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Abstract— We consider the problem of throughput-optimal
cross-layer design of wireless networks. We propose a joint
congestion control and scheduling algorithm that achievesa
fraction dI(G) of the capacity region, wheredI(G) depends on
certain structural properties of the underlying connectivity graph
G of the wireless network and also on the type of interference
constraints. For a wide range of wireless networks,dI(G) can
be upper bounded by a constant, independent of the number of
nodes in the network. The scheduling element of our algorithm
is the maximal scheduling policy. Although maximal scheduling
policy has been considered in many of the previous works,
the difficulties that arise in implementing it in a distribut ed
fashion in the presence of interference have not been dealt with
previously. In this paper, we propose two novel randomized
distributed algorithms for implementing the maximal scheduling
policy under the 1-hop and 2-hop interference models.

I. I NTRODUCTION

Wireless networks have become a ubiquitous part of all
modern day communication systems. Unlike wireline net-
works, where bandwidth and other resources are plentiful,
wireless networks are highly resource constrained, thus un-
derscoring the need for efficient utilization of the wireless
resources. A seminal contribution in this direction was made
in [27], where the authors characterized thecapacity regionof
constrained queuing systems, such as a wireless network. They
also developed a queue length based scheduling scheme that is
throughput-optimal, i.e., it stabilizes the network provided the
user rates fall within the capacity region of the network, where
the capacity region is defined to be the set of user arrival rates
under which the network is stable (the queue lengths at all the
nodes are bounded).

Unlike wireline networks, where all links have fixed ca-
pacities, the capacity of a wireless link varies with channel
variations due to fading; changes in power allocation, link
scheduling, or routing; and changes in network topology, etc.
This results in the capacity region of a wireless network having
a joint dependence on routing, power allocation, link schedul-
ing, and channel variations. In order to maximize the capacity
region of the network, one must therefore develop algorithms
that can jointly optimize routing, link scheduling, and power
control under possibly varying channel conditions and network

topology. This has spurred recent interest in developing cross-
layer optimization algorithms (see, for example, [29], [17],
[16], [26], [5]).

Motivated by the works on fair resource allocation in
wireline networks [8], [23], [13], [2], [30], researchers have
also incorporated congestion control into the cross-layeropti-
mization framework [3], [10], [9], [15], [28], [25], [31], [19].
The congestion control component controls the rates at which
users inject data into the network so as to ensure that they fall
within the capacity region of the network.

The most important component of any cross-layer optimiza-
tion algorithm is the scheduler that needs to solve a very
difficult global optimization problem of the form:

maximize
∑

l∈L

plrl (1)

subject to r ∈ ∆

whereL denotes the set of wireless links;r is the vector of
link rates rl, l ∈ L; pl, l ∈ L, is the congestion price or
possibly some function of the backlog at linkl; and∆ is the
capacity region of the network.

The main difficulty in solving the above optimization prob-
lem is that the capacity region∆ depends on the complete
network topology and, in general, has no simple representation
in terms of the power constraints at the individual links or
nodes. The above optimization problem is, in general, NP-
Complete and Non-Approximable∗.

The above problem has been studied under several special
cases of interest, e.g., with simplified interference models
and no power control. The interference models studied in
the literature include the node-exclusive interference model
[7], [1], [4], [10], [3], [27], [26], [19] and the IEEE 802.11
type interference model [28], [24], [6]. Both these models are
specific instances of the class ofK-hop interference models
studied in our previous work [21], [22]. An interference model
is termed aK-hop interference model if the only constraint
imposed on the set of simultaneously active links is that no two

∗A problem is said to be Non-Approximable if it does not admit any
constant factor polynomial time approximation algorithm.



links from the set should be withinK hops of each other. By
increasingK, one can model more and more stringent interfer-
ence constraints. The node-exclusive interference model (used
for Bluetooth and FH-CDMA networks [14], [1], [7]) and
IEEE 802.11 type interference model (used for IEEE 802.11
networks [28], [6]) correspond to1-hop and2-hop interference
models, respectively.

The optimal scheduling problem is polynomial time solvable
under the1-hop interference model, however, it is NP-Hard
and Non-Approximable under allK-hop interference models
for K > 1 (see [21]). In [22], we showed that the optimal
scheduling problem can be approximated within a constant
factor under allK-hop interference models for wireless net-
works whose connectivity graph is a geometric graph. Similar
results can be derived for disk graphs and(r, s)-civilized
graphs. These results are quite encouraging as a wide variety
of wireless networks can be modeled using the above families
of graphs.

In this paper, we propose a joint congestion control and
scheduling algorithm that provides provable throughput guar-
antees under all contention matrix based interference mod-
els. In particular, for wireless networks whose connectivity
graph is a geometric graph the proposed algorithm achieves
a constant fraction of the capacity region under allK-hop
interference models. The scheduling element of our algorithm
is the maximal scheduling policy, which has been studied in
many of the previous works [4], [28], [10]. We also provide
randomized distributed algorithms for implementing the max-
imal scheduling policy under1-hop and2-hop interference
models.

The rest of the paper is organized as follows. We describe
our system model and discuss some related work in Section II.
An upper bound on the capacity region is derived in Section
III. The joint congestion control and scheduling algorithm
is developed in Section IV, and a lower bound on its per-
formance is derived. Randomized distributed algorithms for
implementing the maximal scheduling policy under1-hop and
2-hop interference models are proposed in Section V. Finally,
concluding remarks are presented in Section VI.

