < γo
i

and ∂2Ui(γi)
∂γ2

i

(Ni + γi) + 2∂Ui(γi)
∂γi

< 0 for γi > γo
i .

By assumptions (e) and (f), the utility function can be one of
three types1: a sigmoidal-like function of its own power allo-
cation2, a concave function of its own power allocation, or a
convex function of its own power allocation. In general, most
utility functions used in wired or wireless networks can be rep-
resented by these three functions [9], [12].

Even though we define the utility function as a function of
the SIR, the SIR is a function of the power allocation of all
mobiles given the path gain from the base station to the mobile,
interference, and noise. We can representγi, the SIR for mobile
i, as follows:

γi(P̄ ) =
NiGiPi

Gi

∑M
m=1 Pm −GiPi + Ii

=
NiPi∑M

m=1 Pm − Pi + Ii

Gi

=
NiPi∑M

m=1 Pm − Pi + Ai

, (1)

where
Pi : Allocated power for mobilei.
P̄ : Power allocation vector,(P1, P2, · · · , PM ) for mo-

biles,1, 2, · · · ,M , respectively.
Ni : Processing gain for mobilei.
Gi : Path gain from the base station to mobilei.
Ii : Background noise and intercell interference to mo-

bile i.
M : Number of mobiles in the cell.

Note that the utility value of mobilei depends on not only its
own power allocation but also on the power allocations of all
the other mobiles.

The goal of this paper is to obtain the power allocation for
each mobile which maximizes the total system utility (i.e., the
summation of utilities of all mobiles). The basic formulation of
this problem is given by the following optimization problem:

(A) max
P̄

M∑
i=1

Ui(γi(P̄ )) (2)

subject to
M∑
i=1

Pi ≤ PT , (3)

Pi ≥ 0, i = 1, 2, · · · ,M. (4)

We call the solution of problem(A) thesocial optimal power
allocationand the selection of mobiles which is allocated posi-

1we will show this in Lemma 2.
2A sigmoidal-like function means a function,f(x) which has one inflection

point,xo and d2f(x)

dx2 > 0 for x < xo and d2f(x)

dx2 < 0 for x > xo.

tive power at the social optimal power allocation thesocial op-
timal selection. Note that, in general, the objective function of
problem(A) in (2) is not a concave function.

III. PARTIAL -COOPERATIVE OPTIMAL POWER

ALLOCATION

Our power allocation algorithm consists of two stages. At
the first stage, mobiles to which power is allocated are selected,
and at the second stage, power is allocated optimally to the se-
lected mobiles. Before we describe the details of our power
allocation algorithm, we first decompose problem(A) as mo-
bile problems and a base station problem.

The next proposition tells us that to maximize the total
system utility, the base station must transmit at its maximum
power limit,PT .

Proposition 1: If P̄ = (P1, P2, · · · , PM ) is a power alloca-
tion and

∑M
i=1 Pi < PT , then we can find another power al-

location,P̄ ∗ = (P ∗
1 , P ∗

2 , · · · , P ∗
M ) such that

∑M
m=1 P ∗

m = PT

and
∑M

i=1 Ui(γi(P̄ ∗)) >
∑M

i=1 Ui(γi(P̄ )).
Proof: If

∑M
i=1 Pi < PT , there exists anα > 1 such that

M∑
i=1

Pi < α
M∑
i=1

Pi = PT .

We defineP ∗
i = αPi for i = 1, 2, · · · ,M , then

γi(P̄ ∗) =
NiP

∗
i

M∑
j=1

P ∗
j − P ∗

i + Ai

=
αNiPi

M∑
j=1

αPj − αPi + Ai

>
αNiPi

M∑
j=1

αPj − αPi + αAi

= γi(P̄ ), i = 1, 2, · · · ,M.

Therefore,Ui(γi(P̄ ∗)) > Ui(γi(P̄ )) for all i, sinceUi is an
increasing function ofγi.
By this property, problem(A) is equivalent to the following
problem.

(B) max
P̄

M∑
i=1

Ui(γi(Pi))

subject to
M∑
i=1

Pi ≤ PT ,

Pi ≥ 0, i = 1, 2, · · · ,M,

whereγi(Pi) = NiPi

PT−Pi+Ai
. Note that the utility function for

each mobile does not depend on the power allocation for other
mobiles in problem(B), while the utility function for each mo-
bile depends on the power allocation for all mobiles in problem
(A).



To solve problem(B), we state the following result from
[13] (page 213) that gives us optimality condition for general
optimization problem.

