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Abstract—In this paper we consider the downlink power alloca- In the next generation of wireless networks, it is expected
tion problem for multi-class CDMA wireless networks. We use a that services will have significantly differing characteristics
utility based power allocation framework to treat multi-class ser- from the current voice-dominated wireless networks. Already
vices in a unified way. The goal of this paper is to obtain a power - - . . !
allocation which maximizes the total system utility. In the wireless the demand for.varlous SerV'f?eS_ with cﬁfferent QoS .requwe—
context, natural utility functions for each mobile are non-concave. Ments such as video and data is increasing. The required band-
Hence, we cannot use existing techniques on convex optimizationwidth for these services is much higher than that for voice ser-
problems to derive a social optimal solution. We propose a sim- vyices, further compounding the scarcity of resources in wire-
ple distributed algorithm to obtain an approximation to the social less systems. Therefore, to accommodate services with dif-

optimal power allocation. The proposed distributed algorithm is f t ch teristi fficientl d a diff t
based on dynamic pricing and allows partial cooperation between Erent Characteristics more eiiciently, we need a ciiierent ap=

mobiles and the base station. The algorithm consists of two stages.Proach to power control in th_e next gef‘eration Wire|eS.S net-
At the mobile selectionstage, the base station selects mobiles toworks. Moreover, such services are highly asymmetric, re-

which power is allocated, considering the partial-cooperative na- quiring more bandwidth in the downlink than the uplink. This
ture of mobiles. This is called partial-cooperative optimal selec- implies that, in next generation wireless networks, efficient re-

tion, since in a partial-cooperative setting and pricing scheme con- locati fthe d link b . tant i
sidered in this paper, this selection is optimal and satisfies system SOUIC€ allocation ot the downlink becomes a very important 1S-

feasibility. At the power allocationstage, the base station allocates SUE.
power to the selected mobiles. This power allocation is a social op- Recently, utility (and pricing) based network control algo-
timal power allocation among mobiles in the partial-cooperative rithms have extensively been studied in the literature. These are
optimal selection, thus, we call it a partial-cooperative optimal ot new concepts and have been studied in economics. The util-
Bngvg ;lllg g:tti'gg 'wi:/r\nl Gih(eogg)%?arfot&iem%?gg:vg?(;Fl)ligaloen (f)grt'mgl ity represents the degree of a user’s satisfectien when it acquires
single class case. From these results, we infer that the system util-C€rtain amount of the resource and the price is the cost per unit
ity obtained by the partial-cooperative optimal power allocation ~resource which the user must pay for this resource. The basic
is quite close to the system utility obtained by the social optimal idea of these algorithms is to control a user’s behavior through
allocation. the price of resources to obtain the desired results, e.g., high
utilization for the overall system and fairness among users.

In wired networks, utility and pricing based algorithms are
well studied for distributed flow control of best effort services.

Radio resources are scarce and the demand for wireless R@lty et al. [3] obtain the social optimal solution which max-
vices keeps increasing, hence the efficient management of fagyes the summation of all the users’ utilities by allocating
radio resources in wireless networks is important in achievifge resources according to the notionpobportional fairness
a h|gh IeVeI Of Utilization. Power Contl’ol iS an important Comper unit Charge Ya|cheet a|_ [4] obtain a Nash bargaining
ponent in the resource management problem. solution which is Pareto-optimal and yields th@portionally

In recent years, power control has been given extensive gy solution In these works, the utility function is assumed to
tention in both academic and industrial research, because ofjtsa concave function of the allocated rate, which makes the
critical role in code division multiple access (CDMA) networkspromem a convex programming problem. Hence, the Karush-
Most research efforts have been devoted to voice systems, SiRG8n-Tucker (KKT) conditions are used to obtain the optimal
voice service has been the main service provided by wirelegsiytion.
networks. In a voice system, all users have the same quality ofThe utility (and pricing) based control algorithms can also be
service (QoS) requirements and it is important that the signgdplied to the power control problem in wireless networks. But,
to interference ratio (SIR) exceeds some minimum threshotfle main difficulty in solving the problem is that, in general, the
Hence, the main purpose of power control in such systems isgi@blem cannot be formulated as a convex programming prob-
eliminate the near-far effect by equalizing the SIR of each useim. Thus, the KKT condition cannot be used for the sufficient
setting it at the minimum SIR threshold [1], [2]. condition of the optimal solution. In most of works on utility

This research has been supported in part by NSF grants ANI-0073359 éH?:d pricing for power Control,_only Nash equilibria, which are
ANI-9805441. inefficient [5], have been obtained.

I. INTRODUCTION



Utility based algorithms without pricing are considered ient analysis. We study the problem of maximizing total sys-
[6], [7]. Oh and Wasserman [6] consider an uplink power arteém utility for heterogeneous users which is a social optimum
spreading gain control problem for the non-real time serviceand differs from the Nash equilibrium considered in [7], [8],
They use an instantaneous throughput for each mobile as a Ufll- In general, the operating points are different. Furthermore,
ity function and obtain a global optimal solution which maxwe consider the downlink case which imposes a global power
imizes the aggregate throughput by jointly optimizing poweronstraint rather than the uplink case treated in [6], [7], [8] for
control and spreading gain. But, their algorithm can be apthich there are only individual power constraints on each user.
plied only for the system with one class of mobiles. Moreovethis completely changes the structure of the optimization prob-
they do not consider any constraint on the spreading gain.lelin for which the previous (and simpler) algorithms are not
and Huang [7] formulate an uplink power control problem asapplicable. It can be shown that in the absence of a total power
non-cooperativéV-person game in which each user transmits@nstraint, the algorithms developed in [9] can be used with
power level maximizing its utility without considering the besome modification. However, in practice, any transmitter has a
havior of other users. Under certain assumptions on the utilityaximum power level that it can transmit at and so it is neces-
function, they show that there exists a Nash equilibrium. sary to develop algorithms for the power constrained case as is

Utility based algorithms with pricing are considered in [8]done in this paper.