II. SYSTEM MODEL AND RELATED WORK

We consider a setV of nodes, labeled1, 2, ..., |V |, commu-
nicating with each other using wireless means. We say that
link (u, v) joining nodeu to node v exists if nodeu can
successfully transmit to nodev, provided no other node in the
network transmits at the same time. The set of links so formed
is denoted byE. Note that the existence of a link between
any two nodes depends on many factors (e.g., noise variance
at the receiving node, coding and modulation scheme used by
the nodes). Although, we do not consider channel variations
in this paper, they can easily be incorporated into our model.
We refer the interested reader to [17], [16], [11] for related
results.

We considerK types of users, labeled1, 2, ..., K, sending
data over the network. We assume that typek users arrive
into the network according to a Poisson process with rateλk.

Each user of typek, brings with it a file of size1/µk to be
transferred over the network. We assume that all users of any
given type send their data over the same, loop-free route. The
extension to the multi-route case is straightforward; we refer
the reader to [17], [16], [11], [26] for related results. Theuser
routes are stored in an incidence matrix[H l

k], whereH l
k = 1

if link l belongs to the route of typek users; and0 otherwise.

The interference constraints are modeled using a contention
matrix [Cij ]i,j∈E . More precisely, linki is said to interfere
with link j if Cij = 1; no two links which interfere can be
scheduled at the same time. All diagonal entries ofC are
set to 1. Time is divided into slots of unit duration. Linkl
can transmit at ratecl during a slot if no other interfering
link is scheduled to transmit during the same slot. Such an
interference model has been widely used in the literature
(see, for example, [4]), and the interference models used in
many other works [21], [22], [10], [9], [11], [4], [28], [3] can
be obtained by imposing some additional constraints on the
contention matrix. Unless otherwise stated, the only constraint
we impose on[Cij ] in the paper is that it should be symmetric;
i.e., link i interferes with linkj if and only if link j interferes
with link i.

Let ~λ = (λ1, λ2, ..., λK) be the vector of user arrival rates.
Let nk(t) and Ql(t) denote the number of typek users and
queue backlog at linkl in the network at timet, respectively.
As in [10], [17], we say that the network is stable if

lim sup
t→∞

1

t

∫ t

0

1{
P

K
k=1 nk(t)+

P

l∈E
Ql(t)>N}dt → 0 (2)

asN → ∞. The capacity region of the network is defined to
be the set of user arrival rate vectors for which the network can
be stabilized by some scheduling policy. The capacity region
of a constrained queuing system, such as a wireless network,is
well characterized in [27]. For our model, the capacity region
is given by the set

Ω =

{

~λ :

[

K
∑

k=1

H l
kλk

µkcl

]

l∈E

∈ Co(S)

}

, (3)

whereCo(S) represents the convex hull of all link schedulesS
that satisfy the constraints imposed by our interference model.

A scheduling scheme is said to bethroughput-optimal
if it stabilizes the network for all user arrival rate vectors
within Ω. In [27], the authors proposed a throughput-optimal
queue length based scheduling scheme. However, their scheme
requires centralized computation and is computationally ex-
pensive (NP-Hard) in several cases of interest. Since it is
difficult to do centralized computation in ad hoc settings, a
considerable amount of effort has been put forth in devising
simple distributed schemes that can achieve a certain fraction
of the capacity region.

A scheduling scheme that has been widely studied in this
context is the so-calledmaximal scheduling policy[10], [4],



[22], [28]†. In [10] and [28], the performance of maximal
scheduling policy is studied under a joint congestion control
and scheduling framework with multi-hop traffic, and1-hop
and 2-hop interference models, respectively. In [4] and [22],
a slightly more restrictive setting with single-hop trafficand
no congestion control is considered under the contention ma-
trix based interference model andK-hop interference model,
respectively.

Although maximal scheduling policy has been considered
in many of the previous works, the difficulties that arise in
implementing it in a distributed fashion in the presence of
interference have not been dealt with previously. Next, we
highlight the main contributions of this paper.

• A joint congestion control and scheduling algorithm
based on maximal scheduling policy is proposed under
a multi-hop setting with contention matrix based inter-
ference model and is shown to achieve a fractiondI(G)
of the capacity region, wheredI(G) is the interference
degree of underlying connectivity graphG (see Section
III). These results extend earlier results in [4], which were
derived under a single-hop (MAC layer) setting with no
congestion control.

• The performance of the proposed algorithm is shown
to be at most a constant factor from the optimal under
all K-hop interference models, provided the underlying
connectivity graphG is a geometric graph. These results
extend our earlier results in [22].

• Two randomized distributed algorithms are proposed for
implementing the maximal scheduling policy under1-
hop and2-hop interference models. Both these algorithms
fully account for the link interferences in a wireless
setting and requireΘ(∆ log2 |V |) rounds of computation
and local message exchange, respectively, where∆ is the
maximum node degree in the network.

III. AN UPPER BOUND ON THE CAPACITY REGION

In this section, we derive an upper bound on the capacity
region under a contention matrix based interference model.
The upper bound depends on theinterference degreeof the
network graph, which we define more formally next (see also
[4] and [22]).