Lemma 1:Let f : RN → R and gi : RN → R, i =
1, 2, · · · ,K be arbitrary functions. We define

L(x̄, λ̄) = f(x̄) + λ̄T g(x̄),

w(λ̄) = max
x̄
{L(x̄, λ̄)},

and

Y (λ̄) = {x̄|L(x̄, λ̄) = w(λ̄)},

where x̄ = (x1, x2, · · · , xN )T , λ̄ = (λ1, λ2, · · · , λK)T , and
g(x̄) = (g1(x̄), g2(x̄), · · · , gK(x̄))T . If x̄(λ̄) ∈ Y (λ̄) for any
λ̄ ≥ 0, thenx̄(λ̄) is a global optimal solution of the following
optimization problem.

max
x̄

f(x̄)

subject tog(x̄) ≥ g(x̄(λ̄)).

To use this lemma in our problem, we define

U ′
i(γi(Pi)) =

{
Ui(γi(Pi)), if 0 ≤ Pi ≤ PT ,
−∞, otherwise.

Then problem(B) is equivalent to the following problem:

max
P̄

M∑
i=1

U ′
i(γi(Pi))

subject to
M∑
i=1

Pi ≤ PT .

Note that the constraintsPi ≥ 0, i = 1, 2, · · · ,M do not appear
in the above problem. Now, we define

L(P̄ , λ) =
M∑
i=1

U ′
i(γi(Pi)) + λ(PT −

M∑
i=1

Pi).

Then, for anyλ ≥ 0, P̄ (λ) ∈ Y (λ) is a global optimal solution
of the following optimization problem.

max
P̄

M∑
i=1

U ′
i(γi(Pi))

subject to
M∑
i=1

Pi ≤
M∑
i=1

Pi(λ).

(5)

whereP̄ (λ) = (P1(λ), P2(λ), · · · , PM (λ)). If we find a λ∗

above such that
∑M

i=1 Pi(λ∗) = PT (whenPT is the thresh-
old in (3)), the social optimal solution of problem(A) can be
obtained. Further, if|PT −

∑M
i=1 Pi(λ∗)| is small, a good ap-

proximation to the solution of problem(A) can be obtained.

Therefore, to obtain a good approximation to the solution of
problem(A), we will solve the following optimization prob-
lem.

(C) min
λ

F (λ) = min
λ
{PT −

M∑
i=1

Pi(λ)} (6)

subject toP̄ (λ) = arg max{L(P̄ , λ)}, (7)
M∑
i=1

Pi(λ) ≤ PT . (8)

By Lemma 1, ifminλ F (λ) = 0 at λ∗, thenP̄ (λ∗) is the so-
cial optimal solution of problem(A) and if minλ F (λ) ≈ 0 at
λ∗, thenP̄ (λ∗) could be a good approximation to the optimal
solution of problem(A) satisfying the feasibility condition. To
solve problem(C), we first consider (7). SinceL(P̄ , λ) is sepa-
rable inP̄ , P̄ (λ) solves (7) if and only if it solves the following
problem.

(Di) Pi(λ) = arg max{U ′
i(γi(P ))− λP},

= arg max
0≤P≤PT

{U ′
i(γi(P ))− λP},

= arg max
0≤P≤PT

{Ui(γi(P ))− λP},
i = 1, 2, · · · ,M.

Note that the parameters in problem(Di) are correspond only
to mobilei. By this property, we can decompose problem(C)
as the mobile problem(Di) for each mobilei and the following
base station problem.

(E) min
λ

F (λ)

subject to
M∑
i=1

Pi(λ) ≤ PT .

Each mobilei solves problem(Di) independently one another
and the base station solves problem(E).

We can interpret the decomposed problems as follows. Based
on λ, the price per unit power, from the base station, each mo-
bile i tries to maximize its net utility, (i.e., the utility minus
the cost) by solving problem (Di). This implies that, given the
price,λ, mobile problems are equivalent to a non-cooperative
M -person game with a fixed price [8], [9]. However, in our for-
mulation, by solving problem(E) based on the power request
of each mobile, the base station adjusts the price,λ dynamically
to obtain a good approximation to the social optimal power al-
location by minimizingF (λ). Therefore, this problem can be
interpreted as anon-cooperativeM -person game with dynamic
pricing and the pricing scheme which we use is linear pricing
with the same unit price. The linear pricing with the same unit
price means that the unit price for each user is same and the
total cost for power is obtained byunit price× the amount of
allocated power.

Using this interpretation, we can implement the power al-
location algorithm to obtain a good approximation to a social
optimal power allocation in a distributed way. However, by the
discontinuity ofPi(λ), there may be no equilibrium allocation
for this problem. Moreover, by Proposition 1,

∑M
i=1 P ∗

i must



bePT , whereP ∗
i is allocated power for mobilei. To take care

of these two facts, we divide the algorithm in two stages. First
is the mobile selection stage. In this part, mobiles which are
allocated positive power are selected. If problem(E) can be
solved, the selected mobiles are mobiles which are allocated
positive power at the solution of(E). Otherwise, the selected
mobiles are mobiles which are allocated positive power at the
approximation of the solution of(E). Second is the power al-
location stage. At this stage, only selected mobiles participate
in the power allocation game and power is allocated to the mo-
biles optimally. To make unselected mobiles not participate in
the power allocation game and, thus, to guarantee the conver-
gence of the power allocation algorithm, the base station needs
cooperation of mobiles. Therefore, in our algorithm, each mo-
bile is assumed to have a partial-cooperative property, since it
has both the non-cooperative property and the cooperative prop-
erty and we call our problem apartial-cooperativeM -person
game with dynamic pricing.