[9], [10], [11]. Saraydeet al. [8] formulate an uplink power ~As mentioned before, the goal of this paper is to obtain
control problem for a single-class wireless data system asigower allocation which maximizes the total system utility.
non-cooperativeV-person game. They use the number of bitdowever, due to the non-convexity of the problem, it is difficult
which can be transmitted using a Joule of energy as a utiliy obtain a social optimal power allocation and even if we could
function. They show that there exists a Nash equilibrium butdbtain it, it could require a very complex algorithm. Therefore,
is inefficient in the sense that there exists another power allodathis paper, we propose a simple algorithm to obtain a power
tion which Pareto dominates the Nash equilibrium allocatioallocation which is Pareto optimal as well as a good approxi-
To improve efficiency, they introduce pricing. The base stationation of the social optimal power allocation. This algorithm
informs each user of a fixed price for unit power. Each usean be implemented in a distributed way and, in this case, our
transmits a power level which maximizes its net utility (utilityoroblem can be expressed apartial-cooperative) -person
minus cost for power allocation). They show that the game wigiower allocation game with dynamic pricingrom the utility
pricing converges to Nash equilibria under some conditions @and pricing point of view, dynamic pricing is one of the distin-
the strategy set and present an algorithm which converges tguishing features of this work compared with other utility and
Pareto-dominant equilibrium, even though the social optimupticing based power control algorithms [8], [9].

cannot be obtained. In addition, they show that the choice ofThe rest of the paper is organized as follows. In Section I,
price impacts on the system utilization significantly. Howevewe describe the system model considered in this paper and for-
they do not provide a systematic algorithm to find an optimahulate the basic problem. In Section Ill, we present the pro-
price. Xiaoet al. [9] formulate a downlink power control prob- posed power allocation algorithm which consists of the mobile
lem for multi-class wireless networks as a non-cooperdlive selection stage and the power allocation stage. We generalize
person game with pricing. In this setting, they do not allowhe algorithm to the case when each mobile has the minimum
constraints on the power. They use a sigmoid function as a ufiiR requirement in Section IV. In Section V, we study a spe-
ity function. By adjusting parameters of the sigmoid functiorgial case when all mobiles are homogeneous and compare our
the utility functions for heterogeneous services are treated ipawer allocation with the social optimal power allocation for
unified way. As in [8], the base station informs each user ofthis case in Section VI. Finally, we conclude in Section VII.
fixed price for unit power and each user requests a power level
which maximizes its net utility value. They show that their al-
gorithm isstandard[2] under mild conditions and that the al-
gorithm does not diverge even when the system is infeasibleWe consider downlink power allocation in a multi-class
In the numerical results, they show that the system utilizatié®DMA wireless network and focus on a single cell, consist-
depends on the price, but they too do not provide an algorithing of a single base station add mobiles. Each mobile com-
on how to obtain the optimal price. Liet al. [10] consider municates with the base station. For downlink communication,
a downlink resource allocation problem for the voice servicthe base station has a maximum power linft;. It allocates
They use a step function as a utility function and as a pricingpwer to each mobile within the power limit (i.e., the summa-
scheme, they use price per unit power and price per code. Tliep of the power allocated to each mobile cannot exceed the
obtain the optimal prices to maximize either total system utilitgower limit). Each mobilé, i = 1,2, --- M, has its own utility

or total revenue. This work is extended by Zhatgl. in [11]. function,U;, which represents the degree of mobitesatisfac-

In this paper we study downlink power allocation problerfion of the received QoS. We assume thiahas the following
in multi-class CDMA based wireless networks. We use a utilifjroperties.
based framework mentioned above. However, the situation conAssumptions:
sidered here differs from the previous works in many aspects(a) U; is an increasing function of;, the SIR of mobile.
Primarily, we consider a multi-class system while a single clasgb) U; is twice continuously differentiable.
data system is considered in [6] and a voice system in [10](c) U;(0) = 0.

[11]. This heterogeneous case requires much more and diffed) U, is bounded above.

Il. SYSTEM MODEL AND PROBLEM DESCRIPTION



(e %(Ni—pyi)—FQaUa’;—si) = 0 has at most one solution tive power at the social optimal power allocation goeial op-
for W; > 0, whereN; is processing gain, which is definedtimal selection Note that, in general, the objective function of

by the ratio of the chip rate to the data rate. problem(A) in (2) is not a concave function.
2
If 2U00 (N, 4 ;) 4+ 22909 —  has one solution at
M o7 2( i)+ 2755 [1l. PARTIAL-COOPERATIVE OPTIMAL POWER
72 > 0, %(Ni + i) + 22500 > 0 for y; < ¢ ALLOCATION
and%(Ni )+ 20%7(%) < 0for ~; > ~°. Our power allocation algorithm consists of two stages. At
Y; Yi g

i

: . : the first stage, mobiles to which power is allocated are selected,
By assumptions (e) and (f), the utility function can be one 9 . .
. ; y . . and at the second stage, power is allocated optimally to the se-
three typeks a sigmoidal-like function of its own power allo- : . .
5 . . . lected mobiles. Before we describe the details of our power
cation<, a concave function of its own power allocation, or a . . .
llocation algorithm, we first decompose probléA) as mo-

convex function of its own power allocation. In general, mosst”e problems and a base station problem

utility functions used in wired or wireless networks can be rep- The next proposition tells us that to maximize the total

resented by these thre? funct|on_s_[9], [12].' . ystem utility, the base station must transmit at its maximum
Even though we define the utility function as a function ogower limit. P
1 T'

the SIR, the SIR is a function of the power allocation of a
mobiles given the path gain from the base station to the mobile