Definition 1: The interference setI(e) of link e is the set
of links that interfere with linke, i.e.,

I(e) = {l ∈ E : Cel = 1} .
Definition 2: A set of linksA is said to be a non-interfering

set if it does not contain any interfering links, i.e., for each
pair of links u, v ∈ A with u 6= v, we haveCuv = 0.

Definition 3: The interference degreedI(e) of link e is the
maximum number of links belonging to its interference set
that do not interfere with each other, i.e.,

dI(e) = max
A⊆I(e):A is a non-interfering set

|A|.

†Note that the terminologies used in these works and some minor details
of the schemes differ slightly from each other, but the main idea is essentially
the same.

Definition 4: The interference degreedI(G) of graphG =
(V, E) is the maximum interference degree across its con-
stituent links, i.e.,dI(G) = maxe∈E dI(e).
We are now ready to upper bound the capacity region.

Theorem 1:The capacity regionΩ specified by (3)
consists of user arrival rate vectors~λ that satisfy
∑

l∈I(e)

∑K
k=1

Hl
kλk

µkcl
≤ dI(e) for all e ∈ E.

Proof: Let S be a link schedule that activates the same
set of non-interfering linksAS during every slot. Consider a
link e ∈ E. Since the set of linksAS is non-interfering, it
contains at mostdI(e) links from I(e). Thus, the link rate
vectors[xl]l∈E underAS must satisfy

∑

l∈I(e)

xl

cl

≤ dI(e) for all e ∈ E. (4)

Since this result holds for all link schedules that satisfy the
interference constraints, it follows that allfeasible link rate
vectors under the contention matrix based interference model
must satisfy the constraints given in (4). The result now
follows by noting that a user arrival rate vector~λ induces
an average load of

∑K
k=1 H l

kλk/µk on link l.
The following result is a direct consequence of Theorem 1 and
the fact thatdI(G) = maxe∈E dI(e).

Corollary 1: Any user arrival rate vector~λ that be-
longs to the capacity regionΩ specified by (3) satisfies
∑

l∈I(e)

∑K
k=1

Hl
kλk

µkcl
≤ dI(G) for all e ∈ E.

IV. JOINT CONGESTIONCONTROL AND SCHEDULING FOR

THROUGHPUTGUARANTEES

A. The Algorithm

We now propose a joint congestion control and scheduling
algorithm that is guaranteed to achieve a fractiondI(G) of the
capacity region under any contention matrix based interference
model. The algorithm maintainscongestion pricesql(t), l ∈ E
to estimate the level of congestion in the network at timet.
The congestion control and scheduling are performed using
these congestion prices. Time is divided into slots of unit
duration, and both congestion prices and user rates are updated
at the beginning of each slot. The detailed description of the
algorithm follows:
Algorithm:CCS

• Congestion price update: The congestion prices are up-
dated as follows:

ql(t + 1) = (ql(t) + α∆ql(t))
+

, (5)

where

∆ql(t) =
X

j∈I(l)

"

K
X

k=1

H
j

k

Z t+1

t

nk(t)xk(t)

cj

dt − 1j∈S(t)

#

,

andS(t) denotes the set of links scheduled to transmit
during the slott.

• User rate update:The data rate of type-k users are



updated as follows:

xk(t + 1) = min

8

>

<

>

:

1
P

l∈E
ql(t + 1)

P

j∈I(l)

H
j
k

cj

, Mk

9

>

=

>

;

, (6)

whereMk is the maximum data rate of type-k users.

• Transmission scheduling:The link transmissions are
scheduled in accordance with themaximal scheduling
policy, i.e., subset of linksM chosen for transmission
during any slot satisfies that for each linkl ∈ E, either
I(l) ∩ M 6= Φ or ql ≤ 1. For the sake of concreteness,
we will assume that for linkl to be scheduled during slot
t, its congestion priceql(t) must be greater than1.

CCS is similar in spirit to the joint congestion control
and scheduling algorithm proposed in [10] under the node-
exclusive interference model. However, our algorithm is signif-
icantly more general and works for all contention matrix based
interference models, including the node-exclusive interference
model. Some salient features of our algorithm are worth
noting: (i) the congestion price of a link depends not only
on its own backlog, but also on that of the links belonging to
its interference set; (ii) the data rate of type-k users depends
on the congestion prices of all those links that either belong
to the route of type-k users or interfere with such a link. It
is this proper setting of the user rates and congestion prices
that allows CCS to achieve a fractiondI(G) of the capacity
region, as stated in the following theorem:

Theorem 2:If the stepsizeα is chosen to be small enough,
CCS stabilizes the network for all user arrival rate vectorsthat
belong toΩo/dI(G), whereΩo denotes the interior of setΩ.

Proof: The main difficulty in the proof is to construct
an appropriate Lyapunov function that exhibits the required
negative drift provided the user arrival rate vector belongs to
Ωo/dI(G). We shall use the Lyapunov functionV (~n, ~q) :=

Vn(~n) + Vq(~q), where Vn(~n) :=
∑K

k=1
βn2

k

2λk
and Vq(~q) :=

∑

l∈E
q2

l

2α
. Let

∆Vq := E [Vq(~q(t + 1)) − Vq(~q(t))|~n(t), ~q(t)]

and

∆Vn := E [Vn(~n(t + 1)) − Vn(~n(t))|~n(t), ~q(t)] .

