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Abstract— In this paper, we investigate the problem of
distributively allocating transmission rates to users on
the Internet. We allow users to have concave as well as
sigmoidal utility functions that are natural in the context of
various applications. In the literature, for simplicity, most
works have dealt only with the concave case. However, we
show that when applying rate control algorithms developed
for concave utility functions in a more realistic setting (with
both concave and sigmoidal types of utility functions),
could lead to instability and high network congestion.
We show that a pricing based mechanism that solves the
dual formulation can be developed based on the theory
of subdifferentials with the property that the prices “self-
regulate” the users to access the resource based on the net
utility. We discuss convergence issues and show that an
algorithm can be developed that isefficient in the sense of
achieving the global optimum when there are many users.

I. I NTRODUCTION

There has been a lot of interest in the area of Internet
rate control. Most Internet services are elastic to some
degree, i.e., the sources can adjust their transmission
rates in response to congestion levels within the network.
Hence, by appropriately exploiting the elasticity through
rate control, one can maintain high network efficiency
while at the same time alleviating network congestion.
To that end, it is necessary to have an appropriate
model to characterize the elasticity of the service. This is
typically done using the well known concept of a utility
function that represents the level of user satisfaction or
Quality of Service (QoS) at the allocated rate.

We can classify services in the Internet into two
classes based on the shape of the utility function. One
corresponds to traditional data services, such as file
transfer and email. These services can adjust their trans-
mission rates gradually, resulting in graceful degradation
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of the QoS in the presence of network congestion. The
elasticity of these services can be modeled by concave
utility functions [1]. The other corresponds to real-time
services, such as streaming video and audio services.
These services are less elastic than data services. In
response to network congestion, they can decrease their
transmission rates up to a certain level with a corre-
sponding graceful degradation in the QoS. However, de-
creasing the transmission rate below a certain threshold
results in a significant drop in the QoS (e.g., below a
certain bit rate, the quality of audio communication falls
dramatically). The elasticity of these services can be
modeled by using sigmoidal-like utility functions [1].
We call an increasing functionf(x) a sigmoidal-like
function, if it has one inflection pointxo, and d2f(x)

dx2 > 0,
for x < xo and d2f(x)

dx2 < 0, for x > xo, as shown in Fig.
1.

There have been a number of papers that have studied
utility based rate control problems by exploiting the
elasticity of services, e.g., [2], [3], [4], [5], [6], [7],
[8], [9]. Most of these works use a utility and pricing
framework that attempts to obtain the optimal rate allo-
cation that maximizes the total system utility using the
price as a control signal. In this framework, the network
announces the price that measures the congestion level of
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Fig. 1. A sigmoidal-like function.
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the network to the users. Based on this price, each user
adjusts its transmission rates in an attempt to maximize
its net utility, which is defined by

U(x)− λx,

whereU is a utility function,λ is price for unit rate, and
x is the amount of rate allocation.

In [2], the author shows that the problem can be
decomposed into the user problem and the network
problem. Based on the decomposed problem, the authors
in [3] propose a distributed algorithm with a penalty
function method that converges to the global optimal
rate allocation. They also show that the rates per unit
charge are proportionally fair. In [4], the authors consider
the same problem as in [3] but solve it using the dual.
Since the dual is a convex programming problem, there
is no duality gap between it and the primal. Hence, by
solving the dual problem, the optimal primal solution
(the optimal rate allocation) can be obtained. In this
paper, the authors use a gradient projection algorithm
for the dual and show that the algorithm converges to the
optimal solution. Their algorithm is implemented using
Random Exponential Marking (REM) in a following
paper [5]. In [6], the authors develop a a Nash bargaining
solution that is proportionally fair and Pareto-optimal.
The authors solve the dual problem using a gradi-
ent projection algorithm and implement the algorithm
with resource management packets in the Asynchronous
Transfer Mode (ATM) network context. In [7], the au-
thors use a similar approach as in [3]. However, they
consider the problem with random loss in the network
and implement the algorithm using Explicit Congestion
Notification (ECN) marking. In [8], a window based
algorithm is proposed by generalizing the works in [3]
and [10]. In [9], the authors propose a subgradient based
algorithm using the number of congested links on the
user’s path as an indicator of network congestion.

The common feature in the afore-mentioned works is
that they all require the utility functions to be concave,
resulting in a convex programming problem. However,
as mentioned before, concave utility functions are appro-
priate only for modeling traditional data services, and do
not capture the characteristics of services such as audio
and video that are becoming increasingly popular on the
Internet. Hence, for the efficient allocation of transmis-
sion rates among services with diverse characteristics, a
rate control algorithm must be able to efficiently handle
real-time services with sigmoidal-like utility functions as
well as data services with concave utility functions.

In this paper, we will study this problem by con-
sidering a situation similar to the current Internet. In
the Internet, there is no central authority in the system

that performs admission control or rate control and each
user behaves in a selfish manner. Thus, a rate control
algorithm must be implemented in a distributed manner
taking into account the selfish behavior of users. In the
papers mentioned earlier, it has been shown that if all
users have concave utility functions, efficient distributed
rate allocations can be obtained using an appropriate
congestion indicator in the network, in spite of the selfish
behavior of users. However, as we will show later, if
such algorithms developed for for concave functions are
now applied to non-concave functions, the system can
become unstable and could cause excessive congestion
in the network.

A seemingly logical approach to deal with the issue
of non-convexity is to simply approximate a sigmoidal-
like utility function with a concave function and use one
of the proposed algorithms for concave utility functions.
However, this approach could result in a highly ineffi-
cient solution. For example, suppose that a system has
a single bottleneck link with capacity 10 Mbps and 11
users. Further suppose that each user has the same utility
function U(x) that is a step function described below.

U(x) =

{
0, if x < 1 Mbps,
1, if x ≥ 1 Mbps.