. . . Proposition 1: If P = (Py, P, ---, Pys) is a power alloca-
interference, and noise. We can represerthe SIR for mobile ' oPoo O (P1, Py )i ap
i as follows: tion andZi:1 P; < Pr, then we can find another power al-
Iocatio]\r/ll,P* = (P{,Ps,-- -],WP;\}) such thaty>,,_, P, = Pr
N.G. P and} ;= Ui(vi(P)) > 3252, Ui(vi(P)).
vi(P) = I L Proof: If "M P, < Pr, there exists an > 1 such that
Gizm:1pm - G,P+1
M M
N, P;
= = Pi<a) P =Pr.
M ; Z 7 7 T
Yome1 Pm — Pi+ é_ i1 i=1
: Ni L , (1) We defineP = aP; fori =1,2,---, M, then
anlepm_Pz“‘Az N, P
where WP = :
P;  : Allocated power for mobile. > Pp—Prt A
P : Power allocation vecto,P;, Ps, - - -, Pys) for mo- g=1
biles,1,2,---, M, respectively. _ aN; P;
N;  : Processing gain for mobile M
G; : Path gain from the base station to mohile Z aPj —ab; + A;
I; : Background noise and intercell interference to mo- j=1
bile 7. > aN; P;
M : Number of mobiles in the cell. M
Note that the utility value of mobilé depends on not only its Z aP; —aP;+ al;
own power allocation but also on the power allocations of all j=1
the other mobiles. = y(P), i=1,2,---, M.

The goal of this paper is to obtain the power allocation for

each mobile which maximizes the total system utility (i.e., theherefore.Us(vi(P*)) > Ui(yi(P)) for all i, sincel; is an

summation of utilities of all mobiles). The basic formulation ofcreéasing function of;. _ _ u
this problem is given by the following optimization problem: BY tt)TIS property, problen{A) is equivalent to the following
problem.
(A) S UGP) )
max i\ Vs
Pt (B)  maxd U(n(R)
M =t u
subject toz P; < Pr, 3) subject toz P < Pr
i=1 -
. =1
PZZO7 121727-.-7M. (4) P1>O 2212.]\/[
We call the solution of problertA) the social optimal power \\here (D) = il Note that the utility function for
. . . .. V Yi\li) = pr_p,+A;" y
allocationand the selection of mobiles which is allocated posjsach mobile does not depend on the power allocation for other
Twe will show this in Lemma 2. mobiles in problen{B), while the utility function for each mo-
2A sigmoidal-like function means a functioff(z) which has one inflection bile depends on the power allocation for all mobiles in problem

2 2
point,z® and L&) > 0 forz < 20 and LG < o forz > . (A).



To solve problem(B), we state the following result from Therefore, to obtain a good approximation to the solution of
[13] (page 213) that gives us optimality condition for genergroblem (A), we will solve the following optimization prob-

optimization problem. lem.
Lemmal:Llet f : R¥ — Randg; : RY — R, i = C i O I P MP)\ 6
1,2,---, K be arbitrary functions. We define (©) e ( )_mxm{ T_; i(A)} (6)
Lz N = f(@)+ 3 g(@), subject toI;()\) =argmax{L(P,\)}, (7)
_ _ > P\ <Pr. 8
w(A) = max{L(z,\)}, i=1

By Lemma 1, ifminy F(A\) = 0 at \*, then P(\*) is the so-
cial optimal solution of problenfA) and if miny F'(A) ~ 0 at
Y(A) = {Z|L(z, ) =w\)}, M*, then P(\*) could be a good approximation to the optimal
solution of problen(A) satisfying the feasibility condition. To
wherez = (21,22, -,o8)T, A = (A1, X2, -+, Ax)T, and solve problen{C), we first consider (7). Sinck(P, \) is sepa-
9(®) = (1(x), 92(7), - - -, g (2))T. Iif Z(X) € Y()\) for any rable inP, P()\) solves (7) if and only if it solves the following
A > 0, thenz()\) is a global optimal solution of the following problem.
optimization problem.

and

(Di)  Pi(N) = argmax{Uj(vi(P)) - AP},
max f(Z) — !~y _
¢ ) arg max {U;(%(P)) — AP},
subject tog(z) > g(z(N)). _ (s _
arg max {Ui(7i(P)) — AP},
To use this lemma in our problem, we define i=1,2,---, M.
, U(vi(P)), if0<P <Pr, Note that the parameters in probl€iD;) are correspond only
Ui(ni(R)) = { — 0, otherwise. to mobilei. By this property, we can decompose probled)
as the mobile problerfD;) for each mobile and the following
Then problemB) is equivalent to the following problem: base station problem.
M (E) min F'(\)
IHIQX; Ui (vi(P:)) A u
o subject toz P;(\) < Pr.
subjectto ~ P; < Pr. i—1
i=1 Each mobilei solves problen{D;) independently one another

and the base station solves probl&s).
We can interpret the decomposed problems as follows. Based
on ), the price per unit power, from the base station, each mo-