Since all scheduled linksl must have a congestion priceql > 1,
the projection operator in (5) is not required providedα ≤ 1.
Now,

∆Vq =
X

l∈E

1

2α
E
ˆ

q
2
l (t + 1) − q

2
l (t)|~n(t), ~q(t)

˜

=
X

l∈E

E
h

ql(t)∆ql(t) +
α

2
(∆ql(t))

2|~n(t), ~q(t)
i

≤
X

l∈E

ql(t)
X

j∈I(l)

K
X

k=1

H
j

k

cj

Z t+1

t

E [nk(t)xk(t)|~n(t), ~q(t)] dt

−
X

l∈E

ql(t)1{ql(t)>1} +
α

2
E
ˆ

(∆ql(t))
2|~n(t), ~q(t)

˜

. (7)

Using some algebraic manipulations, it can be shown that

E
[

(∆ql(t))
2|~n(t), ~q(t)

]

≤ |E|

+ CLCK

∫ t+1

t

E
[

n2
k(t)x2

k(t)|~n(t), ~q(t)
]

dt, (8)

where

CL = max
l∈E

K
X

k=1

X

j∈I(l)

H
j

k

cj

andCK = max
k=1,2,...,K

X

l∈E

X

j∈I(l)

H
j

k

cj

.

Combining (7) and (8), we get

∆Vq ≤
αCLCK

2

K
X

k=1

Z t+1

t

E
ˆ

n
2
k(t)x2

k(t)|~n(t), ~q(t)
˜

dt

+
α

2
|E| −

X

l∈E

ql(t)1{ql(t)>1}+ (9)

X

l∈E

ql(t)
X

j∈I(l)

K
X

k=1

H
j

k

cj

Z t+1

t

E [nk(t)xk(t)|~n(t), ~q(t)] dt.

Following the line of analysis in [10] used to prove Theorem
7, it can be shown that

∆Vn ≤
X

l∈E

ql(t)
X

j∈I(l)

K
X

k=1

βλkH
j

k

µkcj

(10)

−
X

l∈E

ql(t)
X

j∈I(l)

K
X

k=1

H
j

k

cj

Z t+1

t

E [nk(t)xk(t)|~n(t), ~q(t)]dt

− (β − 1)
K
X

k=1

Z t+1

t

E [nk(t)|~n(t), ~q(t)] dt + C1

−
K
X

k=1

µk

4λkMk

Z t+1

t

E
ˆ

n
2
k(t)x2

k(t)|~n(t), ~q(t)
˜

dt

Observe that
∑

l∈E

ql(t)1{ql(t)>1} ≥
∑

l∈E

ql(t) − |E|. (11)

Also, for all λ ∈ Ωo/dI(G), we have

∑

j∈I(l)

K
∑

k=1

λkHj
k

µkcj

< 1 for all l ∈ E. (12)

Using (9)-(12), it follows that given anyǫ > 0 we can choose
β > 1 andα > 0 such that

∆Vn + ∆Vq ≤ C2 − ǫ

 

X

l∈E

ql(t) +

Z t+1

t

E [nk(t)|~n(t), ~q(t)]dt

!

,

where C2 = C1 +
(

1 + α
2

)

|E|. The result follows using
Theorem2 in [17] and observing thatQl(t) = ql(t)/α for
l ∈ E.

Theorem 1 lower bounds the performance of CCS in arbitrary
wireless networks. We now consider wireless networks whose
connectivity graph is a geometric graph and analyze the
performance of CCS in such networks. The motivation for
this is that if all transmissions in the network employ the
same power level and the statistical properties of the noise
are same at each node, then the connectivity graph of the



network is indeed a geometric graph. We shall further restrict
our attention toK-hop interference models, so as to enforce
some structure on the interference constraints.

Proposition 1: Consider a wireless network whose underly-
ing connectivity graph is a geometric graph. If the interference
constraints correspond to aK-hop interference model for some
K ≥ 1 and the stepsizeα is chosen to be small enough, then
CCS stabilizes the network for all user arrival rate vectors
belonging toΩo/2 for K = 1 andΩo ⌊K/2⌋

2
/(2K + 1)2 for

K ≥ 2.
Proof: It is shown in [22] that if the underlying connec-

tivity graph is a geometric graph and interference constraints
correspond to aK-hop interference model, thendI(G) satis-
fies:

dI(G) ≤







2 for K = 1
(2K + 1)2

⌊K/2⌋2
for K ≥ 2

Substituting the above in Theorem 1 yields the desired result.

Similar constant factor performance bounds can be shown to
hold for disk graphs and(r, s)-civilized graphs.

B. Implementation Issues and Extensions

In this section, we identify some implementation issues
concerning CCS and discuss how some of them can be dealt
with.

The congestion price update in (5) requires each link to track
the changes in the backlogs at all its interfering links. This
can be done with the help of local message exchanges, where
each link floods the relevant information (e.g., whether or not
it was scheduled to transmit in the previous slot) within a local
neighborhood that includes all its interfering links. Under an
arbitrary contention matrix based interference model, in which
a pair of links can interfere with each other even if they are
several hops apart, the congestion price update would incur
a considerable amount of overhead. In practice, however, the
scope of interference is limited to a few hops (usually,1 or 2).
In such settings, the overhead due to congestion price update
is expected to be small. A detailed discussion of this issue in
the context of specific interference models can be found in
Section V.