Note that the step function is an extreme case of a
sigmoidal-like function. We can approximateU(x) with
a concave functionU ′(x) by taking a concave hull of
U(x) as following:

U ′(x) =

{
x, if x < 1 Mbps,
1, if x ≥ 1 Mbps.

Then, at the global optimal rate allocation with utility
function U ′(x), each user is allocatedx∗ = 10

11 Mbps,
which providesU ′(x∗) = 10

11 but U(x∗) = 0. Hence,
with this approach, we achieve zero total system utility
for the original utility function. However, by allocating
1 Mbps to 10 users and zero to one user, we can achieve
a total system utility of 10 units.

Even though the above example considers an extreme
case, it emphasizes that to efficiently accommodate di-
verse services in the Internet, it is necessary to develop a
rate allocation algorithm that takes into account the prop-
erties of both convex and sigmoidal-like utility functions.
In this paper, we will study this problem and focus on
issues of convergence and efficiency.

The rest of the paper is organized as follows. In
Section II, we describe the system model and present
the problem that is being considered in this paper. We
propose and study the rate control algorithm in Section
III. For the sake of brevity, proofs are omitted. Interested
readers are referred to our technical report [11]. We
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provide numerical results for the proposed algorithm in
Section IV and conclude in Section V.

II. SYSTEM DESCRIPTION AND BASIC PROBLEM

We consider a system that has a single bottleneck
link with capacity C, as shown in Fig. 2. There are
N users that use the bottleneck link. Each useri has
a utility functionUi and maximum transmission rateMi

(0 < Mi < ∞). We assume thatUi has the following
properties.
Properties of the utility function:

(U1) Ui is an increasing function ofxi theallocated
rate for useri.

(U2) Ui has one inflection point,xo
i , 0 ≤ xo

i < Mi,
and d2Ui(xi)

dx2
i

> 0 for x < xo
i and d2Ui(xi)

dx2
i

< 0
for x > xo

i .
(U3) Ui is continuous and differentiable.

Remark 1:The utility function that satisfies the above
properties is either a concave or a sigmoidal-like func-
tion.

Our objective is to obtain a transmission rate allocation
for each user that maximizes the total system utility. This
is formulated as:

(A) max
N∑

i=1

Ui(xi)

subject to
N∑

i=1

xi ≤ C

0 ≤ xi ≤ Mi,∀ i,

where xi is the allocated data rate for useri. To
avoid trivialities, we will assume throughout the paper
that

∑N
i=1 Mi > C. Note that since we allow non-

concave utility functions, problem (A) is a non-convex
programming problem, which, usually, is more difficult
to solve than a convex programming problem. In [12], a
similar problem to (A) was studied in the context of the
power allocation in wireless environment. However, the
algorithm in [12] requires a central controller, such as a
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Fig. 2. A system with a single bottleneck link.

base-station in cellular systems, which is clearly not ap-
plicable to decentralized networks, such as the Internet.
In this paper, we will take a different approach to solve
problem (A), resulting in a decentralized solution.

III. R ATE CONTROL

In this section, we develop a distributed rate control
algorithm for problem (A). We will use the theory of
subdifferentials in this paper. For background, we first
provide definitions and properties of subdifferentials. We
refer readers to [13], [14], [15] for details.

Definition 1: A vector d ∈ Rn is a subgradient of a
convex functionf : Rn → R at x ∈ Rn, if

f(z) ≥ f(x) + (z − x)T d, for all z ∈ Rn.
Definition 2: The set of all subgradients of a convex

function f at x ∈ Rn is called the subdifferential off
at x and denoted by∂f(x).
Properties of the subgradient:

(S1) A function f(x) is differentiable atx, if and
only if it has a unique subgradient atx. In this
case, the subgradient is equal to the gradient of
f at x.

(S2) x ∈ X ⊂ Rn minimizes a convex function
f over a convex setX, if and only if there
exists a subgradientd such thatdT (z − x) ≥
0, for all z ∈ X, wheredT is a transpose of a
vectord.

(S3) If x is an interior point ofX, then (S2) implies
that x minimizes a convex functionf over a
convex setX, if and only if 0 ∈ ∂f(x).

(S4) f ′(x; y) = maxd∈∂f(x) yT d, for all y ∈ Rn,
wheref ′(x; y) is a directional derivative off
at x in the directiony and defined by

f ′(x; y) = lim
h↓0

f(x + hy)− f(x)
h

.

A. Dual problem

As mentioned before, problem (A) is a non-convex
programming problem, which is difficult to solve. We
will consider its dual since the dual has some advantages
over the primal problem. For exampe:

• The dual problem is a convex programming prob-
lem and is thus easier to solve.

• The separable property of the dual problem makes
it easy to implement the algorithm in a distributed
fashion.

• From a networking perspective, the dual problem
will usually have a smaller dimension and simpler
constraints than the primal problem. This will re-
duce the complexity of the algorithm. In our case,
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the primal problem has a dimension ofN and the
dual problem has a dimension ofL, whereN is
the number of users in the network andL is the
number of links in the network. In general, we have
L � N1.

However, since the primal is not a convex program-
ming problem (e.g., if some of the utility functions are
sigmoidal), there could be a duality gap between primal
and its dual. Hence, by solving the dual, we may not
obtain the optimal primal solution. This is one of the
difficulties that we will overcome in this work, especially
in the context of many users.