Note that the constraint®;, > 0,7 = 1,2,---, M do not appear
in the above problem. Now, we define

- M M bile 7 tries to maximize its net utility, (i.e., the utility minus
L(P,)\) = Z U;(7i(P)) + M Pr — Z F;). the cost) by solving probleni};). This implies that, given the
i=1 i=1 price, A\, mobile problems are equivalent to a non-cooperative

M-person game with a fixed price [8], [9]. However, in our for-
mulation, by solving problendE) based on the power request
of each mobile, the base station adjusts the priggnamically
M to obtain a good approximation to the social optimal power al-
max Y U} (7i(P;)) location by minimizingF'()\). Therefore, this problem can be
L interpreted as aon-cooperativel/-person game with dynamic
M M pricing and the pricing scheme which we use is linear pricing
subject toz P, < Z P;(\). with the same unit price. The linear pricing with the same unit
i=1 i=1 price means that the unit price for each user is same and the
(5) total cost for power is obtained hynit price x the amount of
- allocated power
where P(A) = (Pi(\), Px(N\), -+, Py (X)), If we find a* Using this interpretation, we can implement the power al-
above such thaEfVil P;(\*) = Pr (when Py is the thresh- location algorithm to obtain a good approximation to a social
old in (3)), the social optimal solution of problef) can be optimal power allocation in a distributed way. However, by the
obtained. Further, ifPr — Zﬁl P;(\*)| is small, a good ap- discontinuity of P;(\), there may be no equilibrium allocation
proximation to the solution of problerA) can be obtained. for this problem. Moreover, by Proposition Ef\il P must

Then, for anyA > 0, P()\) € Y()) is a global optimal solution
of the following optimization problem.



be Pr, whereP; is allocated power for mobilé To take care  The next lemma shows that if mobilerequests positive
of these two facts, we divide the algorithm in two stages. Firpbwer, P;(\) at price), thenP;()\) = Pr or U;(v;(P;(N))) is
is the mobile selection stage. In this part, mobiles which aiethe concave region.
allocated positive power are selected. If problgf) can be
solved, the selected mobiles are mobiles which are allocated-emma 3:1f P;(\) = argmaxo<p<p,{Ui(7:(P)) — AP},
positive power at the solution ¢EE). Otherwise, the selected P;(\) = 0, P;(A\) = Pr or U;(v;(P;(X))) is in the concave
mobiles are mobiles which are allocated positive power at thegion.
approximation of the solution df8). Second is the power al- Proof: If 0 < P(\) < Pr, it must satisfy the first
location stage. At this stage, only selected mobiles participatad the second order conditions, i-g%ﬂbzp(x) = A
in_ the power allocation game and power i; allocated tp _the m_fz)Z-Ug(;g(P)) lp_p(y < 0, sinceP()) is an interior point. This
biles optimally. To make unselected mobiles not participate thpIies thatP;(\) = 0, P;(\) = Py or Us(v;(P,()))) is in the
the power allocation game and, thus, to guarantee the convelrcave region. ’ -
gence of the power allocation algorithm, the base station negdsnma 3 tells us that if the utility functioti;, of mobiles, is
cooperation of mobiles. Therefore, in our algorithm, each mg-convex function fo < P < Py, mobilei always requests a
bile is assumed to have a partial-cooperative property, Sinc‘f)gwer level of 0 orP;.
has both the non-cooperative property and the cooperative prop, the next proposition, we show that each mobiteas the
erty and we call our problem partial-cooperativeM -person  maximum willingness to pay per unit powes .
game with dynamic pricing

Proposition 2: There exists a uniqui>** for mobile: such

A. Mobile selection problem that
Inthis subsection, we consider the mobile selection problem.ymaez 410 min { max {Ui(v(P)) — AP} = 0}
First, we study properties d?;(\). We defineP? as 0<A<oo 0<P<Pr
- OPU(s(P)) and forA > A"**, P;(X) = 0.
P, if #LP:P* =0, 0< P* < Pr, Proof: First, consider the case whén< P? < Pr. By
P = 0, if 2P oforo < P < Py, Lemmas 2 and 3,
92
Pr, if 250D > ofor0 < P < Pr, N = (i (P)) —
oP wi(A) = OSI%?%T{UA%(P)) AP}
and~? as — ew —
max{0, Pfglgng{Uz(%(P)) AP}}
o — 4(P°).
i 7i(FY) Letw/(\) = maxpe<p<p, {Ui(7i(P)) — AP}, thenw/(0) >
In the next lemma, we show that each mobiteas a unique 0> wi(c0) < 0 andwj(}) is a decreasing function of. This
po implies thatw](A\***) = 0 andwj(A) < 0 for A > "o

Lemma 2:Using the above definition aP?, each mobilei ~ Therefore, fo > A%, P;() = 0. _
has a uniqueP?. Now, consider the case whétf = 0. In this caselJ;(v;(P))
Proof: is a concave function. Henc ?ig’}(lp)) is a decreasing func-
tionfor0 < P < Pr. It then follows that

O*Ui(vi(P)) *Ui(vi) , 07 (Py)