Further, the congestion price update assumes that a user rate
update is instantaneously applied at all links on its route.In
practice, however, there is some amount of time required to
signal such a change to all links on the route. Moreover, in
practice, user clocks might not be perfectly synchronized with
each other. Thus, the user rate updates might be asynchronous.
Both these issues can be dealt with following the line of
analysis in [3]. In [3], the authors consider such issues in the
context of a joint congestion control and scheduling algorithm
under the node-exclusive interference model.

The rate update for type-k users requires the knowledge
of congestion prices at all those links that either belong to
their route or interfere with such a link. Note that this kind
of behavior is common to all end-to-end congestion control
protocols, like, for example, TCP and can be seen even under

a wireline setting. In a wireline setting, however, there isno
interference between a pair of links scheduled at the same
time, and therefore the rate assigned to a flow is only a
function of the congestion prices at the links on its route.
In view of the results in [12], [3], one would expect that the
stability properties of CCS should be preserved even when
the user rate updates are performed at a much slower time
scale as compared to the congestion price updates and also
to a asynchronous setting. This issue will be addressed in our
future work.

An important issue that remains to be addressed is that
of scheduling the link transmissions. How can one generate
a schedule with the properties listed in Section IV-A in a
distributed fashion? Generating such a schedule might be
computationally too expensive under general contention matrix
based interference models. In the next section, we provide
two randomized distributed algorithms that compute such a
schedule inΘ(∆ log2 |V |) rounds of computation and local
message exchange under1-hop and2-hop interference models,
where∆ denotes the maximum node degree in the network.

V. RANDOMIZED DISTRIBUTED ALGORITHMS FOR

MAXIMAL SCHEDULING POLICY

Although, the maximal scheduling policy has been con-
sidered in many of the previous works [10], [4], [22], the
difficulties that arise in implementing it in a distributed fashion
in the presence of interference have not previously been dealt
with. We now provide two randomized distributed algorithms
for implementing the maximal scheduling policy under1-
hop and2-hop interference models. Both these algorithms are
inspired by a classical algorithm for constructing an maximal
independent set in [18].

We start with describing our distributed computing model.
As in [6] and other related works, we assume asynchronous
message passing distributed computing model, which is a vari-
ation of the standard models used in the distributed computing
literature. The main point of difference is the broadcast nature
of the model which is typical of wireless networks. More
precisely, we model the distributed computing architecture
as a graph with undirected edges (we assume bidirectional
links between the nodes as specified in the1-hop and2-hop
interference models). Each node has a unique ID. The clocks
at all the nodes are synchronized and the communication takes
place in rounds, each occupying a slot. A packet transmission
from nodeu is heard by all nodesv in its neighborhood, unless
the nodev itself transmits or some other neighbor of node
v also transmits. It is this interference between simultaneous
transmissions that makes it difficult to implement a maximal
scheduling policy in wireless networks.

We now define some terminology that will be used in the
sequel:

• uv: An undirected link between nodesu andv.
• N(u): The set of neighbors of nodeu, i.e., nodesv ∈ V

such thatuv ∈ E.
• NQ(u): The set of nodesv ∈ N(u) such thatq(u,v) > 1.
• d(u): maxv∈N(u) |N(v)|.



• dQ(u): maxv∈NQ(u) |N
Q(v)|.

• N2(u): The set of two hop neighbors of nodeu, i.e.,
∪v∈N(u)N(v).

• NQ
2 (u): The set of undirected linksvw ∈ E such that

v ∈ N(u) andmax(q(u,w), q(w,u)) > 1.
• dQ

2 (u): maxv∈N2(u) |N
Q
2 (v)|.

A. Maximal Scheduling under 1-Hop Interference Model

In this section, we propose a randomized distributed al-
gorithm, namely MaxScheduleOneHop, that implements the
maximal scheduling policy under the1-hop interference
model. MaxScheduleOneHop uses three subroutines, namely
UpdatePrices, CompAndDistNeighborhoods, and UpdateAnd-
DistNeighborhoods. As the names suggest, these schedules are
used for the following purpose:

1. UpdatePrices:As required by the CCS, the congestion
prices of the links should be updated at every slot. This
subroutine allows each node in the network to update
the congestion prices of its outgoing links.

2. CompAndDistNeighborhoods: This subroutine allows
each nodev to calculateNQ(v) anddQ(v) at every slot
based on current congestion prices.

3. UpdateAndDistNeighborhoods: This subroutine al-
lows each node to remove those nodes from its current
neighborhood that were scheduled to transmit or receive
during the current phase of MaxScheduleOneHop. More
precisely, each node computesNQ(v) and dQ(v) con-
sidering only those nodes that have not been scheduled
to transmit or receive as yet.

We are now ready to describe MaxSceduleOneHop:

MaxScheduleOneHop(G, q(t))

1. q(t+1) :=UpdatePrices(G, q(t));

2. CompAndDistNeighborhoods(G, q(t + 1));

3. S0(t + 1) := φ andb(u) = −1 for all u ∈ V .

4. for p = 1 to ⌈CP log |V |⌉ do

5. Sp(t + 1) := Sp−1(t + 1);
6. for i = 1 to CI log |V | do

7.

Each nodeu with b(u) = −1 chooses to
transmit with probability 1

dQ(u)+1 . Upon
deciding to transmit, it chooses a nodev at
random fromNQ(u) and sends a RTS message
to nodev.

