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Abstract—We consider the problem of throughput-optimal topology. This has spurred recent interest in developingsr
cross-layer design of wireless networks. We propose a joint [ayer optimization algorithms (see, for example, [29], |17
congestion control and scheduling algorithm that achievesa [16], [26], [5])
fraction d;(G) of the capacity region, whered;(G) depends on Ch ) : L
certain structural properties of the underlying connectivity graph ~~_Motivated by the works on fair resource allocation in
G of the wireless network and also on the type of interference Wireline networks [8], [23], [13], [2], [30], researcherse
constraints. For a wide range of wireless networksd;(G) can also incorporated congestion control into the cross-layei

be upper bounded by a constant, independent of the number of mjzation framework [3], [10], [9], [15], [28], [25], [31],19].
nodes in the network. The scheduling element of our algorith 1o ¢ongestion control component controls the rates athwhic

is the maximal scheduling policy. Although maximal scheduhg L .
policy has been considered in many of the previous works, USErs inject data into the network so as to ensure that thiey fa

the difficulties that arise in implementing it in a distributed Within the capacity region of the network.
fashion in the presence of interference have not been dealtitl The most important component of any cross-layer optimiza-
previously. In this paper, we propose two novel randomized tjon algorithm is the scheduler that needs to solve a very

distributed algorithms for implementing the maximal scheduling difficult alobal optimization problem of the form:
policy under the 1-hop and 2-hop interference models. 9 P P )

maximize »  piry (1)
I. INTRODUCTION et
Wireless networks have become a ubiquitous part of all subject tor € A

modern day communication systems. Unlike wireline ne€fihare » denotes the set of wireless links;is the vector of
works, where bandwidth and other resources are pIentn‘Hhk ratesr, | € £; pi, | € L, is the congestion price or

wireless networks are highly resource constrained, thus Lﬂbssibly some function of the backlog at litkand A is the
derscoring the need for efficient utilization of the Wireﬂescapacity region of the network

resources. A seminal contribution in this dlrec_tlon was ead . main difficulty in solving the above optimization prob-
in [27], where the authors characterized tagacity regiorof h

ined . h irel Tem is that the capacity regioA depends on the complete
constrained queuing systems, such as a wireless netwoey. etwork topology and, in general, has no simple representat

also developed a queue length based scheduling scheme thf?1t terms of the power constraints at the individual links or

througrlputf-olf)tlr_rtwrz?_ll.?h, It stab|l_|tzes the neft\f[\;]ork ptrowdked thenodes. The above optimization problem is, in general, NP-
user rates fall within the capacity region of the networkeveh Complete and Non-Approximabie

the capacity region is defined to be the set of user arrivakrat
under which the network is stable (the queue lengths at ell tQases of interest, e.g., with simplified interference medel

node?kare pOllj.nded)' K h Il links h fixed and no power control. The interference models studied in
U.n.' € wireline ngtwor S, where all finks have TIXed Cayyg jiterature include the node-exclusive interferencedeho
pacities, the capacity of a wireless link varies with chdnn 1, [11, [4], [20], [3], [27], [26], [19] and the IEEE 802.11
variations due to f_ading; changes ir_1 power allocation, | pe interference model [28], [24], [6]. Both these models a
schedulmg, or routing; ?”d ch_anges In _network topolqu., el;specific instances of the class &f-hop interference models
Th|3_ results in the capacity region ofa ereles_s net_workrh@v studied in our previous work [21], [22]. An interference nebd

a joint dependence on routing, power allocation, link Sdhedis termed aK-hop interference model if the only constraint

g, and channel variations. In order to maximize the Ca?ac\mposed on the set of simultaneously active links is thatvoo t
region of the network, one must therefore develop algorithm

that can jointly op'gimize rO_Uting’ link sched_u_ling, and @wW  p problem is said to be Non-Approximable if it does not admily a
control under possibly varying channel conditions and &tw constant factor polynomial time approximation algorithm.