_ 2 . s
oPr  ~ o7 Cop ) Pr, if A< Mf{’?;\k%
i i v ) _ i _ OU;i(vi(P . ®
0 f by oU; (vi(P))
oy oP? o A>T o
_ N;i(Pr + A;) Therefore \I"%* = WW:O and this is unique.
(Pr— P+ A;)3 . Finally, considgr the (cj:ase whétf = Pr. Then,U;(~;(P))
02U (v oU; (~; is a convex function an
Vi Vi w;(A) = max{0,U;(vi(Pr)) — APr}.
By assumptions (b) and (e?,zg;,# = 0 is continuous and it Ai"*" can be determined by
has at most one solution for <' P < Pp. This implies that ymaz  _ Ui(vi(Pr))
By Lemma 2 and the defiion o . L R
y e Therefore, there exists a unigag**. [ |
a sigmoidal-like function if 0 < P < Py, Each mobile can calculate\]*** as follows.
U; is a concave function if P? =0, an(y;D(P)) Ip—o it Po—0
a convex functio if P° = Pr, or - ’
n i T as _ BU@I';(P))\P:PM if 0 < P? < Pr
of its own power allocatiot®;. Hence,P? can be interpreted as ! and P* exists

an inflection point of a sigmoidal-like function. U"(Vlg—(TPT)), otherwise,



whereP* is a solution of the following equation.

viu(py - PPEOHE) o pecp ey

(i) The base station broadcasts its maximum power lifit,
to all mobiles.
(i) Each mobilei reports itsA7*** to the base station.
(iii) Let k=1.

When the price i9]***, P;(\) can have two values. One is zero (iv) The base station broadcasts priag,**.
and the other is positive. But, we take only a positive value of(v) Each mobilei reports its power requedt; (A}***) to the

P;(A) in the sequel.

base station.

In the next proposition, we show the relation between pricgvi) If k¥ =1 andP; (\}***) = Pr, select mobile 1 and stop,

and the requested power of mobile

Proposition 3: P;(\) is a non-increasing function of for

A > 0. Moreover, P;(\) is a decreasing function of for

AT <X < AT whereA™ " = max{\ > 0|P;(\) = Pr}.
Proof: By the definition of \***, P;(\) = 0 for

A > AT Now, suppose\; < Az < A% |If U;(v;(P))
is a convex function fo0 < P < Pr, then, by Lemma 3,
P;(\1) = Pi(\2) = Pr. If U;(~:(P)) is a concave func-
tion or a sigmoidal-like function fo0 < P < Pr, then,
by Lemma 3,U;(v;(P;(A1))) and U; (v:(P;(A2))) must be in
concave region, i.e.P;(A1) > PP and P;(\y) > P?. Let

0 ofi(P, )\2)‘
= oP P=P;(A2)
T gp  IP=Piw) 2
T ap  IP=Riw) 1
_ Oh(PA),
ap P:Pi(AQ)‘
This implies that
% > OforPiOSPSPi()\Q),

sinceU;(v;(P)) is a concave function foP? < P < P;(\z).
Therefore, if P;(A\2) < Pr, thenP;(A\;) > P;(\2) and if
PZ()\Q) :PT,thenPi()\l) = Pr. |

By the previous results, we summarize the properties
P;(\) as

discontinuous at = A\***, if U; is a convex
function or a sigmoidal-like function.

continuous, ifU; is a concave function.

Pi(\)is positive and a decreasing function of for
/\;mn S A S /\;naac_

zero for\ > A",

Prfor A < A,

else ifk = 1 and P, (A\]***) < Py, go to (ix),
else go to (vii).

k—1

(vii) If > Pj(xper) > Pr, select from mobile 1 to mobile
j=1
k ’ 1 and stop,

else go to (viii).

k—1

k
(viii) If > Pj(Aper) < Prand) P;(Ape®) > Pr, select

— —
fro]m mobile 1 to mobile: fjl and stop,
else go to (ix).
(iX) Letk=Fk+ 1. If k < M, goto (iv),
else select from mobile 1 to mobike— 1 and stop.

Therefore, the mobiles are selected in a descending order of
ez,

We now study the characteristics of the mobile selection
of our mobile selection algorithm. If the stop condition
in (vi) is satisfied, the total power is allocated to mobile
1 with the priceA7"**. In this case,} ", P;(A\fe)

Pr, since P (A\7"**) = Pr and P;(A\7"**) = 0 for j >

2. Thus, this is a social optimal allocation by Lemma 1.
By the stop condition in (vii),>5~} P;(A\p%F) < Pr and
Zf;ll P;(A*") > Pr. Furthermore,zlj;l1 P;(\) is con-
tinuous for A" < X < Aef. Therefore, we can find
X* such thaty" | Pj(\*) = Pr, Apar < A < Aper,
This implies thaty"}, P;(\*) = Pr, since Pj(\*) = 0
for 5 = k,---,M and, thus, the mobile selection is a so-
ofl optimal selection by Lemma 1. If the stop condition in
(viii) is satisfied, >, Pj(A7er) = S8 Pj(ApeT) > Pr
and Y| P (AT +€) = Y1 PP + €) < Py for

all ¢ > 0. Thus, in this case, we cannot find such that
>3, Pj(N) = Pr and the mobile selection may not be a so-
cial optimal selection. Moreover, we cannot find an equilibrium
solution of problemE). However, to obtain a good approxi-
mation of the solution of E) satisfying the constraint, we must
select mobiles from 1 t& — 1. For the selected mobiles, we
can find \* such thath;l1 P;j(A*) = Pp and\* < A7,
since Y-V Pj(Ape®) < Pr and Yi—} P;()) is continu-
ous forA < AP*¢*. If the stop condition in (ix) is satisfied,
S Pi(Aper) < Ppand P;()) for all j is continuous for

Using these properties d?;(\), we can select the mobiles toy < Amaz_Thus, we can find* such thaEMl P;j(\*) = Py
= . ) Jj= )

which positive power is allocated as follows.