We now define a Lagrangian function associated with
problem (A) as:

L(x̄, λ) =
N∑

i=1

Ui(xi) + λ(C −
N∑

i=1

xi), (1)

wherex̄ = (x1, x2, · · · , xN )T . Then, the dual of problem
(A) can be defined as:

(B) min Q(λ)
subject to λ ≥ 0,

where

Q(λ) = max
0̄≤x̄≤M̄

L(x̄, λ), (2)

M̄ = (M1, M2, · · · , MN )T , 0̄ = (0, 0, · · · , 0)T , and
the inequality between the two vectors is a component-
wise inequality (i.e.,x̄ ≤ M̄ implies xi ≤ Mi for
i = 1, 2, · · · , N ). It can easily be shown thatQ(λ) is
a convex function ofλ [15]. However, as we will show
later,Q(λ) may not be everywhere differentiable. Hence,
even thoughQ(λ) is a convex function, we cannot use a
simple gradient based algorithm to find a minimizer as
in [4], [6], since Q(λ) does not have a gradient at the
point where it is not differentiable.

To solve problem (B), we will first study the properties
of Q(λ) by using the theory of the subdifferentials. We
now characterize the subdifferentials ofQ(λ). Note that
L(x̄, λ) in Equation (1) is separable in̄x. Thus, x̄(λ)
solves Equation (2) if and only if it solves the following:

xi(λ) = arg max
0≤x≤Mi

{Ui(x)− λx},∀ i. (3)

The properties ofxi(λ) were studied in [12]. First, we
defineλmax

i for useri as:

λmax
i = min{0 ≤ λ < ∞ | max

0≤x≤Mi

{Ui(x)− λx} = 0}.
(4)

1Since, in this paper, we focus on a single bottleneck link,L = 1

We can calculate it by the following equation:

λmax
i =




dUi(x)
dx |x=0, if xo

i = 0,
dUi(x)

dx |x=x′ , if 0 < xo
i < Mi andx′ exists,

Ui(Mi)
Mi

, otherwise,

wherexo
i is an inflection point ofUi andx′ is a solution

of the following equation:

Ui(x)− x
dUi(x)

dx
= 0, xo

i ≤ x ≤ Mi.

Also, defineλmin
i for useri as:

λmin
i = max{λ ≥ 0|xi(λ) = Mi}.

Obviously, λmax
i > 0 and λmax

i ≥ λmin
i . Then, xi(λ)

has the following properties.
Properties of xi(λ):

(R1) If Ui is a sigmoidal-like function (i.e.,xo
i > 0),

xi(λ) has two values (zero and positive) and is
discontinuous atλmax

i . Otherwise,xi(λ) has a
unique value and is continuous.

(R2) xi(λ) is positive and a decreasing function of
λ, for λmin

i ≤ λ < λmax
i .

(R3) xi(λ) is zero, forλ > λmax
i .

(R4) xi(λ) is Mi, forλ ≤ λmin
i .

(R5) Ui(xi(λmax
i )) is achieved at the concave region

of Ui.

Note that, if Ui is a concave function,xi(λ) is a con-
tinuous and non-increasing function. However, ifUi is a
sigmoidal-like function,xi(λ) is not only discontinuous
but also has two values atλmax

i . In the sequel,xi(λ)
always implies a positive value, if Equation (3) has two
solutions.

Since the Lagrangian function,L(x̄, ·), is differen-
tiable for all 0̄ ≤ x̄ ≤ M̄ , and ∂L(·,λ)

∂λ is continuous
on 0̄ ≤ x̄ ≤ M̄ for eachx̄, by Danskin’s Theorem [15]
the subdifferential ofQ(λ), ∂Q(λ), is obtained as:

∂Q(λ) = conv({∂L(x̄, λ)
∂λ

| x̄ ∈ x̄(λ)}), (5)

wherex̄(λ) is a set of solutions of Equation (3) atλ, and
conv(G) is a convex hull of a setG. Hence, by using
the properties ofxi(λ), the subdifferential ofQ at λ is
obtained by

∂Q(λ) =




{d | C −
∑

j∈Hi∪Si

xj(λmax
i ) if xo

i > 0,

≤ d ≤ C −
∑
j∈Hi

xj(λmax
i )}, λ = λmax

i ,

{C −
N∑

j=1

xj(λ)}, otherwise,

(6)
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where we divide the set of users into three subsets of
users corresponding to each useri as

Hi = {j | λmax
j > λmax

i , 1 ≤ j ≤ N}, (7)

Si = {j | λmax
j = λmax

i , 1 ≤ j ≤ N}, and (8)

Li = {j | λmax
j < λmax

i , 1 ≤ j ≤ N}. (9)

We now solve the dual problem (B). The next propo-
sition tells us that problem (B) has a unique solution.

Proposition 1: The dual problem (B) has a unique
optimal solutionλo > 0.
However, as shown in Equation (6), ifxo

i > 0 for Ui (i.e.,
Ui is a sigmoidal-like function), then the subgradient
of Q(λ) at λmax

i is not unique, while, for concave
utility functions, the subgradient ofQ(λ) is unique. This
implies that, by property (S1), ifUi is a sigmoidal-like
function, Q(λ) is not differentiable atλ = λmax

i and,
otherwise,Q(λ) is differentiable. Hence, there may not
exist a gradient ofQ(λ) for all λ ≥ 0. Thus, we cannot
use a gradient based method to solve problem (B) and
we will consider a subgradient projection method, which
is formulated using an iterative algorithm such as:

λ(n+1) = [λ(n) − α(n)(C −
N∑

i=1

xi(λ(n))]+, (10)

where xi(λ(n)) is a solution of Equation (3) atλ =
λ(n) and [a]+ = max{a, 0}. By Equation (6),C −∑N

i=1 xi(λ(n)) is a subgradient ofQ(λ) at λ = λ(n). To
make Equation (10) converge toλo, the optimal solution
of Problem (B), we must have an appropriate sequence of
α(n). In gradient based algorithms in [4], [6], there exists
a constant step size,α(n) = α, such thatλ(n) converges
to λo. However, in the subgradient based algorithm, we
cannot guarantee convergence ofλ(n) using a constant
step size, since the subgradient,C−∑N

i=1 xi(λ(n)), that
we use in Equation (10), may not be zero atλo. Hence,
we will consider the following sequence:

α(n) → 0, asn →∞ and
∞∑

n=1

α(n) = ∞. (11)

We can then show (as given by the next Proposition) that
λ(n) in Equation (10) converges to the optimal solution
λo of the dual problem (B), with the sequence that
satisfies conditions in Equation (11).