The above problem has been studied under several special



links from the set should be withik' hops of each other. By Each user of type:, brings with it a file of sizel /u to be
increasingk’, one can model more and more stringent interfetransferred over the network. We assume that all users of any
ence constraints. The node-exclusive interference madeld( given type send their data over the same, loop-free route. Th
for Bluetooth and FH-CDMA networks [14], [1], [7]) and extension to the multi-route case is straightforward; wierre
IEEE 802.11 type interference model (used for IEEE 802.1he reader to [17], [16], [11], [26] for related results. Tinger
networks [28], [6]) correspond tb-hop and2-hop interference routes are stored in an incidence matix!], where H} = 1
models, respectively. if link [ belongs to the route of typk users; and) otherwise.
The optimal scheduling problem is polynomial time solvable
under thel-hop interference model, however, it is NP-Hard The interference constraints are modeled using a contentio
and Non-Approximable under ak-hop interference models matrix [C;;]; jer. More precisely, linki is said to interfere
for K > 1 (see [21]). In [22], we showed that the optimaWith link j if C;; = 1; no two links which interfere can be
scheduling problem can be approximated within a consta#ftheduled at the same time. All diagonal entriesCbfare
factor under allK-hop interference models for wireless netset to 1. Time is divided into slots of unit duration. Link
works whose connectivity graph is a geometric graph. Similgan transmit at rate; during a slot if no other interfering
results can be derived for disk graphs afds)-civilized link is scheduled to transmit during the same slot. Such an
graphs. These results are quite encouraging as a widewarigterference model has been widely used in the literature
of wireless networks can be modeled using the above familigse, for example, [4]), and the interference models used in
of graphs. many other works [21], [22], [10], [9], [11], [4], [28], [3]an
In this paper, we propose a joint congestion control arffte obtained by imposing some additional constraints on the
scheduling algorithm that provides provable throughputrgu contention matrix. Unless otherwise stated, the only cairst
antees under all contention matrix based interference made impose oriC;;] in the paper is that it should be symmetric;
els. In particu|ar’ for wireless networks whose Connemivii.e., link 7 interferes with |Inkj if and only if link J interferes
graph is a geometric graph the proposed algorithm achiew#h link i.
a constant fraction of the capacity region under &ihop . )
interference models. The scheduling element of our algorit L8t A = (A1, A2, ..., Ax) be the vector of user arrival rates.
is the maximal scheduling policy, which has been studied k@t 72#(t) and @(t) denote the number of type users and
many of the previous works [4], [28], [10]. We also providé&lueue backlog at link in the network at time, respgctlvely.
randomized distributed algorithms for implementing thexma”S in [10], [17], we say that the network is stable if
imal scheduling policy undet-hop and2-hop interference . 1 [t
models. limsup 7 /0 LSt mes S ep @i>n}dt =0 (2)
The rest of the paper is organized as follows. We describe ) i i i
our system model and discuss some related work in Section@? Y — ©°- The capacity region of the network is defined to

An upper bound on the capacity region is derived in Sectiﬁ'? the set of user arrival rate vectors for which the netwark ¢
lll. The joint congestion control and scheduling algorith e stabilized by some scheduling policy. The capacity regio

is developed in Section IV, and a lower bound on its pep_faconstramed queuing system, such as a wireless netigork,

formance is derived. Randomized distributed algorithms feﬁvell_ characterized in [27]. For our model, the capacity oegi
implementing the maximal scheduling policy undeop and 'S 9iven by the set

2-hop interference models are proposed in Section V. Finally { K
Q =

X lz H’iA’“] € 00(5)}, (3)
leE

concluding remarks are presented in Section VI. ke
kCl
k=1

Il. SYSTEM MODEL AND RELATED WORK :
whereCo(S) represents the convex hull of all link schedufes

~We consider a selt” of nodes, labeled, 2, ..., |V], commu-  {ha¢ satisfy the constraints imposed by our interferencdeho
nicating with each other using wireless means. We say that

link (u,v) joining nodewu to nodewv exists if nodeu can A scheduling scheme is said to keroughput-optimal
successfully transmit to node provided no other node in theif it stabilizes the network for all user arrival rate veator
network transmits at the same time. The set of links so form@gthin Q. In [27], the authors proposed a throughput-optimal
is denoted byE. Note that the existence of a link betweemueue length based scheduling scheme. However, their schem
any two nodes depends on many factors (e.g., noise variafgguires centralized computation and is computationatly e
at the receiving node, coding and modulation scheme usedgshsive (NP-Hard) in several cases of interest. Since it is
the nodes). Although, we do not consider channel variatiogfficult to do centralized computation in ad hoc settings, a
in this paper, they can easily be incorporated into our modebnsiderable amount of effort has been put forth in devising
We refer the interested reader to [17], [16], [11] for rethtesimple distributed schemes that can achieve a certairidract
results. of the capacity region.

We considerK types of users, labeletl 2, ..., K, sending
data over the network. We assume that typeisers arrive A scheduling scheme that has been widely studied in this
into the network according to a Poisson process with kate context is the so-calledhaximal scheduling policy10], [4],



[22], [28]'. In [10] and [28], the performance of maximal Definition 4: The interference degreg (G) of graphG =
scheduling policy is studied under a joint congestion aantr(V, E) is the maximum interference degree across its con-
and scheduling framework with multi-hop traffic, anehop stituent links, i.e.d;(G) = max.cg d;(e).

and 2-hop interference models, respectively. In [4] and [22])i/e are now ready to upper bound the capacity region.

a slightly more restrictive setting with single-hop traféad Theorem 1:The capacity regionQ specified by (3)
no congestion control is considered under the contention M@nsists of user arrival rate vectorss that satisfy

trix bas_ed interference model ard-hop interference model, Zle](e) ZK H: Mg < dy(e) for all e € B.
respectively.

k=1 ppe ] ]
Although maximal scheduling policy has been considered Proof: Let S be a link schedule that activates the same

: . e . .set of non-interfering linksAs during every slot. Consider a
in many of the previous works, the difficulties that arise in ; . . ; ; .
. Lo E o S link e € E. Since the set of linksds is non-interfering, it
implementing it in a distributed fashion in the presence o . ; ;
: . . contains at mosti;(e) links from I(e). Thus, the link rate
interference have not been dealt with previously. Next, we

highlight the main contributions of this paper. Vectorsfziiez underAs must satisfy