Mobile selection algorithm
Suppose that there afg mobiles and\7"** > \J'** > ... >
)\R}az 3.

31f some mobiles have the samg'*®, they are ordered randomly.

A* < ATA* and, thus, the mobile selection is a social optimal
selection by Lemma 1.

Therefore, the mobile selection may not be a social optimal
selection. But, we will show that with our pricing scheme
and the partial-cooperative property of mobiles, the mobile
selection of our algorithm is optimal selection and, thus, we



call the selection thpartial-cooperative optimal selection station problen{E) can be rewritten as

Theorem 1:The mobile selection of the mobile selection al- ) Aol
gorithm is an optimal selection satisfying the power constraint (F) i Pr— Z Fi(A)
under the partial-cooperative property of mobiles and linear =1
pricing with the same unit price. , .,

Proof: We prove the result only for the case when the subject toz Pi(A) < Pr,

stop condition in (viii) is satisfied, since if any other stop con- =t

HTl 1 H 1 1 1 1 1 1 )\mzn S >\ S )\m,ama
dition is satisfied, the selection is a social optimal selection.
Suppose that mobiles 1 througlare selected. If > k — 1,
by the non-cooperative property, < A***. In this case,
Eizl P;(\) > Pr. Thus, the power constraint cannot be satis- Aprer  if the stop condition (vii) in the mobile se-
fied. Now consider the case wher: k& — 1. In this case, lection algorithm is satisfied,
if the stop condition (viii) or (ix) in the
mobile selection algorithm is satisfied,

where

)\min = 0)

l
max U; (v (F;
Zi=1 Pq,gPT{; i(vi(P)}
Aper.ifthe stop condition (vii) or (ix) in the mo-
A\ _ bile selection algorithm is satisfied,
mar Aper. if the stop condition (viii) in the mobile
selection algorithm is satisfied,

is equivalent to

k—1
Jmax Y Ui(n(P))}
>, PisPr o and each mobile, i = 1,2,---,k — 1 solves its problem
(D;). The next theorem tells us that the solution of problem

with additional constraintsP; = 0 fori =1+1,---,k —1. (F) and problem(D;) is a social optimal solution given that
But, by the way in which mobiles are selected, all mobiles fro@ partial-cooperative optimal selection and, thus, we call it the
1lfokz—_ 1 a][e allocated positive power at a global optimal powg{fartial-cooperative optimal power allocation
allocation for

o1 Theorem 2:If a power allocation, P*~'(\*) =
max {Z Ui(7:(P))}. (Pr(A*), Py(\%), -~ "P’“Tl.(/\*)) is a sqlution of_ problem
S lp<pr o (F) and problem(D;), it is a global optimal solution of the
- following optimization problem.
Thus,

k-1
L (G)  max Z Ui(7i(F))
max > Ui(n(P))} =

M P<Pr i k—1
1 subjecttoy P, < Py,
< max  {)» Ui(v(FP))} =t
Zf;LIPISPTZz:; RZ()? 7’:172a7k_1

Proof: From the way the base station selects mobilés,
and the case wheh < k — 1 cannot be optimal. There-which satisfiesy.;_ P(\*) = Pr always exists. Therefore,
fore, the selection of the mobile selection algorithm is an optyy Lemma 1,P*~1(\*) = (P, (\*), Pa(\*),- -, P_1(\*)) is
mal selection satisfying the power constraint under the partialglobal optimal solution for probletfG). [ ]
cooperative property of mobiles and linear pricing with the Therefore, if the partial-cooperative optimal selection is the
same unit price. B same as the social optimal selection, i.e., the stop condition in

(vi), (vii) or (ix) of the mobile selection algorithm is satisfied,
the partial-cooperative optimal power allocation is the same as
&he social optimal power allocation. Otherwise, i.e., the stop
condition in (viii) is satisfied, the partial-cooperative optimal
After the base station selects mobiles using the mobile selgower allocation could be a good approximation to the social
tion algorithm in the previous subsection, it allocates its poweptimal power allocation. Moreover, as the next theorem
to the selected mobiles. If the stop condition in (vi) in the mashows, the partial-cooperative optimal power allocation is
bile selection algorithm is satisfied, the power allocation alg&areto optimal.
rithm is not needed, since the total pow®y, must be allocated
to mobile1. Therefore, in this subsection, we assume that theDefinition 1: A power allocation vector, P* =
stop condition in (vii), (viii), or (ix) in the mobile selection al- (P}, P5,---, P;,;) is called a Pareto optimal power allo-
gorithm is satisfied. Suppose that mobiles=1,2,---,k—1 cation vector, if there is no other power allocation vector,
are selected and’a® > A9 > ... > A\ Then, the base P = (P, Py, -+, Py) such that;(v;(P)) > U;(vi(P*)), for