A. Mobile selection problem

In this subsection, we consider the mobile selection problem.
First, we study properties ofPi(λ). We defineP o

i as

P o
i =




P ∗, if ∂2Ui(γi(P ))
∂P 2 |P=P∗ = 0, 0 ≤ P ∗ ≤ PT ,

0, if ∂2Ui(γi(P ))
∂P 2 < 0 for 0 ≤ P ≤ PT ,

PT , if ∂2Ui(γi(P ))
∂P 2 > 0 for 0 ≤ P ≤ PT ,

andγo
i as

γo
i = γi(P o

i ).

In the next lemma, we show that each mobilei has a unique
P o

i .
Lemma 2:Using the above definition ofP o

i , each mobilei
has a uniqueP o

i .
Proof:

∂2Ui(γi(Pi))
∂P 2

i

=
∂2Ui(γi)

∂γ2
i

(
∂γi(Pi)

∂Pi
)2

+
∂Ui(γi)

∂γi

∂2γi(Pi)
∂P 2

i

=
Ni(PT + Ai)

(PT − Pi + Ai)3

×{∂2Ui(γi)
∂γ2

i

(Ni + γi) + 2
∂Ui(γi)

∂γi
}.

By assumptions (b) and (e),∂2Ui(γi)
∂P 2

i

= 0 is continuous and it

has at most one solution for0 ≤ P ≤ PT . This implies that
each mobile has a uniqueP o

i .
By Lemma 2 and the definition ofP o

i ,

Ui is




a sigmoidal-like function, if 0 < P o
i < PT ,

a concave function, if P o
i = 0,

a convex function, if P o
i = PT ,

of its own power allocationPi. Hence,P o
i can be interpreted as

an inflection point of a sigmoidal-like function.

The next lemma shows that if mobilei requests positive
power,Pi(λ) at priceλ, thenPi(λ) = PT or Ui(γi(Pi(λ))) is
in the concave region.

Lemma 3: If Pi(λ) = arg max0≤P≤PT
{Ui(γi(P )) − λP},

Pi(λ) = 0, Pi(λ) = PT or Ui(γi(Pi(λ))) is in the concave
region.

Proof: If 0 < P (λ) < PT , it must satisfy the first
and the second order conditions, i.e.,∂Ui(γi(P ))

∂P |P=P (λ) = λ,
∂2Ui(γi(P ))

∂P 2 |P=P (λ) < 0, sinceP (λ) is an interior point. This
implies thatPi(λ) = 0, Pi(λ) = PT or Ui(γi(Pi(λ))) is in the
concave region.
Lemma 3 tells us that if the utility functionUi, of mobilei, is
a convex function for0 ≤ P ≤ PT , mobilei always requests a
power level of 0 orPT .

In the next proposition, we show that each mobilei has the
maximum willingness to pay per unit power,λmax

i .

Proposition 2: There exists a uniqueλmax
i for mobilei such

that

λmax
i = arg min

0≤λ≤∞
{ max
0≤P≤PT

{Ui(γi(P ))− λP} = 0}

and forλ > λmax
i , Pi(λ) = 0.

Proof: First, consider the case when0 < P o
i < PT . By

Lemmas 2 and 3,

wi(λ) = max
0≤P≤PT

{Ui(γi(P ))− λP}
= max{0, max

P o
i
≤P≤PT

{Ui(γi(P ))− λP}}

Let w′i(λ) = maxP o
i
≤P≤PT

{Ui(γi(P )) − λP}, thenw′i(0) >
0, w′i(∞) < 0 andw′i(λ) is a decreasing function ofλ. This
implies thatw′i(λ

max
i ) = 0 and w′i(λ) < 0 for λ > λmax

i

Therefore, forλ > λmax
i , Pi(λ) = 0.

Now, consider the case whenP o
i = 0. In this case,Ui(γi(P ))

is a concave function. Hence,∂Ui(γi(P ))
∂P is a decreasing func-

tion for 0 ≤ P ≤ PT . It then follows that

Pi(λ) =




PT , if λ < ∂Ui(γi(P ))
∂P |P=PT

,

P ∗, if λ = ∂Ui(γi(P ))
∂P |P=P∗ , 0 ≤ P ∗ ≤ PT ,

0, if λ > ∂Ui(γi(P ))
∂P |P=0.