« A joint congestion control and scheduling algorithm Z n <ds(e) forall e € E. 4)
based on maximal scheduling policy is proposed under 1e1e)

? multl—hopds<|att|ng .W'ﬂ;] conttentlorr\]_matrle ba;ed Nt€'Since this result holds for all link schedules that satigfg t
erence model and is shown to achieve a fractip(t7) interference constraints, it follows that d#asiblelink rate

82 t?eeecgf 3?32;;631'0”&0\,;22:&;\/(5) 'fathe ér;tjrfseer;rilgre: vectors under the contention matrix based interferenceeiod
9 ying y gragh ( must satisfy the constraints given in (4). The result now

I11). These results extend earlier results in [4], which sver,

: ) . . follows by noting that a user arrival rate vectarinduces
derived .under a single-hop (MAC layer) setting with nQ, average load OZkK_l H! A /pi on link 7. m
congestion control. =

. The performance of the proposed algorithm is show he following result is a direct consequence of Theorem 1 and

to be at most a constant factor from the optimal und&?® fact thatd; (G) = maxeer C_ll(e)' -
all K-hop interference models, provided the underlying €orollary 1: Any user arrival rate vectorA that be-
connectivity graphG is a geometric graph. These result€2ngs o t}t‘e }cl?facny regiofi) specified by (3) satisfies
extend our earlier results in [22]. Doler(e) ket S <di(G) foralle e E.

« Two randomized distributed algorithms are proposed for
implementing the maximal scheduling policy under IV. JOINT CONGESTIONCONTROL AND SCHEDULING FOR
hop anc-hop interference models. Both these algorithms™ THROUGHPUTGUARANTEES
fully account for the link interferences in a wireless
setting and requir® (A log? |V|) round; of compgtation A. The Algorithm
and local message exchange, respectively, wheiethe

maximum node degree in the network. We now propose a joint congestion control and scheduling

IIl. AN UPPER BOUND ON THE CAPACITY REGION @algorithm that is guaranteed to achieve a fractip((+) of the
' capacity region under any contention matrix based intenfes

In this section, we derive an upper bound on the capaciyodel. The algorithm maintaireongestion prices;(1), [ € E

region under a contention matrix based interference modg|. ciimate the level of congestion in the network at time
The upper bound depends on timéerference degreef the e congestion control and scheduling are performed using

network graph, which we define more formally next (see al§flgge congestion prices. Time is divided into slots of unit

[4] and [22]). duration, and both congestion prices and user rates ard¢agpda

Definition 1: The interference sef(c) of link ¢ is the set 5 the beginning of each slot. The detailed description ef th
of links that interfere with linke, i.e., algorithm follows:

Ie)={le E:C, =1}. Algorithm:CCS
Dgfi.nition 2: A set of I_inksA i; said to be.a nor_l—interfering . Congestion price updatéfhe congestion prices are up-
set if it does not contain any interfering links, i.e., forcha dated as follows:
pair of linksu,v € A with u # v, we haveC,, = 0. N
Definition 3: The interference degreg (¢) of link ¢ is the at+1) = (a@)+aAq(t) ", (5)
maximum number of links belonging to its interference set \here
that do not interfere with each other, i.e., x e (D)
1 ng Tk
dr(e) = . max ) |Al. Aq(t) = Z [Z H’Jv/t C]. dt —ljesw | »
ACI(e):A IS a non-interfering set JeI(l) Lk=1

] ] ) o and S(t) denotes the set of links scheduled to transmit
TNote that the terminologies used in these works and somerndigiails

of the schemes differ slightly from each other, but the mdéeaiis essentially du”ng the slot.
the same. o User rate update:The data rate of typé- users are



updated as follows: Using some algebraic manipulations, it can be shown that

. E [(Aq(t)*7(t), 4(1)] < |B|
=7 , My, (6) t+1 ) )
Yiepa(t+1) Zje](l) C_Jk + CLCk / E [nk(t)xk )7, J(t)] dt, (8)
t
where M, is the maximum data rate of tygeusers.  \here
o Transmission schedulingThe link transmissions are

zx(t + 1) = min

L3 j j
scheduled in accordance with theaximal scheduling Ci :%agz Z % andCk = _max KZ Z %
policy, i.e., subset of linksM chosen for transmission k=1jerq) 7 S leBjerqy
during any slot satisfies that for each liblc E, either  combining (7) and (8), we get
I(l)n M # ® or g < 1. For the sake of concreteness,
we will assume that for link to be scheduled during slot  , . @C:Cx i/tHE 2 (02 (0, (0] dt
t, its congestion price;(¢) must be greater thah =2 P R 4

CCS is similar in spirit to the joint congestion control +%|E|_qu(t)1{ql(t)>l}+ 9)
and scheduling algorithm proposed in [10] under the node- lek K s e

exclusive interference model. However, our algorithm g Hy LN
icantly more general and works for all content?on mat?if(]dclhs Z a() Z Z o /t B lrw D) @) 7(0), a(0)] di-