B. Power allocation for the partial-cooperative optimal mobil
selection



alli=1,2,---, M andU;(v;(P)) > U;j(;(P*)) for somej.  could be a good approximation to the social optimal power al-
location. However, the allocation could be unfair to some mo-
Theorem 3:The partial-cooperative optimal power allocabiles, since the algorithm gives higher priority to mobiles with
tion, P* = (Py, Py,---, P¢_,,0,---,0), is Pareto optimal. higher \]***. Therefore, with only partial-cooperative optimal
Proof:  Suppose that there exists a power allocatiopower allocation, QoS requirements for every mobile might not
P’ such thaty))", P! < Pr, Uy(vi(P))) > Ui(w(P;)), be satisfied.
i = 1,2,---,M and U;(v;(P)) > U;(v;(Pr)) for To alleviate this situation, we can introduce a minimum SIR
some j. First, assume that < j < k — 1. Then, requirementy™" for each mobile. Therefore, probleniB)
S U ((P) > SSF U (v (Pr)), which is contradic-  can be modified as

tion, since( Py, Py, ---, P¥_,) is a social optimal solution for o
problem(G). Now, assume that < j < M. By the pre- D
vious result,U; (v;(P!)) = U;(vi(Pf)), ¢ = 1,2,k =1 (D m,?XZIU’(%(R»
and P/ > 0. Then, by redistributing®; to mobile i, i = = v

1 e~
1,%:1. -,k — 1, we can ;E'D? a power aIIoce_moB such th.at subject toz P, < Py,
Yoo Ui(i(P) > >2,=1 Us(vi(P})), which is contradic- Py
tion, since( Py, Py, ---, P¥_,) is a social optimal solution for

, _ P, > pmin, i=1,2,---, M,
problem(G). Therefore, there exists no power allocation such te

asP’ and, thus P* is a Pareto optimal power allocation. B yhere ,(P/min)
The power allocation algorithm can be implemented in se '

eral ways. If we consider proble¥), we can use a simple

line search algorithm such as a bisect algorithm and a gol 1 scheduling. The optimization problef) is equivalent to

section algorithm [13]. If we consider problef&), we can the following problem

use a gradient based algorithm [4] or a penalty based algorithm '

[3], since problem(G) is equivalent to the following convex M _ _

programming problem. J) H}Ba/xz Ui (i (P 4 P))) — U (s (P™™))

i
i=1

= 4™ In this problem, we assume that
thie system is feasible, i.e}.\", P < Pp. The system
easibility can be maintained by the call admission control and

k-1

M

(H) m}gX; Ui(7i(F)) = H}QXZU{(%{(H))
i1

bj FHD<P - X
Su JeCt tozl i > Iy SUbjeCt IOZ Pz/ < PT _ ZPZmML _ P[}’
N i=1 i=1

P; = Pi(A),

P;ZOa i:172a"'7M7
i=1,2, k-1

7

whereP, (A7) > P?. Thus,U;(v:(P,)) is a concave function Where %i(F) = % and Ui(vi(F)) =
for P;(\"%*) < P; < Pr, which makes problerfH) a convex U;(vi(P/™" + P/)) —U;(v;(P/™™)). Problem(J) has the same
programming problem. structure as problerfB) and we can apply the mobile selection
In this subsection, we implement the power allocatioalgorithm and the power allocation algorithm in section 1l with
algorithm using a bisect algorithm. the utility function for mobilei, U/ and the power limi#;.. In
this case, the mobiles selected by the mobile selection algorithm
Power allocation algorithm are allocated additional power to the minimum power require-

Suppose that mobiles from 1 to- 1 are selected by the mobilement.
selection algorithm and letbe a small positive constant.
(i) Seta™ = A\pin, bV = A\ep andn = 1.

(i) The base station broadcasts the pri¢e) = “(”)gh(n). . . . . .
to all selected mobiles In this section, we study, for illustration, a special case of our

g . (n) method, i.e., when all mobiles are homogeneous (each mobile
(iii) Each mobile: reports its power request3 (A\\™)) to the o . ) .
; has the same utility functiorl/, and the same processing gain
base station. ; . . S
. k=1 p (3 (n)y N). We present this case because it provides some insight. We
(iv) If|>°—, Pi(A"™) — Pr| < e, stop, else go to (v). . : : ; .
75 ") p 0. seta(m D) — (M) pint1) — compare the p_art|e_1l-co_operat|ve optimal select_lon and the social
V) 1>y PB(A™)—Pr >0, seta =A = optimal selection in this case. Proofs are omitted for the sake
b, else set(" 1) = (M), p(nt1) = \(n), of brevity.
(Vi) m=n+1andgo to (ii). In the following proposition, we show the relation between
A; and\***, Recall that4; defined byl;/G; in (1) indicates
WITH THE MINIMUM SIR REQUIREMENT Proposition 4: Suppose that all mobiles have the same utility
From the previous section, we know that the partiafunctionU, the same processing gaiN, andA; < A;, then
cooperative optimal power allocation is Pareto optimal ang™*® > A7,

V. SPECIAL CASE SINGLE CLASS OF MOBILES




Proposition 4 tells us that, in the homogeneous mobile case,
mobiles are selected with ascending ordeAgby the partial-
cooperative mobile selection algorithm since mobiles are se- &s Bs Bs
lected with descending order &f*“* by the partial-cooperative
mobile selection algorithm. This implies that the mobile in bet-
ter environment has more chance to be selected by the partial-
cooperative optimal selection algorithm. ° ° °

Now, we study the social optimal selection. By the next
proposition, in the homogeneous mobile case, we can order
each mobile according toA;.