Proposition 2: The series ofλ(n) that are generated
by Equations (3) and (10) withα(n) in Equation (11) all
converge toλo, the optimal solution of problem (B).

B. Distributed algorithm for the dual problem

In the previous subsection, we have established that
the solution of Equations (3) and (10) with coefficients

satisfying Equation (11) converges to the dual optimal
solution. This algorithm can be implemented in a dis-
tributed way. At iterationn, useri transmits its data at
a rate determined by solving Equation (3) withλ =
λ(n). In this case, we can interpretλ(n) as the price
per unit rate at iterationn. With this interpretation, by
solving Equation (3), useri tries to maximize its net
utility without considering other users. This is a natural
property of selfishness (non-cooperative property) of the
user in a public environment, such as the Internet. Also,
we can interpretλmax

i as the maximum willingness to
pay per unit rate of useri, since the price per unit rate
λ is higher thanλmax

i , xi(λ) will be zero by property
(R3) (i.e., useri does not transmit its data.). Note that
the utility and the net utility must be calculated with
the allocated rate. However, the user cannot know its
allocated rate in advance before it transmits data. Thus,
the user maximizes its net utility with the transmission
rate assuming that the allocated rate is same as the
transmission rate. Based on the aggregate transmission
rate of users, a node updates the price per unit rate of
the next iteration by solving Equation (10). This implies
that a node tries to obtain the optimal price per unit rate
that solves the dual problem by adjusting it based on the
congestion level. Also, the node tries to maximize the
utilization of its capacity without causing congestion by
equating the aggregate transmission rate of users with its
capacity.

C. Properties of the primal solution

Thus far, we have considered the dual problem of
problem (A) and proposed an algorithm that converges to
an optimal solutionλo of the dual problem. When there
is no duality gap between the primal problem (A) and
the dual problem (B), this results in an optimal solution
of the primal, sincēx(λo) is an optimal solution of the
primal problem (A). However, when some of the utilities
are non-concave the primal problem (A) is not a convex
programming problem. In which case there could exist
a duality gap between the primal and its dual, i.e., the
solution of the dual problem (B) need not be the optimal
solution of the primal problem (A). In this paper, we
are more interested in the rate allocation (the primal
solution) than the price (the dual solution). Thus, it is
important to study how “good” a primal solution can be
obtained by solving its dual. To that end, we next study
the properties of the primal solution corresponding to its
dual optimal solution.

Proposition 3: Suppose thatλo is an optimal solution
of the dual problem (B). Then, if Equation (3) has a
unique solution atλo for all i and

∑N
i=1 xi(λo) = C,
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then, x̄(λ(n)) converges tox̄(λo). Moreover, it is a
global optimal rate allocation. Otherwise,x̄(λ(n)) may
not converge, even thoughλ(n) converges toλo.
If the condition in Proposition 3 is satisfied, by solving
the dual problem (B), we can obtain an optimal solution
of problem (A). However, if the condition in Proposition
3 is not satisfied, we cannot obtain a primal optimal
solution by solving its dual. This happens when there
exists a userko such thatxo

ko > 0 and one of the
following conditions are satisfied:

(i)
∑

i∈Hko

xi(λmax
ko ) < C − ε1 and

∑
i∈Hko∪Sko

xi(λmax
ko ) > C + ε2,

(ii)
∑

i∈Hko

xi(λmax
ko ) ≤ C and

∑
i∈Hko∪Sko

xi(λmax
ko ) > C + ε3, or (12)

(iii)
∑

i∈Hko

xi(λmax
ko ) < C − ε4 and

∑
i∈Hko∪Sko

xi(λmax
ko ) ≥ C,

where ε1, ε2, ε3, and ε4 are some positive constants.
In this case, since0 ∈ ∂Q(λko), λko is a dual optimal
solution andλ(n) converges to it. However, whenλ(n)

converges toλko , the rate allocation oscillates between
the feasible solution and the infeasible solution, and does
not converge. Since the rate allocation can be infeasible,
(i.e., the aggregate transmission rate of users can exceed
the capacity of the node), congestion may occur in
the node. Note that this situation happens because of
the discontinuity ofxi(λ) when Ui is a sigmoidal-like
function. Thus, if there exist users having sigmoidal-
like utility functions, the rate allocation resulting from
solving the dual problem, such as the algorithms in [4],
[6] (that converges to an efficient rate allocation with
concave utility functions), may cause congestion without
convergence.

To resolve this situation, we will impose a “self-
regulating” property on the users. In the next subsection,
we will study the “self-regulating” property and show
that using the “self-regulating” property, the algorithm
converges to the feasible primal solution that is an
asymptotically optimal rate allocation.

D. “Self-regulating” property

To study the “self-regulating” property, we assume
that the condition in Proposition 3 is not satisfied in
this subsection. Thus, there exist userko and subsets of

users,Hko , Sko , andLko that satisfy one of conditions
in Equation (12).

We first define what we mean by the “self-regulating”
property and make additional assumptions for the con-
vergence of the algorithm having the “self-regulating”
property.

Definition 3: Self Regulating Property:The property
of a user that it does not transmit data even though the
price is less than its maximum willingness to pay, if
it realizes that it will receive non-positive net utility is
called the “self-regulating” property.
Note that, with the “self-regulating” property, users
continue to be selfish, i.e., they still preserve the non-
cooperative property.
Assumptions:

(A1) Each user is “self-regulating”, i.e., it satisfies
the “self-regulating” policy.