) ’ - S leE JEI() k=1
interference models, including the node-exclusive irtenfice

model. Some salient features of our algorithm are wor

noting: (i) the congestion price of a link depends not only

on its own backlog, but also on that of the links belonging to X BAH?
9 NGOy < S gy S 2l

ollowing the line of analysis in [10] used to prove Theorem
, it can be shown that

its interference set; (ii) the data rate of typaisers depends v HEC; (10)
. . . . I€eE jeI() k=1
on the congestion prices of all those links that either bglon K g et
to the route of types users or interfere with such a link. It > oalt) Y > ﬂ/ E [ni (t)ze(8)]7i(2), 4(¢)] di
is this proper setting of the user rates and congestion grice icw jerm = G e
that allows CCS to achieve a fractiah (G) of the capacity K 41
region, as stated in the following theorem: —(B-1) Z E [ng(4)|7(2), q#)] dt + Ci
Theorem 2:If the stepsizex is chosen to be small enough, X« Rt
CCS stabilizes the network for all user arrival rate vectbes Y /t+1 B [l (0l 0)l7(0), 4(0)] dt
belong t0Q°/d;(G), whereQ° denotes the interior of sé?. = Mk J, ’
Proof: The main difficulty in the proof is to construct opserve that
an appropriate Lyapunov function that exhibits the require
negative drift provided the user arrival rate vector bebiy > a®lgws1y > Y alt) - |El. (11)
0°/d;(G). We shall use the Lyapunov fgnctidﬁ(ﬁ,q) = leE lek
V(i) + Vy(q), where V,,(71) := i, 5% and V,(g) == Also, for all A € Q°/d;(G), we have
i. Let K J
2ies 2o . o S 2 goraniep. (12)
AV, = E [Vo(@t + 1)) — Vo (@0)I7(t), (1)) r=as
and Using (9)-(12), it follows that given any > 0 we can choose

AV, := E [V, (il(t + 1)) — Vo ((1) |7 (¢), §(1)] . 8 >1anda > 0 such that

1
Since all scheduled linksmust have a congestion prige> 1, AV, + AV, < Cy —¢ qu(t) N /t+ E [nk(0)|(t), q(0)] dt |
the projection operator in (5) is not required provided< 1. t

Now, I€eE .
1 whereCy = Cy + (1 + %) |E|. The result follows using
AVy =3 5= [qf(t+1) - ¢ ()ii(t), 4(t)] Theorem2 in [17] and observing tha@,;(t) = ¢(t)/a for
leE le E. ]
=S E laW)Aqt) + S(Aq )[R (), 4t
ZEZE [q[( Jaa) 2( @(6))" 1), 4t )} Theorem 1 lower bounds the performance of CCS in arbitrary

wireless networks. We now consider wireless networks whose
K i e+l connectivity graph is a geometric graph and analyze the
<> a) Y Zc—k/ E [ () (t)|7i(t), 4(t)] di performance of CCS in such networks. The motivation for
leB  geryk=1 7 7t this is that if all transmissions in the network employ the
— qu(t)l{ql<t)>1} + %E [(Aqu()?|7(t), q(t)] - (7) same power level and the statistical properties of the noise
leE are same at each node, then the connectivity graph of the



network is indeed a geometric graph. We shall further retstria wireline setting. In a wireline setting, however, therends
our attention toK -hop interference models, so as to enforcterference between a pair of links scheduled at the same
some structure on the interference constraints. time, and therefore the rate assigned to a flow is only a

Proposition 1: Consider a wireless network whose underlyfunction of the congestion prices at the links on its route.
ing connectivity graph is a geometric graph. If the intezfere In view of the results in [12], [3], one would expect that the
constraints correspond tafé-hop interference model for somestability properties of CCS should be preserved even when
K > 1 and the stepsize is chosen to be small enough, therthe user rate updates are performed at a much slower time
CCS stabilizes the network for all user arrival rate vectoscale as compared to the congestion price updates and also
belonging toQ°/2 for K = 1 andQ° | K/2]° /(2K +1)? for  to a asynchronous setting. This issue will be addressedrin ou
K > 2. future work.

Proof: It is shown in [22] that if the underlying connec- An important issue that remains to be addressed is that

tivity graph is a geometric graph and interference constsai of scheduling the link transmissions. How can one generate
correspond to d’-hop interference model, thefy(G) satis- a schedule with the properties listed in Section IV-A in a

fies: distributed fashion? Generating such a schedule might be
2 for K =1 computationally too expensive under general contentianixa

di(G)<{ (K +1)? for K > 2 based interference models. In the next section, we provide

LK/2]? B two randomized distributed algorithms that compute such a

Substituting the above in Theorem 1 yields the desired resgichedule in©(Alog? |V|) rounds of computation and local
m Mmessage exchange undenop an-hop interference models,
Similar constant factor performance bounds can be shownvtbere A denotes the maximum node degree in the network.