Therefore,λmax
i = ∂Ui(γi(P ))

∂P |P=0 and this is unique.
Finally, consider the case whenP o

i = PT . Then,Ui(γi(P ))
is a convex function and

wi(λ) = max{0, Ui(γi(PT ))− λPT }.
λmax

i can be determined by

λmax
i =

Ui(γi(PT ))
PT

.

Therefore, there exists a uniqueλmax
i .

Each mobilei can calculateλmax
i as follows.

λmax
i =




∂Ui(γi(P ))
∂P |P=0, if P o

i = 0,
∂Ui(γi(P ))

∂P |P=P∗ , if 0 < P o
i < PT

andP ∗ exists,
Ui(γi(PT ))

PT
, otherwise,



whereP ∗ is a solution of the following equation.

Ui(γi(P ))− P
∂Ui(γi(P ))

∂P
= 0, P o

i ≤ P ≤ PT .

When the price isλmax
i , Pi(λ) can have two values. One is zero

and the other is positive. But, we take only a positive value of
Pi(λ) in the sequel.

In the next proposition, we show the relation between price
and the requested power of mobilei.

Proposition 3: Pi(λ) is a non-increasing function ofλ for
λ ≥ 0. Moreover,Pi(λ) is a decreasing function ofλ for
λmin

i ≤ λ ≤ λmax
i , whereλmin

i = max{λ ≥ 0|Pi(λ) = PT }.
Proof: By the definition of λmax

i , Pi(λ) = 0 for
λ > λmax

i . Now, supposeλ1 < λ2 ≤ λmax
i . If Ui(γi(P ))

is a convex function for0 ≤ P ≤ PT , then, by Lemma 3,
Pi(λ1) = Pi(λ2) = PT . If Ui(γi(P )) is a concave func-
tion or a sigmoidal-like function for0 ≤ P ≤ PT , then,
by Lemma 3,Ui(γi(Pi(λ1))) andUi(γi(Pi(λ2))) must be in
concave region, i.e.,Pi(λ1) ≥ P o

i and Pi(λ2) ≥ P o
i . Let

fi(P, λ) = Ui(γi(P ))− λP . Then,

0 ≤ ∂fi(P, λ2)
∂P

|P=Pi(λ2)

=
∂Ui(γi(P ))

∂P
|P=Pi(λ2) − λ2

<
∂Ui(γi(P ))

∂P
|P=Pi(λ2) − λ1

=
∂fi(P, λ1)

∂P
|P=Pi(λ2).

This implies that

∂fi(P, λ1)
∂P

> 0 for P o
i ≤ P ≤ Pi(λ2),

sinceUi(γi(P )) is a concave function forP o
i ≤ P ≤ Pi(λ2).

Therefore, ifPi(λ2) < PT , then Pi(λ1) > Pi(λ2) and if
Pi(λ2) = PT , thenPi(λ1) = PT .

By the previous results, we summarize the properties of
Pi(λ) as

Pi(λ) is




discontinuous atλ = λmax
i , if Ui is a convex

function or a sigmoidal-like function.

continuous, ifUi is a concave function.

positive and a decreasing function ofλ for
λmin

i ≤ λ ≤ λmax
i .

zero forλ > λmax
i .

PT for λ ≤ λmin
i .

Using these properties ofPi(λ), we can select the mobiles to
which positive power is allocated as follows.

Mobile selection algorithm
Suppose that there areM mobiles andλmax

1 > λmax
2 > · · · >

λmax
M

3.
3If some mobiles have the sameλmax

i , they are ordered randomly.

(i) The base station broadcasts its maximum power limit,PT

to all mobiles.
(ii) Each mobilei reports itsλmax

i to the base station.
(iii) Let k = 1.
(iv) The base station broadcasts price,λmax

k .
(v) Each mobilei reports its power requestPi(λmax

k ) to the
base station.

(vi) If k = 1 andP1(λmax
k ) = PT , select mobile 1 and stop,

else ifk = 1 andP1(λmax
k ) < PT , go to (ix),

else go to (vii).

(vii) If
k−1∑
j=1

Pj(λmax
k ) > PT , select from mobile 1 to mobile

k − 1 and stop,
else go to (viii).

(viii) If
k−1∑
j=1

Pj(λmax
k ) ≤ PT and

k∑
j=1

Pj(λmax
k ) > PT , select

from mobile 1 to mobilek − 1 and stop,
else go to (ix).

(ix) Let k = k + 1. If k ≤ M , go to (iv),
else select from mobile 1 to mobilek − 1 and stop.