(A2) Each useri has a threshold of tolerancethi

such that if it does not transmit data because
the price is higher than its maximum will-
ingness to pay or if it receives negative net
utility by transmitting data forthi iterations
consecutively (i.e., it receives non-positive net
utility for thi iterations consecutively), it stops
transmitting data.

(A3) The node allocates a rate to each user as

x′i(λ) =

{
xi(λ), if

∑N
j=1 xj(λ) ≤ C,

fi(x̄(λ)), if
∑N

j=1 xj(λ) > C,

wherexi(λ) is the transmission rate of useri
at priceλ andfi is a continuous function of̄x
that satisfies the following conditions:

fi(x̄) < xi and
N∑

i=1

fi(x̄) = C.

A good candidate for functionfi is

fi(x̄) =
xi∑N

j=1 xj

C,

which can be achieved by the First Come First Service
(FCFS) policy.

We first define the net utility for useri at priceλ and
received rater as

NUi(λ, r) = Ui(r)− λr

and the maximum net utility of useri at the priceλ as

NUmax
i (λ) = max

0≤r≤Mi

{Ui(r)− λr}.

Now, assume that the algorithm in Equations (3) and (10)
is at themth iteration such thatλmax

Lko
< λ(n) < λmax

Hko
for

all n ≥ m, whereλmax
Lko

= maxi∈Lko{λmax
i } andλmax

Hko
=
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mini∈Hko{λmax
i }. Since λ(n) converges toλmax

ko , the
dual optimal solution andλmax

Lko
< λmax

ko < λmax
Hko

, there
exists such anm that satisfies the above condition. In
this case, users in setLko do not transmit data, since
the price is higher than their maximum willingness to
pay. We can divide the situations into two cases. First,
suppose thatλ(n) > λmax

ko . Then, users in setSko do
not transmit data, since the price is higher than their
maximum willingness to pay and their net utility will
be zero. But useri, i ∈ Hko transmits data at a rate
xi(λ(n)) and it is allocated a ratex′i(λ(n)) = xi(λ(n)),
since

∑
i∈Hko xi(λ(n)) < C by the conditions given in

Equation (12). Hence, it obtains positive net utility, since

0 = NUi(λmax
i , xi(λmax

i ))

= Ui(xi(λmax
i ))− λmax

i xi(λmax
i )

< Ui(xi(λmax
i ))− λ(n)xi(λmax

i )

≤ NUmax
i (λ(n))

= NUi(λ(n), xi(λ(n))).

Now, suppose thatλ(n) < λmax
ko . Then, useri,

i ∈ Sko ∪ Hko transmits data at a ratexi(λ(n))
and it is allocated a ratex′i(λ(n)) < xi(λ(n)), since∑

i∈Sko∪Hko xi(λ(n)) > C by conditions in Equation
(12). In this case, we can show that ifλ(n) is close
enough toλmax

ko and users in setSko transmit data, they
obtain negative net utilities. Sincexi(λ) is a continuous
function of λ for λmax

Lko
< λ ≤ λmax

ko and fi is a
continuous function of̄x by assumption (A3),x′i(λ) is a
continuous function ofλ for λmax

Lko
< λ ≤ λmax

ko . Thus,
NUi(λ, x′i(λ)) is also a continuous function ofλ for
λmax

Lko
< λ ≤ λmax

ko . Moreover, for useri, i ∈ Sko ,

0 = NUmax
i (λmax

ko )

= Ui(xi(λmax
ko ))− λmax

ko xi(λmax
ko )

> Ui(x′i(λ
max
ko ))− λmax

ko x′i(λ
max
ko )

= NUi(λmax
ko , x′i(λ

max
ko )), (13)

where the inequality comes from the fact that
Ui(xi(λmax

ko )) is in the concave region by (R5). Since
NUi(λ, x′i(λ)) is a continuous function forλ for λmax

Lko
<

λ ≤ λmax
ko and NUi(λmax

ko , x′i(λmax
ko )) < 0, there exists

a constantεi such that if 0 ≤ λmax
ko − λ ≤ εi,

then useri, i ∈ Sko obtains negative net utility (i.e.,
NUi(λ, x′i(λ)) < 0) when it transmits data at price
λ. This implies that there existsεi > 0 such that if
|λ − λmax

ko | ≤ εi, useri, i ∈ Sko , receives negative net
utility by transmitting data. Further, sinceλ(n) converges
to λmax

ko , there exists anmi such that|λ(n)−λmax
ko | < εi

for all n ≥ mi. Hence, by the “self-regulating” property
in assumption (A1), useri, i ∈ Sko stops transmitting
data after iterationmi.

However, even if there exists iterationmi after which
user i, i ∈ Sko receives negative net utility by trans-
mitting data, it is not easy for the user to realize that
moment. For example, during a transient period, the
user may receive negative net utility, even though it may
receive positive net utility in the future. Hence, it may not
be a good strategy to stop transmitting data immediately
after it receives negative net utility. Thus, the idea behind
(A2), to turn useri off not immediately, but only after it
has received non-positive net utility forthi consecutive
iterations. This implies that, by appropriately choosing
thi, useri stops transmitting data only afterthi iterations
of iteration mi. After some users in the setSko stop
transmitting data, we can always have a situation such
that ∑

i∈Hko∪SR
ko

xi(λmax
ko ) < C, (14)

whereSR
ko is a set of users that are still transmitting data

among users in setSko . Thus, for the remaining users in
setHko ∪ SR

ko , we can find aλ∗ < λmax
ko such that∑

i∈Hko∪SR
ko

xi(λ∗) =
∑

i∈Hko∪SR
ko

Mi ≤ C, (15)

or
∑

i∈Hko∪SR
ko

xi(λ∗) = C. (16)

We can easily show that if Equation (15) is satisfied,
x̄(λ(n)) converges toM̄ , which is a global optimal rate
allocation for the remaining users in setHko ∪ SR

ko .
Also, if Equation (16) is satisfied, by Proposition 3, the
algorithm converges to the global optimal rate allocation
for the remaining users in setHko ∪ SR

ko . Note that,
in this scheme, it is important to have an appropriate
threshold of tolerance,thi. If it is too small, useri may
stop transmitting data during the transient period, even
if it can receive positive net utility in the future. On the
other hand, if it is too large, the algorithm may take very
long to converge.