hold for disk graphs andr, s)-civilized graphs. V. RANDOMIZED DISTRIBUTED ALGORITHMS FOR

B. Implementation Issues and Extensions MAXIMAL SCHEDULING PoLicy

In this section, we identify some implementation issues Although, the maximal scheduling policy has been con-
concerning CCS and discuss how some of them can be dé&idered in many of the previous works [10], [4], [22], the
with. difficulties that arise in implementing it in a distributeashion

The congestion price update in (5) requires each link tcktrat the presence of interference have not previously beelt dea
the changes in the backlogs at all its interfering links.sThivith. We now provide two randomized distributed algorithms
can be done with the help of local message exchanges, whié@eimplementing the maximal scheduling policy under
each link floods the relevant information (e.g., whether ar nhop and2-hop interference models. Both these algorithms are
it was scheduled to transmit in the previous slot) withinealo inspired by a classical algorithm for constructing an maatim
neighborhood that includes all its interfering links. Unéa independent set in [18].
arbitrary contention matrix based interference model, iclv ~ We start with describing our distributed computing model.
a pair of links can interfere with each other even if they ards in [6] and other related works, we assumsyachronous
several hops apart, the congestion price update would in€d¢ssage passing distributed computing mogtélch is a vari-

a considerable amount of overhead. In practice, however, @fion of the standard models used in the distributed comguti
scope of interference is limited to a few hops (usuallgr 2). literature. The main point of difference is the broadcastrea

In such settings, the overhead due to congestion price epdaf the model which is typical of wireless networks. More
is expected to be small. A detailed discussion of this issue Rrecisely, we model the distributed computing architeetur
the context of specific interference models can be found @ @ graph with undirected edges (we assume bidirectional
Section V. links between the nodes as specified in thieop and2-hop

Further, the congestion price update assumes that a user i€rference models). Each node has a unique ID. The clocks
update is instantaneously applied at all links on its rolrte. at all the nodes are synchronized and the communicatios take
practice, however, there is some amount of time required f#ce in rounds, each occupying a slot. A packet transnmissio
signal such a change to all links on the route. Moreover, ffPm nodeu is heard by all nodes in its neighborhood, unless
practice’ user clocks m|ght not be perfecﬂy Synchroniz'ﬁu Wthe nodewv itself transmits or some other neighbor of node
each other. Thus, the user rate updates might be asynctongi@lso transmits. It is this interference between simultaseo
Both these issues can be dealt with following the line dfansmissions that makes it difficult to implement a maximal
analysis in [3]. In [3], the authors consider such issueian tscheduling policy in wireless networks.
context of a joint congestion control and scheduling atiponi ~ We now define some terminology that will be used in the
under the node-exclusive interference model. sequel:

The rate update for typk-users requires the knowledge « wwv: An undirected link between nodesandw.
of congestion prices at all those links that either belong to. N(u): The set of neighbors of node i.e., nodes € V
their route or interfere with such a link. Note that this kind  such thatuv € E.
of behavior is common to all end-to-end congestion control e N©(u): The set of nodes € N(u) such thaty, ., > 1.
protocols, like, for example, TCP and can be seen even undes d(u): max,ey ) |N(v)|.



UvGN(u)N(U)'

o dS(u): max,en, () | N5 (V)]. 4. end it there exists

A. Maximal Scheduling under 1-Hop Interference Model

In this section, we propose a randomized distributed al- of S(1).
gorithm, namely MaxScheduleOneHop, that implements th
maximal scheduling policy under thé-hop interference

dQ(u L max,ene () [IN9(0). UpdatePriceqG, q)
Na(

)
u): The set of two hop neighbors of nodg i.e., 1. for eachv ¢ V do

N& (u): The set of undirected Iinkmu € E such that 2. f there exists uv € 5(t)
€ N(u) andmax(q (u w)s Qo)) > 3. ReliablyBroadcast(v, matched tou);

Compute the new congestion prices of your
5. outgoing links based on the local knowledge

[}

6. end for each

model. MaxScheduleOneHop uses three subroutines, nam@ptatePrices allows each node to compute the congestion
UpdatePrices, CompAndDistNeighborhoods, and UpdateAngtices of its outgoing links based on the local knowledge of
DistNeighborhoods. As the names suggest, these schedelesi#e schedulé&(t). More precisely, each node that was involved

used
1.

for the following purpose: in a reception or transmission during slgtbroadcasts this
UpdatePrices: As required by the CCS, the congestiolinformation to its neighbors using subroutine Reliably&ito
prices of the links should be updated at every slot. Thiast, which will be explained in a short while. Using this
subroutine allows each node in the network to updabeformation and the local knowledge of user routes and data
the congestion prices of its outgoing links. rates each node computes the current congestion pricelfor al
CompAndDistNeighborhoods: This subroutine allows its outgoing links. Indeed, under thehop interference model,
each node to calculateN?(v) andd®(v) at every slot we have

based on current congestion prices.