Therefore, the mobiles are selected in a descending order of
λmax

i .
We now study the characteristics of the mobile selection

of our mobile selection algorithm. If the stop condition
in (vi) is satisfied, the total power is allocated to mobile
1 with the priceλmax

1 . In this case,
∑M

j=1 Pj(λmax
1 ) =

PT , since P1(λmax
1 ) = PT and Pj(λmax

1 ) = 0 for j >
2. Thus, this is a social optimal allocation by Lemma 1.
By the stop condition in (vii),

∑k−1
j=1 Pj(λmax

k−1 ) ≤ PT and∑k−1
j=1 Pj(λmax

k ) > PT . Furthermore,
∑k−1

j=1 Pj(λ) is con-
tinuous for λmax

k ≤ λ ≤ λmax
k−1 . Therefore, we can find

λ∗ such that
∑k−1

j=1 Pj(λ∗) = PT , λmax
k < λ∗ ≤ λmax

k−1 .

This implies that
∑M

j=1 Pj(λ∗) = PT , sincePj(λ∗) = 0
for j = k, · · · ,M and, thus, the mobile selection is a so-
cial optimal selection by Lemma 1. If the stop condition in
(viii) is satisfied,

∑M
j=1 Pj(λmax

k ) =
∑k

j=1 Pj(λmax
k ) > PT

and
∑M

j=1 Pj(λmax
k + ε) =

∑k−1
j=1 Pj(λmax

k + ε) < PT for
all ε > 0. Thus, in this case, we cannot findλ′ such that∑M

j=1 Pj(λ′) = PT and the mobile selection may not be a so-
cial optimal selection. Moreover, we cannot find an equilibrium
solution of problem(E). However, to obtain a good approxi-
mation of the solution of(E) satisfying the constraint, we must
select mobiles from 1 tok − 1. For the selected mobiles, we
can findλ∗ such that

∑k−1
j=1 Pj(λ∗) = PT andλ∗ ≤ λmax

k ,

since
∑k−1

j=1 Pj(λmax
k ) ≤ PT and

∑k−1
j=1 Pj(λ) is continu-

ous forλ ≤ λmax
k . If the stop condition in (ix) is satisfied,∑M

j=1 Pj(λmax
M ) ≤ PT andPj(λ) for all j is continuous for

λ ≤ λmax
M . Thus, we can findλ∗ such that

∑M
j=1 Pj(λ∗) = PT ,

λ∗ ≤ λmax
M and, thus, the mobile selection is a social optimal

selection by Lemma 1.
Therefore, the mobile selection may not be a social optimal

selection. But, we will show that with our pricing scheme
and the partial-cooperative property of mobiles, the mobile
selection of our algorithm is optimal selection and, thus, we



call the selection thepartial-cooperative optimal selection.

Theorem 1:The mobile selection of the mobile selection al-
gorithm is an optimal selection satisfying the power constraint
under the partial-cooperative property of mobiles and linear
pricing with the same unit price.

Proof: We prove the result only for the case when the
stop condition in (viii) is satisfied, since if any other stop con-
dition is satisfied, the selection is a social optimal selection.
Suppose that mobiles 1 throughl are selected. Ifl > k − 1,
by the non-cooperative property,λ ≤ λmax

l . In this case,∑l
i=1 Pi(λ) > PT . Thus, the power constraint cannot be satis-

fied. Now consider the case whenl < k − 1. In this case,

max∑l

i=1
Pi≤PT

{
l∑

i=1

Ui(γi(Pi))}

is equivalent to

max∑k−1

i=1
Pi≤PT

{
k−1∑
i=1

Ui(γi(Pi))}

with additional constraints,Pi = 0 for i = l + 1, · · · , k − 1.
But, by the way in which mobiles are selected, all mobiles from
1 tok−1 are allocated positive power at a global optimal power
allocation for

max∑k−1

i=1
Pi≤PT

{
k−1∑
i=1

Ui(γi(Pi))}.

Thus,

max∑l

i=1
Pi≤PT

{
l∑

i=1

Ui(γi(Pi))}

< max∑k−1

i=1
Pi≤PT

{
k−1∑
i=1

Ui(γi(Pi))}

and the case whenl < k − 1 cannot be optimal. There-
fore, the selection of the mobile selection algorithm is an opti-
mal selection satisfying the power constraint under the partial-
cooperative property of mobiles and linear pricing with the
same unit price.

B. Power allocation for the partial-cooperative optimal mobile
selection

After the base station selects mobiles using the mobile selec-
tion algorithm in the previous subsection, it allocates its power
to the selected mobiles. If the stop condition in (vi) in the mo-
bile selection algorithm is satisfied, the power allocation algo-
rithm is not needed, since the total power,PT must be allocated
to mobile1. Therefore, in this subsection, we assume that the
stop condition in (vii), (viii), or (ix) in the mobile selection al-
gorithm is satisfied. Suppose that mobilesi, i = 1, 2, · · · , k− 1
are selected andλmax