8.
If the RTS packet is successfully received by
nodev, it responds with a CTS message and
setsb(v) = 1.

9.
Upon receiving the CTS packet, nodeu sets
b(u) = 1. Sp(t + 1) := Sp(t + 1) ∪ uv.

10. end for

11. UpdateAndDistNeighborhoods(G,Sp−1(t +
1),Sp(t + 1));

12. end for

The subroutines used by MaxScheduleOneHop will be de-
scribed next, beginning with UpdatePrices,.

UpdatePrices(G, q)

1. for each v ∈ V do

2. if there exists uv ∈ S(t)

3. ReliablyBroadcast(v, matched tou);

4. end it there exists

5.
Compute the new congestion prices of your
outgoing links based on the local knowledge
of S(t).

6. end for each

UpdatePrices allows each node to compute the congestion
prices of its outgoing links based on the local knowledge of
the scheduleS(t). More precisely, each node that was involved
in a reception or transmission during slott, broadcasts this
information to its neighbors using subroutine ReliablyBroad-
cast, which will be explained in a short while. Using this
information and the local knowledge of user routes and data
rates each node computes the current congestion price for all
its outgoing links. Indeed, under the1-hop interference model,
we have

∆q(u,v)(t) =
∑

w∈N(u)

∆Q(u,w) +
∑

w∈N(v)\u

∆Q(v,w),

where

∆Q(u,w) =

K
X

k=1

H
(u,w)
k

»
Z t+1

t

nk(t)xk(t)

c(u,w)
dt − 1(u,w)∈S(t)

–

+

K
X

k=1

H
(w,u)
k

»
Z t+1

t

nk(t)xk(t)

c(w,u)
dt − 1(w,u)∈S(t)

–

.

Nodeu can compute∆q(u,v)(t) for each of its outgoing links
(u, v), provided it has the local knowledge of user routes and
data rates (we assume that this knowledge is maintained by
the congestion control component) and knows which of its
neighboring nodes were scheduled during slott. The later
information is provided to it by each of its neighboring node
v using the subroutine ReliablyBroadcast that is described
below.

ReliablyBroadcast(v, data)

1. for k = 1 to ⌈CK∆log |V |⌉ do

2. Broadcastdata with probability 1
d(v)+1 to your

neighbors.
3. end for

Next, we describe the subroutine CompAndDistNeighbor-
hoods.

CompAndDistNeighborhoods(G, q)

1. for each v ∈ V do

2. ComputeNQ(v).

3. ReliablyBroadcast(v, |NQ(v)|);

4. ComputedQ(v).

5. end for each



CompAndDistNeighborhoods allows each node to compute
NQ(v) and dQ(v). The computation ofNQ(v) is straight-
forward. Once this is done, each nodev uses the subroutine
ReliablyBroadcast to broadcastNQ(v) to its neighbors; and
based on this knowledge each nodev computesdQ(v). Next,
we describe the subroutine UpdateAndDistNeighborhoods.

UpdateAndDistNeighborhoods(G, Spr, Scr)

1. for each v ∈ V do

2. if there exists uv ∈ Scr\Spr

3. ReliablyBroadcast(v, matched tou);

4. end if there exists

5. ComputeNQ(v) considering only those nodes
that are currently unmatched.

6. ReliablyBroadcast(v, |NQ(v)|);

7. ComputedQ(v).

8. end for each

UpdateAndDistNeighborhoods allows each node to update
NQ(v) and dQ(v) at the end of each phase in MaxSched-
uleOneHop. If a node was matched during the current phase,
it broadcasts this information to its neighbors using the sub-
routine ReliablyBroadcast. With this knowledge, each node
v updatesNQ(v) by deleting those neighboring nodes which
were matched during the current phase. Once this is done, each
node v uses the subroutine ReliablyBroadcast to broadcast
|NQ(v)| to its neighbors; and based on this knowledge each
nodev updatesdQ(v).

We now show that if the constantsCP , CI , and CK

are appropriately chosen the algorithm MaxScheduleOneHop
returns a subset of links that satisfies the constraints imposed
by the maximal scheduling policy with high probability. We
start by analyzing the performance of ReliablyBroadcast:

Lemma 1: If every node uses the subroutine ReliablyBroad-
cast andCK ≥ 8e, then with probability at least1− 1

|V |2 each
node will be able to send its “data” to all its neighbors.

Proof: Consider a pair of neighboring nodesu andv in
the network. During iterationk, nodeu broadcasts its data with
a probability of1/(d(u)+1). Nodev will successfully receive
this data if it decides not to transmit during iterationk and no
node belonging toN(v)\u transmits during iterationk. Since
each nodew ∈ N(v)∪v satisfiesd(w) ≥ |N(v)|, each of these
nodes transmits with probability no greater than1/(|N(v)|+1)
during iterationk. Thus, nodev successfully receives the data
from nodeu during iterationk with a probabilityPk(u, v) that
satisfies

Pk(u, v) ≥
1

|d(u)| + 1

(

1 −
1

|N(v)| + 1

)|N(v)|

≥
e−1

d(u) + 1
.

Noting that∆ = maxu∈V d(u), we have that the probability
P(u, v) that nodev does not successfully receive the data from

nodeu during any of the⌈CK∆log |V |⌉ iterations satisfies

P(u, v) ≤

(

1 −
e−1

d(u) + 1

)CK∆ log |V |

≤ e−
e−1CK∆ log |V |

∆+1 ≤
1

|V |4
,

provided ∆ ≥ 1 and CK ≥ 8e. Now, summing over all
possible node pairs‡ and using the union bound, we obtain
the desired result.