UpdateAndDistNeighborhoods: This subroutine al- Aqu,)(t Z AQu,w) + Z AQw,w);

lows each node to remove those nodes from its current wEN (u) weN(v)\u

neighborhood that were scheduled to transmit or receiwéere

during the current phase of MaxScheduleOneHop. More K 1

precisely, each node computd&? (v) and d?(v) con- AQ (u,w) = ZHIE“’”) {/ me®)zelt) 4, L, w)es(t)]
sidering only those nodes that have not been scheduled ¢ “luw)

to transmit or receive as yet. (w,u) / e(®a(t)
We are now ready to describe MaxSceduleOneHop: + ZH { Clw) dt = lwwes®
MaxScheduleOneHopG, q(t)) Nodew can compute\g, ,, (t) for each of its outgoing links
1. q(t+1) :=UpdatePrices(, q(t)); (u,v), provided it has the local knowledge of user routes and
; ; . data rates (we assume that this knowledge is maintained by
2. CompAndDistNeighborhoods t+1)); X ) )
P _ g Gralt+1)) the congestion control component) and knows which of its
3. So(t+1):=¢ andb(u) = —1 for all u € V. neighboring nodes were scheduled during slofThe later
4. for p=1to [Cplog|V|] do information is provided to it by each of its neighboring node
5 Spt+1):=8,_1(t+1); v using the subroutine ReliablyBroadcast that is described
6. fori=1toCylog|V]|do below.
Each nodeu with b(u) = -1 chooses to iabl .
transmit with probability 77— Upon ReliablyBroadcast(v, data)
7. deciding to transmit, it chooses a nodeat 1. for k=1to [CxAlog|V|] do
random from\'? (u) and sends a RTS message Broadcastdata with probability 757 to your
to nodev.
) . neighbors.
If the RTS packet is successfully received py 3. end for
8. nodew, it responds with a CTS message and
setsb(v) = 1. Next, we describe the subroutine CompAndDistNeighbor-
9 Upon receiving the CTS packet, nodesets| N00ds.
' blu) =1. Sp(t +1) :=Sp(t + 1) Uuw. ; -
10, end for CompAndDistNeighborhoodgG, q)
11. UpdateAndDistNeighborhoods(, S, (t + 1. for eachv € V' do
1),S,(t+1)); 2. ComputeN@(v).
12. end for 3. ReliablyBroadcastv, |N?(v)|);

The subroutines used by MaxScheduleOneHop will be de
scribed next, beginning with UpdatePrices,. 5. end for each

4.  Computed®(v).




CompAndDistNeighborhoods allows each node to computedew during any of the[Cx Alog|V]] iterations satisfies
N€9(v) and d?(v). The computation ofN¥(v) is straight-

_ CrgAlog |V
forward. Once this is done, each nodeuses the subroutine P(u,v) < (1 e ) sV
ReliablyBroadcast to broadcast?(v) to its neighbors; and d(u) +1
based on this knowledge each nageomputesi®(v). Next, < OVl 1
we describe the subroutine UpdateAndDistNeighborhoods. - - |V
provided A > 1 and Cx > 8e. Now, summing over all
UpdateAndDistNeighborhoodsG, Sy, Ser) possible node paitsand using the union bound, we obtain
1. for eachv € V do the desired result. ]
2. if there existsuv € Su\Sy UIe\/(\/)enzé\|r_|eor|;)(:nw ready to analyze the performance of MaxSched
3 ReliablyBroadcast(v, matched tou); Proposition 2: If Cp > 1, C; > 6¢2, andCx > 8e, then
4 end if there exists with probability no smaller tharl — % the set of edges
5 Compute N9 (v) considering only those nodes returned by MaxScheduleOneHop satisfies the constraints im
" that are currently unmatched. posed by the maximal scheduling policy.
6. ReliablyBroadcastv, |N?(v)|); Proof: Using Lemma 1, it follows that ilCx > 8 the
7 Computed® (v). prices and _neigh.borhoods com.puted using UpdatePricg; and
8. end for each CompAndDistNeighborhoods will be correct with probalyilit
‘ at leastl — 2. Observe that UpdateAndDistNeighborhoods is

UpdateAndDistNeighborhoods allows each node to updaté®dCr log|V| times by MaxScheduleOneHop and each time

N@(v) and d9(v) at the end of each phase in MaxSchedt uses ReliablyBraodcast twice to update and dis"[rit‘mte th
QCP log \4 >

uleOneHop. If a node was matched during the current pha8§ighborhoods. Thus, with probability at least =5

it broadcasts this information to its neighbors using the-sul — 7 for large enoughV|, the neighborhoods computed
routine ReliablyBroadcast. With this knowledge, each noding UpdateAndDistNeighborhoods will be correct eactetim
v updatesN? (v) by deleting those neighboring nodes whiclit is used. Next, we restrict our attention to those cases in
were matched during the current phase. Once this is donle, eéfich all of the above subroutines work correctly. .
node v uses the subroutine ReliablyBroadcast to broadce?nsﬁtacons'der the execution of MaxScheduleOneHop during

; . ] . ration: of phasep under such a case. Lét, denote the
|IN?(v)| to its neighbors; and based on this knowledge ea ximum node degree in the subgra@h of ¢ obtained by

nodev updatesi?(v). removing all nodes i that have already been matched at the
We now show that if the constant§p, C;, and Cx t_)eglnnlng of phase along with their outgoing and incoming