1 > λmax
2 > · · · > λmax

k−1 . Then, the base

station problem(E) can be rewritten as

(F) min
λ

PT −
k−1∑
i=1

Pi(λ)

subject to
k−1∑
i=1

Pi(λ) ≤ PT ,

λmin ≤ λ ≤ λmax,

where

λmin =




λmax
k , if the stop condition (vii) in the mobile se-

lection algorithm is satisfied,
0, if the stop condition (viii) or (ix) in the

mobile selection algorithm is satisfied,

λmax =




λmax
k−1 , if the stop condition (vii) or (ix) in the mo-

bile selection algorithm is satisfied,
λmax

k , if the stop condition (viii) in the mobile
selection algorithm is satisfied,

and each mobilei, i = 1, 2, · · · , k − 1 solves its problem
(Di). The next theorem tells us that the solution of problem
(F) and problem(Di) is a social optimal solution given that
a partial-cooperative optimal selection and, thus, we call it the
partial-cooperative optimal power allocation.

Theorem 2:If a power allocation, P̄ k−1(λ∗) =
(P1(λ∗), P2(λ∗), · · · , Pk−1(λ∗)) is a solution of problem
(F) and problem(Di), it is a global optimal solution of the
following optimization problem.

(G) max
P̄

k−1∑
i=1

Ui(γi(Pi))

subject to
k−1∑
i=1

Pi ≤ PT ,

Pi ≥ 0, i = 1, 2, · · · , k − 1.
Proof: From the way the base station selects mobiles,λ∗

which satisfies
∑k−1

i=1 P (λ∗) = PT always exists. Therefore,
by Lemma 1,P̄ k−1(λ∗) = (P1(λ∗), P2(λ∗), · · · , Pk−1(λ∗)) is
a global optimal solution for problem(G).

Therefore, if the partial-cooperative optimal selection is the
same as the social optimal selection, i.e., the stop condition in
(vi), (vii) or (ix) of the mobile selection algorithm is satisfied,
the partial-cooperative optimal power allocation is the same as
the social optimal power allocation. Otherwise, i.e., the stop
condition in (viii) is satisfied, the partial-cooperative optimal
power allocation could be a good approximation to the social
optimal power allocation. Moreover, as the next theorem
shows, the partial-cooperative optimal power allocation is
Pareto optimal.

Definition 1: A power allocation vector, P̄ ∗ =
(P ∗

1 , P ∗
2 , · · · , P ∗

M ) is called a Pareto optimal power allo-
cation vector, if there is no other power allocation vector,
P̄ = (P1, P2, · · · , PM ) such thatUi(γi(P̄ )) ≥ Ui(γi(P̄ ∗)), for



all i = 1, 2, · · · ,M andUj(γj(P̄ )) > Uj(γj(P̄ ∗)) for somej.

Theorem 3:The partial-cooperative optimal power alloca-
tion, P̄ ∗ = (P ∗

1 , P ∗
2 , · · · , P ∗

k−1, 0, · · · , 0), is Pareto optimal.
Proof: Suppose that there exists a power allocation,

P̄ ′ such that
∑M

i=1 P ′
i ≤ PT , Ui(γi(P ′

i )) ≥ Ui(γi(P ∗
i )),

i = 1, 2, · · · ,M and Uj(γj(P ′
j)) > Uj(γj(P ∗

j )) for
some j. First, assume that1 ≤ j ≤ k − 1. Then,∑k−1

i=1 Ui(γi(P ′
i )) >

∑k−1
i=1 Ui(γi(P ∗

i )), which is contradic-
tion, since(P ∗

1 , P ∗
2 , · · · , P ∗

k−1) is a social optimal solution for
problem(G). Now, assume thatk ≤ j ≤ M . By the pre-
vious result,Ui(γi(P ′

i )) = Ui(γi(P ∗
i )), i = 1, 2, · · · , k − 1

and P ′
j > 0. Then, by redistributingP ′

j to mobile i, i =
1, 2, · · · , k − 1, we can find a power allocation̄P ′′ such that∑k−1

i=1 Ui(γi(P ′′
i )) >

∑k−1
i=1 Ui(γi(P ∗

i )), which is contradic-
tion, since(P ∗

1 , P ∗
2 , · · · , P ∗

k−1) is a social optimal solution for
problem(G). Therefore, there exists no power allocation such
asP̄ ′ and, thus,P̄ ∗ is a Pareto optimal power allocation.

The power allocation algorithm can be implemented in sev-
eral ways. If we consider problem(F), we can use a simple
line search algorithm such as a bisect algorithm and a golden
section algorithm [13]. If we consider problem(G), we can
use a gradient based algorithm [4] or a penalty based algorithm
[3], since problem(G) is equivalent to the following convex
programming problem.

(H) max
P̄

k−1∑
i=1

Ui(γi(Pi))

subject to
k−1∑
i=1

Pi ≤ PT ,

Pi ≥ Pi(λmax
i ),

i = 1, 2, · · · , k − 1,

wherePi(λmax
i ) ≥ P o

i . Thus,Ui(γi(Pi)) is a concave function
for Pi(λmax

i ) ≤ Pi ≤ PT , which makes problem(H) a convex
programming problem.