As long as the users are “self-regulating”, the pro-
posed algorithm converges to the feasible rate alloca-
tion. Hence, our rate control algorithm does not cause
congestion within the network even with non-concave
utility functions. However, we still need to study its
efficiency, since it may not result in a globally optimal
rate allocation for all users, even though it results in an
optimal rate allocation for the remaining users. Thus, in
the following, we study the efficiency of the proposed
rate allocation. We still assume that there exist subsets
of usersHko,(N), Sko,(N), andLko,(N) that satisfy one of
conditions in Equation (12), since, otherwise, we know
that our rate allocation is a global optimal rate allocation



8

for all users. Further, assume thatSR
ko,(N) is the set of the

remaining users in Equation (14). Here,N is the number
of users in the system.

First, We define the following variables.

• x̄o
(N): the global optimal rate allocation.

• λmax
ko,(N): the dual optimal solution.

• x̄(N)(λ): the transmission rate atλ.
• x̄∗(N): the proposed rate allocation.
• λ∗(N): an equilibrium price at the proposed rate

allocation.

Then, the next proposition gives us an upper bound on
the difference between the global optimal rate allocation
and the proposed rate allocation.

Proposition 4:
N∑

i=1

Ui(xo
i,(N)) −

∑N
i=1 Ui(x∗i,(N)) ≤∑

i∈SC
ko,(N)

Ui(xi,(N)(λ
max
ko,(N))), whereSC

ko,(N) = Sko,(N) −

SR
ko,(N).

The next theorem immediately follows from Proposition
4.

Theorem 1:If
∑N

i=1 Ui(xo
i,(N)) → ∞ and∑

i∈SC
ko,(N)

Ui(xi,(N)(λmax
ko,(N)))∑N

i=1
Ui(xo

i,(N))
→ 0 asN →∞,

then
∑N

i=1
Ui(x∗i,(N))∑N

i=1
Ui(xo

i,(N))
→ 1 asN →∞.

Corollary 1: If
∑N

i=1 Ui(xo
i,(N)) → ∞ as N → ∞

andλmax
i 6= λmax

j for i 6= j,

then
∑N

i=1
Ui(x∗i,(N))∑N

i=1
Ui(xo

i,(N))
→ 1 asN →∞.

Theorem 1 and Corollary 1 show the asymptotic opti-
mality of our rate allocation. In other words, our rate
allocation is a good approximation of a global optimal
rate allocation when there are many users in a system
with large capacity and the number of users in setSC

ko,(N)
is relatively small. Hence, for our algorithm to converge
to an efficient rate allocation, we need the condition that
the number of users in setSC

ko,(N) is relatively small.
We will study the effect that this condition has on the
efficiency of our algorithm later and also propose some
methods to make this number small.

Thus far, we have shown that the algorithm based
on the subgradient and the “self-regulating” property
converges to the feasible and asymptotically optimal
rate allocation. As mentioned before, in the subgradient
based algorithm, we cannot guarantee convergence with
a constant step size. Hence, we use a step size that
diminishes to zero. However, the constant step size
can more efficiently track system variations, such as
initiation and completion of calls than the diminishing
step size. In the next theorem, we will show that if each
user applies the “self-regulating” property, there exists a

constant step sizeα for which the algorithm in Equations
(3) and (10) converges.

Theorem 2:With the “self-regulating” property of
users, there exists a constant step sizeα with which the
proposed algorithm converges.

E. Complexity

In this subsection, we compare the complexity of our
subgradient based algorithm that considers both concave
and sigmoidal-like utility functions with that of the
gradient based algorithms in [4], [6] that consider only
concave utility functions.

To calculate the price of the next iteration, the sub-
gradient based algorithm uses a subgradient while the
gradient algorithm uses a gradient. Further, in general,
we cannot guarantee convergence of the subgradient
algorithm with a constant step size, while the gradient
based algorithm converges with a constant step size.
However, in our algorithm, a subgradient is calculated
from the difference between the capacity and the ag-
gregate transmission rate of all users that use the node,
which is similar to calculating a gradient in the gradient
based algorithm. Moreover, in Theorem 2, we have
shown that our algorithm converges even with a constant
step size when each user is “self-regulating”. Thus, our
algorithm and the algorithms in [4], [6] have the same
price update rule at the node. This implies that we need
not modify the algorithm for concave utility functions at
the node to allow sigmoidal-like utility functions.

Further, both of the algorithms have the same update
rule for the transmission rate in each user, even though
we require “self-regulating” property of users for conver-
gence of our algorithm. This property is required because
xi(λ) in Equation (3) is not continuous atλmax

i , if the
utility function of user i is a sigmoidal-like function.
However, if the utility function of useri is a concave
function, xi(λ) is continuous and we do not need the
“self-regulating” property for useri. Hence, compared
with the algorithms in [4], [6], in our algorithm, we
only have to add the “self-regulating” property to users
with sigmoidal-like utility functions. This requires only
calculating the received net utility by measuring the
received rate. This can be easily done by counting the
number of ACK packets or by explicit notification of the
received rate from the destination.