X . 0
are appropriately chosen the algorithm MaxScheduIeOneH%s' Now, consider a node with |N'*(u)| > A,/2, where

) . L (u) is the neighborhood of node in G,. The link (u,v)
returns a subset of links that satisfies the constraints $egbo will be added taS, during iterationi providzéd noda: decides

by the maximal scheduling policy with high probability. Weg transmit during iteration and all nodes inV (u) U N (v)\u
start by analyzing the performance of ReliablyBroadcast: decide not to transmit. Arguing on similar lines as in thegfro

Lemma 1:If every node uses the subroutine RelianyBroaoQf Lemma 1, the probability’; (u, v) is greater than

cast andC'x > 8e, then with probability at least — IV% each 1 1 IV ()] 1 IN(v)I-1
node will be able to send its “data” to all its neighbors. d@(u) + 1 ( ~IN(w)| + 1) < [N(v)| + 1)

Proof: Consider a pair of neighboring nodesandv in > e?
the network. During iteratiok, nodeu broadcasts its data with T d9%u) + 1

a probability of1/(d(u)+1). Nodev will successfully receive  since the events corresponding to nadéeing matched to
this data if it decides not to transmit during iteratib@nd N0 nodew or w with v # w are disjoint, the probabilit; (v) that
node belonging taV (v)\u transmits during iteratiot. Since npodey is matched during iterationequalsy”, . ) Pi(u, v)
each nodev € N (v)Uv satisfiesi(w) > |N(v)|, each of these d satisfiesp. S NOwe? o 2y g NQ S
nodes transmits with probability no greater tHaif| N (v)|+1) 2n¢ Saustie i(u) 2 " 2 €77/2 since [N¥(u)] =
during iterationk. Thus, node successfully receives the datar/2 @nd A, = max,cy dQ(”): The probability that node
from nodeu during iterationk with a probability;, (u, v) that ¢ IS not matched during phageis therefore no greater than

o _2\Crlog|V| . .
satisfies 1-— ET) < ﬁ provided C; > 6¢2. Using the
1 1 IN(@)I union bound, it follows that all nodeswith |[N%(v)| > A,,/2
Pr(u,v) = 7|d(u)| 1 ( IN(w) + 1) at the beginning of phasg will be matched during phase
1 p with probability at leastl — W Thus, with probability
> . S i
Z A +1 at least1 4L the maximum node degree decreases by

Noting thatA = max,cy d(u), we have that _the probability  s1here are less thas |V|(]V| — 1) distinct ordered pairs of nodes in the
P(u,v) that nodev does not successfully receive the data frometwork.



a factor of 2 during each phase. Sinca; < |V] — 1,

the receiver does not hear a COL packet or a collision due to

[log|V]] < Cplog|V| phases, provided’r» > 1, are suf- multiple such packets, it sendsckear to send(CTS) packet.
ficient to ensure that the constraints imposed by the maxiniglit detects an ongoing transmission while transmitting th
scheduling policy are met. Once again, appealing to theruni@TS packet, it subsequently sends a COL packet. No collision
bound, it follows that with probability at least — % the packet being sent guarantees that no two nodes within one hop
subset of edges returned by MaxScheduleOneHop satisfiesdhe decide to receive at the same time.

constraints imposed by the maximal scheduling policy. m

Each execution of UpdateAndDistNeighborhoods involve
O(Alog|V]) rounds of computation and local message ex
change. Since MaxScheduleOneHop t@dog|V]) phases
and UpdateAndDistNeighborhoods is run at the end of eag
phase, MaxScheduleOneHop involve$A log? |V|) rounds
of computation and local message exchange.

Remark 1:If the maximum node degree in the network is
significantly smaller thafV'| — 1, then one can reduce the
number of phases in MaxScheduleOneHop[t@p log A].
MaxScheduleOneHop would then requiA log Alog |V|)
rounds of computation and local message exchange. H
example, if the maximum node degree in the network i
O(log |V]), as in the case of random geometric graphs, the
by reducing the number of phases in MaxScheduleOneHg
from ©(log |V]) to O(loglog|V]), we can reduce its running
time from ©(log* |V]) to ©(log® |V|loglog [V ).

B. Maximal Scheduling under 2-Hop Interference Model

In this section, we propose a randomized distributed algg
rithm for implementing the maximal scheduling policy under
the 2-hop interference model. Recall that under th#hop
interference model no two links that are within two hops o
each other can be scheduled to transmit or receive at the sa
time. The distributed computing model we adopt is the sam
as before. In particular, the model of interference betwee
control packets is still the same. The reason for having
different interference model for data and control packets i
that in most networks (e.g., IEEE 802.11 based network
the control packets are usually much smaller in size than th
data packets and are often transmitted at a much smaller r
than the data packets. Correspondingly, successful iecept
of a control packet requires much less SINR as compared

tMaxScheduleTwoHol G, g(t))
1. g(t+1) :=UpdateAndDistPrices@G, ¢(t));
2. CompAndDistTwoHopNeighborhoods(Z, ¢(t+1));
N3 Sy(t+1):=¢andb(u) = —1forallue V.