In this subsection, we implement the power allocation
algorithm using a bisect algorithm.

Power allocation algorithm
Suppose that mobiles from 1 tok−1 are selected by the mobile
selection algorithm and letε be a small positive constant.

(i) Seta(1) = λmin, b(1) = λmax andn = 1.
(ii) The base station broadcasts the priceλ(n) = a(n)+b(n)

2 .
to all selected mobiles

(iii) Each mobilei reports its power requestsPi(λ(n)) to the
base station.

(iv) If |∑k−1
i=1 Pi(λ(n))− PT | < ε, stop, else go to (v).

(v) If
∑k−1

i=1 Pi(λ(n))−PT > 0, seta(n+1) = λ(n), b(n+1) =
b(n), else seta(n+1) = a(n), b(n+1) = λ(n).

(vi) n = n + 1 and go to (ii).

IV. PARTIAL -COOPERATIVE OPTIMAL POWER ALLOCATION

WITH THE MINIMUM SIR REQUIREMENT

From the previous section, we know that the partial-
cooperative optimal power allocation is Pareto optimal and

could be a good approximation to the social optimal power al-
location. However, the allocation could be unfair to some mo-
biles, since the algorithm gives higher priority to mobiles with
higherλmax

i . Therefore, with only partial-cooperative optimal
power allocation, QoS requirements for every mobile might not
be satisfied.

To alleviate this situation, we can introduce a minimum SIR
requirement,γmin

i for each mobilei. Therefore, problem(B)
can be modified as

(I) max
P̄

M∑
i=1

Ui(γi(Pi))

subject to
M∑
i=1

Pi ≤ PT ,

Pi ≥ Pmin
i , i = 1, 2, · · · ,M,

whereγi(Pmin
i ) = γmin

i . In this problem, we assume that
the system is feasible, i.e.,

∑M
i=1 Pmin

i ≤ PT . The system
feasibility can be maintained by the call admission control and
the scheduling. The optimization problem(I) is equivalent to
the following problem.

(J) max
P̄ ′

M∑
i=1

Ui(γi(Pmin
i + P ′

i ))− Ui(γi(Pmin
i ))

= max
P̄ ′

M∑
i=1

U ′
i(γ

′
i(P

′
i ))

subject to
M∑
i=1

P ′
i ≤ PT −

M∑
i=1

Pmin
i = P ′

T ,

P ′
i ≥ 0, i = 1, 2, · · · ,M,

where γ′i(P
′
i ) = Ni(P

min
i +P ′

i )

PT−P min
i

−P ′
i
+Ai

and U ′
i(γ

′
i(P

′
i )) =

Ui(γ′i(P
min
i +P ′

i ))−Ui(γi(Pmin
i )). Problem(J) has the same

structure as problem(B) and we can apply the mobile selection
algorithm and the power allocation algorithm in section III with
the utility function for mobilei, U ′

i and the power limit,P ′
T . In

this case, the mobiles selected by the mobile selection algorithm
are allocated additional power to the minimum power require-
ment.

V. SPECIAL CASE: SINGLE CLASS OF MOBILES

In this section, we study, for illustration, a special case of our
method, i.e., when all mobiles are homogeneous (each mobile
has the same utility function,U , and the same processing gain
N ). We present this case because it provides some insight. We
compare the partial-cooperative optimal selection and the social
optimal selection in this case. Proofs are omitted for the sake
of brevity.

In the following proposition, we show the relation between
Ai andλmax

i . Recall thatAi defined byIi/Gi in (1) indicates
the “goodness” of the environment of mobilei.

Proposition 4: Suppose that all mobiles have the same utility
functionU , the same processing gain,N , andAi < Aj , then
λmax

i > λmax
j .



Proposition 4 tells us that, in the homogeneous mobile case,
mobiles are selected with ascending order ofAi by the partial-
cooperative mobile selection algorithm since mobiles are se-
lected with descending order ofλmax

i by the partial-cooperative
mobile selection algorithm. This implies that the mobile in bet-
ter environment has more chance to be selected by the partial-
cooperative optimal selection algorithm.

Now, we study the social optimal selection. By the next
proposition, in the homogeneous mobile case, we can order
each mobilei according toAi.

Proposition 5: Suppose that all mobiles have the same utility
function U , the same processing gain,N , andA1 < A2 <
· · · < AM . If P̄ ∗ = (P ∗

1 , · · · , P ∗
M ) is a social optimal power

allocation andAi < Aj , thenγi(P ∗
i ) ≥ γj(P ∗

j ).
Corollary 1: Suppose that all mobiles have the same utility

function U , the same processing gain,N , andA1 < A2 <
· · · < AM . If P̄ ∗ = (P ∗

1 , · · · , P ∗
M ) is a social optimal power

allocation andP ∗
k = 0, P ∗

j = 0 for all j such thatAj > Ak.
Corollary 1 implies that, in the social optimal selection, mobiles
are selected in ascending order ofAi.