We are now ready to analyze the performance of MaxSched-
uleOneHop:

Proposition 2: If CP > 1, CI ≥ 6e2, andCK ≥ 8e, then
with probability no smaller than1 − 2

|V | the set of edges
returned by MaxScheduleOneHop satisfies the constraints im-
posed by the maximal scheduling policy.

Proof: Using Lemma 1, it follows that ifCK ≥ 8 the
prices and neighborhoods computed using UpdatePrices and
CompAndDistNeighborhoods will be correct with probability
at least1− 2

|V |2 . Observe that UpdateAndDistNeighborhoods is
usedCP log |V | times by MaxScheduleOneHop and each time
it uses ReliablyBraodcast twice to update and distribute the
neighborhoods. Thus, with probability at least1− 2CP log |V |

|V |2 ≥

1 − 1
|V | for large enough|V |, the neighborhoods computed

using UpdateAndDistNeighborhoods will be correct each time
it is used. Next, we restrict our attention to those cases in
which all of the above subroutines work correctly.

Consider the execution of MaxScheduleOneHop during
iteration i of phasep under such a case. Let∆p denote the
maximum node degree in the subgraphGp of G obtained by
removing all nodes inG that have already been matched at the
beginning of phasep along with their outgoing and incoming
links. Now, consider a nodeu with |NQ(u)| ≥ ∆p/2, where
NQ(u) is the neighborhood of nodeu in Gp. The link (u, v)
will be added toSp during iterationi provided nodeu decides
to transmit during iterationi and all nodes inN(u)∪N(v)\u
decide not to transmit. Arguing on similar lines as in the proof
of Lemma 1, the probabilityPi(u, v) is greater than

1

dQ(u) + 1

„

1 −
1

|N(u)| + 1

«|N(u)| „

1 −
1

|N(v)| + 1

«|N(v)|−1

≥
e−2

dQ(u) + 1
.

Since the events corresponding to nodeu being matched to
nodev or w with v 6= w are disjoint, the probabilityPi(u) that
nodeu is matched during iterationi equals

∑

v∈N(u) Pi(u, v)

and satisfiesPi(u) ≥ NQ(u)e−2

dQ(u)+1 ≥ e−2/2 since |NQ(u)| ≥

∆p/2 and ∆p = maxv∈V dQ(v). The probability that node
u is not matched during phasep is therefore no greater than
(

1 − e−2

2

)CI log |V |

≤ 1
|V |3 provided CI ≥ 6e2. Using the

union bound, it follows that all nodesv with |NQ(v)| ≥ ∆p/2
at the beginning of phasep will be matched during phase
p with probability at least1 − 1

|V |2 . Thus, with probability
at least1 − 1

|V | , the maximum node degree decreases by

‡There are less than≤ |V |(|V | − 1) distinct ordered pairs of nodes in the
network.



a factor of 2 during each phase. Since∆1 ≤ |V | − 1,
⌈log |V |⌉ ≤ CP log |V | phases, providedCP > 1, are suf-
ficient to ensure that the constraints imposed by the maximal
scheduling policy are met. Once again, appealing to the union
bound, it follows that with probability at least1 − 2

|V | the
subset of edges returned by MaxScheduleOneHop satisfies the
constraints imposed by the maximal scheduling policy.

Each execution of UpdateAndDistNeighborhoods involves
Θ(∆ log |V |) rounds of computation and local message ex-
change. Since MaxScheduleOneHop hasΘ(log |V |) phases
and UpdateAndDistNeighborhoods is run at the end of each
phase, MaxScheduleOneHop involvesΘ(∆ log2 |V |) rounds
of computation and local message exchange.

Remark 1: If the maximum node degree in the network is
significantly smaller than|V | − 1, then one can reduce the
number of phases in MaxScheduleOneHop to⌈CP log ∆⌉.
MaxScheduleOneHop would then requireΘ(∆ log ∆ log |V |)
rounds of computation and local message exchange. For
example, if the maximum node degree in the network is
Θ(log |V |), as in the case of random geometric graphs, then
by reducing the number of phases in MaxScheduleOneHop
from Θ(log |V |) to Θ(log log |V |), we can reduce its running
time from Θ(log3 |V |) to Θ(log2 |V | log log |V |).

B. Maximal Scheduling under 2-Hop Interference Model

In this section, we propose a randomized distributed algo-
rithm for implementing the maximal scheduling policy under
the 2-hop interference model. Recall that under the2-hop
interference model no two links that are within two hops of
each other can be scheduled to transmit or receive at the same
time. The distributed computing model we adopt is the same
as before. In particular, the model of interference between
control packets is still the same. The reason for having a
different interference model for data and control packets is
that in most networks (e.g., IEEE 802.11 based networks)
the control packets are usually much smaller in size than the
data packets and are often transmitted at a much smaller rate
than the data packets. Correspondingly, successful reception
of a control packet requires much less SINR as compared to
that of a data packet; thereby motivating the use of different
interference models for each of them.