4. for p=1to Cplog|V| do

5 St+1):=8_1(t+1);

6. fori=1to Crlog|V|do
Each nodeu with b(u) —1 chooses tg
transmit with probabilitym. Upon
deciding to transmit, it chooses a nodeat

random fromN ¥ () and sends a RTS messa

to nodev.
If a transmitting node detects any other trar

mission while transmitting, then it sends a C(
packet immediately after the RTS packet.
If a receiver node successfully receives the R
packet and does not subsequently hear a C
packet (or a collision due to multiple sug
packets), then it sends a CTS message.
If a receiver node detects any other transmi
sion while transmitting the CTS packet, then
sends a COL packet immediately after the C
packet. Otherwise, it set§v) = 1.
If a sender node: hears the CTS packet fron
its intended receiver but no subsequent C
packet, it setd(u) = 1. Sp(t + 1) := S, (¢t +
1) Uuw.

end for
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‘t°14. end for
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that of a data packet; thereby motivating the use of differer
interference models for each of them.

The algorithm we propose in this section,
MaxScheduleTwoHop, is conceptually very similar

CompAndDistTwoHopNeighborhoods,

MaxScheduleTwoHop uses three subroutines, namely Update-
namebpndDistPrices,
tdJpdateAndDistTwoHopNeighborhoods that are very similar

and

MaxScheduleOneHop. However, there are some additionaltheir counterparts in case of MaxScheduleOneHop. The
difficulties that arise in case @thop interference and are dealimain difference, however, is that unlike their counterpart
with in MaxScheduleTwoHop. Indeed, a distinguishing featu these subroutines must broadcast information over two mops
of MaxScheduleTwoHop is the exchange of COL packets twder for each node to be able to (i) compute the congestion
ensure that no two links that are within two hops of eagbrice of its outgoing links, that requires the knowledgeaafdl
other decide to transmit or receive at the same time. Mosehedule over two hops; (ii) compufézQ(v) which requires
precisely, if a sender node detects an ongoing transmisstbe knowledge of congestion prices of links within two hops;
while transmitting the RTS packet, it sends a subsequemtd (iii) computedQQ(v) using the knowledge OTNQQ(w)
collision (COL) packet. Successful reception of an RTS packfr w € Ny(v). Broadcasting information over two hops is
by the receiver guarantees that no other transmitter can dmomplished by using the subroutine ReliablyBroadcasttw
within one hop of the receiver. Further, no collision packen a series, once with your local information and then with th
being sent guarantees that no two nodes that are within anarmation obtained from your one hop neighbors. We are
hop of each other can decide to transmit at the same timeuifable to provide detailed descriptions of these subrestin



due to want of space. These descriptions can be found in [20}]
It can be shown (see [20] that MaxScheduleTwoHop re-
quires ©(Alog? |V|) rounds of computation and local mes- el
sage exchange and with high probability returns a set of
edges that satisfies the constraints imposed by the maxiniél
scheduling policy under th2-hop interference model. 8
Remark 2:1f the maximum node degree in the net-
work is significantly smaller than|V| — 1, then the
number of phases in MaxScheduleTwoHop can be régl
duced to [Cplog A]. MaxScheduleTwoHop then requireqi0]
O(Alog |V]log A) rounds of computation and local message
exchange. [11]

VI. CONCLUDING REMARKS [12]

In this paper, we considered the problem of throughput-
optimal cross-layer design of wireless networks. We pregid [13]
an upper bound on the capacity region of wireless networks
under all contention matrix based interference models aﬂq]
proposed a joint congestion control and scheduling algarit
that stabilizes the network for all user arrival rate vestibrat
are within a fractionl /d;(G) of the capacity region. We have[1®]
previously shown that; (G) can be upper bounded k) in [16]
case of geometric graphs, provided the interference cinsdr
are modeled using som&-hop interference model.

We also proposed two randomized distributed algorithr#s?]
for implementing the maximal scheduling policy undehop
and2-hop interference models. Both these algorithms requiré!
O(Alog? [V]) rounds of computation and local message eX1g]
change. Although, many of the previous works have studied
the performance of maximal scheduling policy under Val’iOl[IZSO]
network settings, it is for the first time in the literaturatlthe
difficulties involved in implementing the maximal schedgji
policy in a distributed fashion in the presence of intenfieee [21]
have been discussed in detail and fully accounted for in ths,
analysis.

In light of our results, it appears that a distributed impld23l
mentation of maximal scheduling would incur a significanty
overhead in networks where the maximum node degree is
large. Thus, in such networks, the throughput provided sy “st]
maximal scheduling policy might be significantly smalleath
the one calculated by ignoring the implementation overhead

It is intriguing to ask the question: Is there a scheduling®!
policy that is amenable to distributed implementation and
can provide better throughput guarantees than the maxireal
scheduling policy under various interference models? Vie pl
to address such issues in our future work.
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