F. The worst case

In the previous subsection, we have shown that the
proposed rate allocation could be a good approximation
of the global optimal rate allocation. However, it could
also be inefficient in certain cases. Here, we show an
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example of the worst case and provide solutions to
resolve it. We assume that each useri has the same
utility function U that is a sigmoidal-like function and
the same threshold of toleranceth. By assuming that
each user has the same utility function, each user has
the same maximum willingness to payλmax. Further
assume that

∑N
i=1 xi(λmax) > C. In this case,Hko = ∅,

Lko = ∅, and Sko = {1, 2, · · · , N}. Moreover, all
users in setSko stop transmitting data at the same time
(i.e., SC

ko = {1, 2, · · · , N}), since all users have the
same threshold of toleranceth. Hence, the system utility
achieved by the proposed rate allocation will be zero.

To resolve this problem, we propose two solutions that
attempt to make the number of users in setSC

ko small.
If the number of user in setSC

ko is small, by Proposition
4, we can obtain an efficient rate allocation that is a
good approximation of the global optimal rate allocation.
First, we can slightly perturb (randomly) the utility
function of each user. By doing this, each useri has a
different maximum willingness to pay,λmax

i , with high
probability while making the effect on the performance
of each user small. This makes the number of users in
setSko (and, thus,SC

ko) small with high probability, since
users in setSko have the same maximum willingness to
pay λmax

ko . Second, we can assume that the threshold of
tolerance of each user depends on the preference of the
user. Thus, some users can tolerate negative net utility
for a long time while some users can tolerate it for a
short time. This makes users stop transmitting data at
different iterations even if they have the same maximum
willingness to pay. Hence, the number of users in set
SC

ko can be small.

IV. N UMERICAL RESULTS

In this section, we provide simulation results using an
ns-2 simulator. We consider a single bottleneck system
in Fig. 2. In this figure, we provide the capacity and
the propagation delay of each link. Useri transmits
packets from source nodeSi to destination nodeDi with
utility function Ui. Users 1 and 4 have a sigmoidal utility
function defined as

Ui(x) = ci(
1

1 + e−ai(x−bi)
+ di),

where ci and di are used for the normalization of the
function andx is a rate in a unit of Megabit per second
(Mbps). Users 2 and 3 have a log utility function defined
as

Ui(x) = ci(log(aix + bi) + di).

In this simulation, we normalize the utility function such
that Ui(0) = 0 and Ui(Mi) = 1, where Mi is the
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Fig. 3. The utility function of each user.

maximum transmission rate of useri (it is not necessary
to normalize the utility function). Useri has its threshold
of tolerance,thi and starts transmitting data packets at
time sti sec. We provide parameters for each user in
Table I and plot the utility function of each user in Fig.
3.

The node updates its price per unit rate every 200
msec using Equation (10) with a constant step size of
0.03. To forward the price to users, we add a field for
the price in the header of a packet. Whenever a packet
passes through a node, the node writes its current price
in the field and it is sent to the destination. At the
destination, the price in the received packet is copied to
the field of an ACK packet and is sent to the source. We
assume that a data packet and an ACK packet consist
of 500 bytes and 40 bytes, respectively. The source
estimates the received rate by counting the number of
ACK packets and calculates the received utility and the
received net utility by using the estimated received rate.
By the transmission rate update rule, if the price becomes
higher than its maximum willingness to pay, a user does
not transmit data packets. However, if the user does
not transmit data packets during the transient period, it
cannot be informed of the price for the next iteration,
since the price is conveyed by ACK packets from the
destination in our simulation setting. Thus, we allow
the user to transmit packets at a very low rate, even
though its transmission rate that maximizes its net utility
is zero during the transient period. By doing this, the user
can be informed the price for the next iteration by the
ACK packets from the destination. To that end, in the
simulation, a user transmits two packets that consist of
40 bytes, every iteration (200 msec).

We compare two systems: a system with the “self-
regulating” property and a system without the “self-
regulating” property. Note that the algorithm for the
system without the “self-regulating” property is the same
as the gradient based algorithms in [4], [6]. Thus, the re-
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TABLE I

PARAMETERS FOR USERS.

User i Type ai bi Mi thi sti λmax
i xi(λ

max
1 ) xi(λ

max
4 )

1 Sigmoid 15 0.6 1 20 0 1.210 0.756 0
2 Log 50 1 1 20 10 12.717 0.190 0.179
3 Log 10 1 1 20 20 4.170 0.245 0.226
4 Sigmoid 20 0.6 1 20 50 1.276 0.734 0.731
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Fig. 4. Transmission data rate.

sults for this system show the behavior of the algorithms
developed in the literature for concave utility functions
when applied to a network supporting users with both
concave and sigmoidal utility functions. We plot the
transmission rate, the received rate, and the received net
utility of each user in Figs. 4, 5, and 6, respectively. We
also compare the variation of the price per unit rate of
each system in Fig. 7.

The results show that before user 4 starts transmitting
packets (50 sec), the two systems yield the same results.
When only users 1, 2, and 3 are in the system, as
shown in Table I,x1(λmax

1 ) + x2(λmax
1 ) + x3(λmax

1 ) =
1.191 (Mbps)< 1.5 (Mbps), whereλmax

1 is the smallest
maximum willingness to pay among those of users in
the system. Thus, we can haveλo < λmax

1 such that
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Fig. 5. Received data rate.

x1(λo)+x2(λo)+x3(λo) = 1.5 (Mbps) that satisfies the
condition in Proposition 3 and the algorithm converges to
the optimal rate allocation without relying on the “self-
regulating” property of users.