The algorithm we propose in this section, namely
MaxScheduleTwoHop, is conceptually very similar to
MaxScheduleOneHop. However, there are some additional
difficulties that arise in case of2-hop interference and are dealt
with in MaxScheduleTwoHop. Indeed, a distinguishing feature
of MaxScheduleTwoHop is the exchange of COL packets to
ensure that no two links that are within two hops of each
other decide to transmit or receive at the same time. More
precisely, if a sender node detects an ongoing transmission
while transmitting the RTS packet, it sends a subsequent
collision (COL) packet. Successful reception of an RTS packet
by the receiver guarantees that no other transmitter can be
within one hop of the receiver. Further, no collision packet
being sent guarantees that no two nodes that are within one
hop of each other can decide to transmit at the same time. If

the receiver does not hear a COL packet or a collision due to
multiple such packets, it sends aclear to send(CTS) packet.
If it detects an ongoing transmission while transmitting the
CTS packet, it subsequently sends a COL packet. No collision
packet being sent guarantees that no two nodes within one hop
can decide to receive at the same time.

MaxScheduleTwoHop(G, q(t))

1. q(t+1) :=UpdateAndDistPrices(G, q(t));

2. CompAndDistTwoHopNeighborhoods(G, q(t+1));

3. S0(t + 1) := φ andb(u) = −1 for all u ∈ V .

4. for p = 1 to CP log |V | do

5. Sp(t + 1) := Sp−1(t + 1);
6. for i = 1 to CI log |V | do

7.

Each nodeu with b(u) = −1 chooses to
transmit with probability 1

d
Q
2 (u)+1

. Upon
deciding to transmit, it chooses a nodev at
random fromNQ(u) and sends a RTS message
to nodev.

8.
If a transmitting node detects any other trans-
mission while transmitting, then it sends a COL
packet immediately after the RTS packet.

9.

If a receiver node successfully receives the RTS
packet and does not subsequently hear a COL
packet (or a collision due to multiple such
packets), then it sends a CTS message.

10.

If a receiver nodev detects any other transmis-
sion while transmitting the CTS packet, then it
sends a COL packet immediately after the CTS
packet. Otherwise, it setsb(v) = 1.

11.

If a sender nodeu hears the CTS packet from
its intended receiver but no subsequent COL
packet, it setsb(u) = 1. Sp(t + 1) := Sp(t +
1) ∪ uv.

12. end for

13. UpdateAndDistTwoHopNeighborhoods(G,Sp−1(t+
1),Sp(t + 1));

14. end for

MaxScheduleTwoHop uses three subroutines, namely Update-
AndDistPrices, CompAndDistTwoHopNeighborhoods, and
UpdateAndDistTwoHopNeighborhoods that are very similar
to their counterparts in case of MaxScheduleOneHop. The
main difference, however, is that unlike their counterparts,
these subroutines must broadcast information over two hopsin
order for each nodev to be able to (i) compute the congestion
price of its outgoing links, that requires the knowledge of local
schedule over two hops; (ii) computeNQ

2 (v) which requires
the knowledge of congestion prices of links within two hops;
and (iii) computedQ

2 (v) using the knowledge ofNQ
2 (w)

for w ∈ N2(v). Broadcasting information over two hops is
accomplished by using the subroutine ReliablyBroadcast twice
in a series, once with your local information and then with the
information obtained from your one hop neighbors. We are
unable to provide detailed descriptions of these subroutines



due to want of space. These descriptions can be found in [20].
It can be shown (see [20] that MaxScheduleTwoHop re-

quiresΘ(∆ log2 |V |) rounds of computation and local mes-
sage exchange and with high probability returns a set of
edges that satisfies the constraints imposed by the maximal
scheduling policy under the2-hop interference model.

Remark 2: If the maximum node degree in the net-
work is significantly smaller than|V | − 1, then the
number of phases in MaxScheduleTwoHop can be re-
duced to ⌈CP log ∆⌉. MaxScheduleTwoHop then requires
Θ(∆ log |V | log ∆) rounds of computation and local message
exchange.

VI. CONCLUDING REMARKS

In this paper, we considered the problem of throughput-
optimal cross-layer design of wireless networks. We provided
an upper bound on the capacity region of wireless networks
under all contention matrix based interference models and
proposed a joint congestion control and scheduling algorithm
that stabilizes the network for all user arrival rate vectors that
are within a fraction1/dI(G) of the capacity region. We have
previously shown thatdI(G) can be upper bounded by49 in
case of geometric graphs, provided the interference constraints
are modeled using someK-hop interference model.

We also proposed two randomized distributed algorithms
for implementing the maximal scheduling policy under1-hop
and2-hop interference models. Both these algorithms require
Θ(∆ log2 |V |) rounds of computation and local message ex-
change. Although, many of the previous works have studied
the performance of maximal scheduling policy under various
network settings, it is for the first time in the literature that the
difficulties involved in implementing the maximal scheduling
policy in a distributed fashion in the presence of interference
have been discussed in detail and fully accounted for in the
analysis.

In light of our results, it appears that a distributed imple-
mentation of maximal scheduling would incur a significant
overhead in networks where the maximum node degree is
large. Thus, in such networks, the throughput provided by the
maximal scheduling policy might be significantly smaller than
the one calculated by ignoring the implementation overhead.

It is intriguing to ask the question: Is there a scheduling
policy that is amenable to distributed implementation and
can provide better throughput guarantees than the maximal
scheduling policy under various interference models? We plan
to address such issues in our future work.
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