Proposition 4 and Corollary 1 tell us that the order of mo-
bile selection of the partial-cooperative optimal selection is the
same as that of the social optimal selection. Therefore, the set
of mobiles selected by the partial-cooperative optimal selection
is a subset of the set of mobiles selected by the social optimal
selection and the relation between mobiles in each set is as fol-
lows.

Aj < Ai, for i, j ∈ V, j ∈ Z andi 6∈ Z,

whereV is the set of mobiles selected by the social optimal
selection andZ is the set of mobiles selected by the partial-
cooperative optimal selection. This implies that the partial-
cooperative optimal selection excludes the mobiles which ob-
tain relatively low utility by the social optimal selection and,
thus, the difference between the system utilities of them is
small. In the next section, we provide numerical examples to
show this difference with simulation.

VI. T HE COMPARISON OF THE PARTIAL-COOPERATIVE

OPTIMAL POWER ALLOCATION AND THE SOCIAL OPTIMAL

POWER ALLOCATION FOR THE SINGLE CLASS CASE

In this section, we compare the partial-cooperative optimal
power allocation and the social optimal power allocation for the
single class case by the computer simulation. Each mobile is
assumed be homogeneous, which has the same utility function
and the same processing gain. We model the cellular network
with 9 square cells, as shown in Fig. 1. We assume that the base
station is located at the center of each cell and each base station
has the same maximum power limit,PT . We focus on the cell
at the center of the system.

We model the path gain from a base stationi to a mobilej,
Gi,j as follows.

Gi,j =
Ki,j

dα
i,j

,

wheredi,j is the distance from the base stationi to mobilej,
α is a distance loss exponent andKi,j is the log-normally dis-
tributed random variable with mean 0 and varianceσ2 (dB),

BS BS

BS BS BS

BSBSBS

BS

Fig. 1. Cellular network model.

TABLE I
PARAMETERS FOR THE SYSTEM.

Maximum power (PT ) 10
Processing gain (N ) 128

Distance loss exponent (α) 4
Variance of log-normal distribution (σ2) 8

Length of the side of the cell 1000

which represents shadowing [14]. The parameters for the sys-
tem are summarized in Table I. For the simulation, we use a sig-
moid utility function. The sigmoid utility function is expressed
as

U(γ) = c{ 1
1 + e−a(γ−b)

− d}. (9)

We normalize the sigmoid utility function asU(0) = 0 and
U(∞) = 1 by settingc = 1+eab

eab andd = 1
1+eab . The property

of the sigmoid utility function is well studied in [9].
In Tables II – IV, we show the total system utilities for each

power allocation and the ratio, varying the values ofa, b, and
N . For each case, we assume that the mobiles are located inde-
pendently according to uniform distributions within the cell and
run the simulations104 times. The results tells us that the sys-
tem utility achieved by the partial-cooperative optimal power
allocation is quite close to that achieved by the social optimal
power allocation.

VII. C ONCLUSIONS

In this paper, we focus on downlink communication in wire-
less systems. The downlink is expected to support higher band-
width applications than the uplink and multi-class services.
Considering these service requirements, we have proposed a
downlink power allocation algorithm for multi-class CDMA
wireless networks. We adopted a utility based framework and
tried to maximize the total system utility. The proposed algo-
rithm can be implemented in a distributed way using a partial-
cooperativeM -person power allocation game with dynamic
pricing. It provides a partial-cooperative optimal power allo-
cation which is Pareto optimal and a good approximation of the
social optimal power allocation.



TABLE II
COMPARISON OF UTILITY FOR THE HOMOGENEOUS CASE(b = 7(dB),

N = 64, M = 10).

a 0.5 1 2 4 8

Partial 5.967 7.00 7.756 8.256 8.539
Social 6.012 7.093 7.885 8.392 8.661

Partial/Social 0.992 0.987 0.984 0.984 0.986

TABLE III
COMPARISON OF UTILITY FOR THE HOMOGENEOUS CASE(a = 3, N = 64,

M = 10).

b(dB) 3 5 7 9 11

Partial 9.887 9.391 8.072 6.302 4.697
Social 9.907 9.475 8.213 6.459 4.803

Partial/Social 0.998 0.991 0.983 0.976 0.978

TABLE IV
COMPARISON OF UTILITY FOR THE HOMOGENEOUS CASE(a = 3,

b = 7(dB), M = 10).

N 8 16 32 64 128

Partial 1.987 2.982 5.040 8.065 9.884
Social 1.995 2.991 5.253 8.210 9.913

Partial/Social 0.996 0.997 0.959 0.982 0.997
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