However, when all four users are in the system, as
shown in Table I,x1(λmax

1 ) + x2(λmax
1 ) + x3(λmax

1 ) +
x4(λmax

1 ) = 1.925 (Mbps) > 1.5 (Mbps) and
x2(λmax

1 ) + x3(λmax
1 ) + x4(λmax

1 ) = 1.169 (Mbps) <
1.5 (Mbps), whereλmax

1 is the smallest maximum will-
ingness to pay among users. Thus, there is noλo such
thatx1(λo)+x2(λo)+x3(λo)+x4(λo) = 1.5 (Mbps) and
the condition in Proposition 3 is not satisfied. Therefore,
in the system without the “self-regulating” property, after
user 4 starts transmitting packets, the transmission rate
of user 1 (the primal solution) keeps oscillating, as
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Fig. 6. Received net utility.

shown in Fig. 4(a), even though the price (the dual
solution) in Fig. 7 converges to aroundλmax

1 = 1.210
(the dual optimal solution), as proven in Proposition 3. In
this case, when user 1 transmits packets, the aggregate
transmission rate of all users exceeds the capacity of
the node. This causes congestion at the node and a
large number of losses of packets for all users. Thus,
as shown in Figs. 4(a) and 5(a), each user has a large
difference between the transmission rate and the received
rate. Further, due to these packet losses, some users
have negative received net utility, even though each user
determines its transmission rate by Equation (3) so that
it has non-negative net utility assuming that there is no
packet loss. As shown in Fig. 6(a), after user 4 starts
transmitting packets, the net utility of user 1 goes to a
non-positive value and the net utility of user 4 oscillates
between positive and negative values. These results show
that if there exist users with non-concave utility functions
in the system, using a rate control algorithm devised only
for concave utility functions could result in an unstable
system as well as a large amount of network congestion.

However, in the system with the “self-regulating”
property, as shown in Fig. 4(b), user 1 stops transmit-
ting packets due to the “self-regulating” property, after
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having received non-positive net utility values forth1

consecutive iterations. After user 1 stops transmitting
packets, as shown in Table I,x2(λmax

4 ) + x3(λmax
4 ) +

x4(λmax
4 ) = 1.136 (Mbps) < 1.5 (Mbps), whereλmax

4

is the smallest maximum willingness to pay among those
of users that remain in the system. Thus, we can have
λ∗ < λmax

4 = 1.276 such thatx2(λ∗) + x3(λ∗) +
x4(λ∗) = 1.5 (Mbps). This satisfies the condition in
Proposition 3 and the algorithm converges to the global
optimal rate allocation for the remaining users. In this
case, the aggregate transmission rate for users converges
to the capacity of the node (1.5 Mbps). Thus, as shown
in Figs. 4(b) and 5(b), the transmission rate of each user
converges and the received rate of each user is almost
same as its transmission rate. This implies that with
the “self-regulating” property, the system stabilizes and
congestion is alleviated.

In these results, we must note that user 1 that has
already been in the system stops transmitting packets by
the arrival of a new user (user 4). It may be undesirable
to interrupt existing services.2 However, recall that, in
this paper, we consider the situation that is similar to
the current Internet in which the system does not have
a central authority for call admission control and rate
control, and a user adjusts its transmission rate according
to a congestion indicator from the system without con-
sidering the other users. In such a situation, as shown in
the results, by continuing to transmit packets, user 1 has
negative net utility value as well as a large number of
packet losses that might be unsatisfactory to the service.
Therefore, it may be beneficial not only to the other users
but also to user 1 itself for it to stop transmitting packets.
User 1 may restart its transmission after some random
time3.

2This happens because of the property of utility and pricing based
algorithms. Hence, this may happen even in the system in which all
users have concave utility functions, if users do not have the minimum
rate that must be guaranteed or their maximum willingness to pays
are not infinity.

3Finding a good strategy for this will be a topic for future research.
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The results also tell us the following. First, a service
with a concave utility function can be better adapted to
congestion on the link than a service with a sigmoidal-
like utility function. The former can adjust its transmis-
sion data rate gradually according to the congestion level
on the link, while the latter can adjust its transmission
rate gradually only up to a certain level. Further, the
former has a higher degree of adaptation to the level
of the congestion than the latter. This implies that by
modeling traditional data services with concave utility
functions and real-time streaming services as sigmoidal-
like utility functions, we can exploit the characteristics
of each service appropriately. Second, if a real-time
service with a sigmoidal-like utility function wants to
have a higher priority to be served than a data service
with a concave utility function, it must have a higher
maximum willingness to pay than the data service. In
this case, in general, the real-time service pays more for
the service than the data service, since real-time service
keep transmitting data even though the data services stop
transmitting because of the high price. This implies that
the real-time service must be more expensive than the
data service. Thirdly, when a new service enters into
the network, it may be inevitable to interrupt existing
services to preserve the system efficiency without incur-
ring congestion. Hence, to prevent this from happening,
the system should have an appropriate, preferably dis-
tributed, call admission control that admits a new service
if it does not interrupt existing (real-time) services.

V. CONCLUSION

In this paper, we studied the distributed rate control
algorithm by considering both sigmoidal-like and con-
cave utility functions. We showed that in the presence
of sigmoidal-like utility functions, an algorithm that
converges to an efficient rate allocation for a system
with only concave utility functions, may not converge,
exhibiting oscillatory behavior. Further, such algorithms
may result in excessive congestion within the network.
This implies that rate control algorithms that have been
developed only for concave functions might be inef-
ficient in more realistic settings. To overcome these
difficulties, we have developed a distributed algorithm
where each user has a “self-regulating” property. Our
algorithm works for both sigmoidal-like and concave
utility functions. We have shown that our algorithm
converges to the asymptotic optimal rate allocation and
that its complexity is comparable to that of algorithms
developed only for concave utility functions.

In this paper, we have focused on the study of the
stability and the optimality issues of the non-convexity in
rate control considering a system with a single bottleneck

system. In future work we will investigate the imple-
mentation of the algorithms in a network with multiple
bottleneck links. Here, the issues are on how to aggregate
the prices from multiple bottleneck links to provide users
with the signal to self-regulate.
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