Proposition 5: Suppose that all mobiles have the same utility ° ° °
function U, the same processing gaify,, and 4; < A; <

- < Ay If P* = (P},---, P;,) is a social optimal power
allocation andA; < Aj, thenvy;(P;) > v;(FP}). _

Corollary 1: Suppose that all mobiles have the same utilit@'g' L
function U, the same processing gaify,, and 4; < A; <

Cellular network model.

. < Ay If P* = (Py,---, P},) is a social optimal power TABLE |
allocation andP; = 0, P; = 0 for all j such thatd; > Aj. PARAMETERS FOR THE SYSTEM
Corollary 1 implies that_, in the social optimal selection, mobiles Maximum power £r) 10
are selec’ge_d in ascending order4yf Processing gain) 128
_ Proposmon 4 and Colrollary 1 teII. us that the order of_mo— Distance loss exponent) 4
bile selection of the partllal-coqperatlve optlmal selection is the Variance of log-normal distributiorog) 3
same as that of the social optl_mal selectlo_n. The_refore, the_ set Length of the side of the cell 1000
of mobiles selected by the partial-cooperative optimal selection
is a subset of the set of mobiles selected by the social optimal
selection and the relation between mobiles in each set is as fol-, )
lows. which represents shadowing [14]. The parameters for the sys-
tem are summarized in Table I. For the simulation, we use a sig-
Aj < AjforijjeV,jeZandi ¢ Z, moid utility function. The sigmoid utility function is expressed

whereV is the set of mobiles selected by the social optim§1S

selection and” is the set of mobiles selected by the partial- Ul) = o 1
cooperative optimal selection. This implies that the partial- Vo= 14 e—aly=b)
cooperative optimal selection excludes the mobiles which ob- . . ) o _
tain relatively low utility by the social optimal selection and'Ve normalize the sigmoid utility function &$(0) = 0 and
thus, the difference between the system utilities of them §&(cc) = 1 by settinge = £5— andd = 7. The property

. . g -e . . .
small. In the next section, we provide numerical examples & the sigmoid utility function is well studied in [9].
show this difference with simulation. In Tables Il — IV, we show the total system utilities for each

power allocation and the ratio, varying the values:pb, and
V1. THE COMPARISON OF THE PARTIALCOOPERATIVE N. For each case, we assume that the mobiles are located inde-
OPTIMAL POWER ALLOCATION AND THE SOCIAL OPTIMAL pendently according to uniform distributions within the cell and
POWER ALLOCATION FOR THE SINGLE CLASS CASE run the simulationd0* times. The results tells us that the sys-
In this section, we compare the partial-cooperative optimtzﬁm utility achieved by the partial-cooperative optimal power

power allocation and the social optimal power allocation for tHa!0cation is quite close to that achieved by the social optimal

single class case by the computer simulation. Each mobileP@Wwer allocation.

assumed be homogeneous, which has the same utility function

and the same processing gain. We model the cellular network VII. CONCLUSIONS

with 9 square cells, as shown in Fig. 1. We assume that the basg this paper, we focus on downlink communication in wire-
station is located at the center of each cell and each base sta@@R systems. The downlink is expected to support higher band-
has the same maximum power limit;. We focus on the cell width applications than the uplink and multi-class services.

—db. (9)

at the center of the syste_m. _ o Considering these service requirements, we have proposed a
We model the path gain from a base statido a mobilej, downlink power allocation algorithm for multi-class CDMA
G ; as follows. wireless networks. We adopted a utility based framework and
K. . tried to maximize the total system utility. The proposed algo-
1,7 . . . . . . .
Giy; = g rithm can be implemented in a distributed way using a partial-
J cooperativeM -person power allocation game with dynamic

whered; ; is the distance from the base statioto mobilej, pricing. It provides a partial-cooperative optimal power allo-
« is a distance loss exponent afd ; is the log-normally dis- cation which is Pareto optimal and a good approximation of the
tributed random variable with mean 0 and variamce(dB), social optimal power allocation.



TABLE I
COMPARISON OF UTILITY FOR THE HOMOGENEOUS CASI€b = 7(dB),
N =64, M = 10).

| o JO5] 1 ] 2 | 4| 8 |
Partial 5.967| 7.00 | 7.756| 8.256 | 8.539
Social 6.012| 7.093 | 7.885| 8.392 | 8.661

Partial/Social|| 0.992 | 0.987| 0.984 | 0.984 | 0.986

TABLE Il
COMPARISON OF UTILITY FOR THE HOMOGENEOUS CASfa = 3, N = 64,
M = 10).

L odB) | 8 [ 5 [ 7 | 9 | 11|
Partial 9.887| 9.391 | 8.072| 6.302 | 4.697
Social 9.907| 9.475| 8.213| 6.459 | 4.803

Partial/Social|| 0.998| 0.991| 0.983| 0.976 | 0.978

TABLE IV

COMPARISON OF UTILITY FOR THE HOMOGENEOUS CASI&L =3,
b=17(dB), M = 10).

[ N [ 8 [ 16 [ 32 | 64 | 128 |
Partial || 1.987 ] 2.982] 5.040] 8.065] 9.884
Social || 1.995 2.991 | 5.253| 8.210| 9.913

Partial/Social|| 0.996 | 0.997| 0.959 | 0.982 | 0.997
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