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Abstract—In this paper, we investigate the problem of of the QoS in the presence of network congestion. The
distributively allocating transmission rates to users on elasticity of these services can be modeled by concave
the Internet. We allow users to have concave as well astjlity functions [1]. The other corresponds to real-time
sigmoidal uti_lity functions tha_t are natural in_the_C(_)ntext of services, such as streaming video and audio services.
various applications. In the literature, for simplicity, most These services are less elastic than data services. In

works have dealt only with the concave case. However, wer nse to network conaestion. th n decr their
show that when applying rate control algorithms developed €Sponse 1o network congestion, they can decrease the

for concave utility functions in a more realistic setting (with  (ransmission rates up to a certain level with a corre-

both concave and sigmoidal types of utility functions), sponding graceful degradation in the QoS. However, de-
could lead to instability and high network congestion. creasing the transmission rate below a certain threshold

We show that a pricing based mechanism that solves theresults in a significant drop in the QoS (e.g., below a
dual formulation can be developed based on the theory certain bit rate, the quality of audio communication falls
of subdifferentials with the property that the prices “self- dramatically). The elasticity of these services can be
regulate” the users to access the resource based on the Nelhodeled by using sigmoidal-like utility functions [1].

utility. We discuss convergence issues and show that an . . . . o
algorithm can be developed that isefficient in the sense of We ‘?a” .a.n mcreaSlr]g fur.\ctlog‘"(_x) a 5'92«3}9('9)&' like
function if it has one inflection point,, and > 0,

achieving the global optimum when there are many users. d2 dx?
for x < z, and d’;(f) < 0, for z > z,, as shown in Fig.
1.

There have been a number of papers that have studied
|. INTRODUCTION utility based rate control problems by exploiting the

There has been a lot of interest in the area of Interr@lfisticity of services, e.g., [2], [3], [4], [5], [6], [7],
rate control. Most Internet services are elastic to sortfd: [9]. Most of these works use a utility and pricing
degree, i.e., the sources can adjust their transmissfEimework that attempts to obtain the optimal rate allo-
rates in response to congestion levels within the netwofi@dtion that maximizes the total system utility using the
Hence, by appropriately exploiting the elasticity througﬁrice as a control signal. In this framework, the network
rate control, one can maintain high network efficiencgnnounces the price that measures the congestion level of
while at the same time alleviating network congestion.
To that end, it is necessary to have an appropriate
model to characterize the elasticity of the service. This is
typically done using the well known concept of a utility
function that represents the level of user satisfaction or
Quality of Service (QoS) at the allocated rate.

We can classify services in the Internet into two
classes based on the shape of the utility function. One
corresponds to traditional data services, such as file
transfer and email. These services can adjust their trans-
mission rates gradually, resulting in graceful degradation Data rate

Utility
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the network to the users. Based on this price, each usigat performs admission control or rate control and each
adjusts its transmission rates in an attempt to maximiaeer behaves in a selfish manner. Thus, a rate control
its net utility, which is defined by algorithm must be implemented in a distributed manner
Uz) - Az taking into a(_:count the_ self_ish behavior of users. In_ the
’ papers mentioned earlier, it has been shown that if all
whereU is a utility function, X is price for unit rate, and users have concave utility functions, efficient distributed
z is the amount of rate allocation. rate allocations can be obtained using an appropriate
In [2], the author shows that the problem can beongestion indicator in the network, in spite of the selfish
decomposed into the user problem and the netwdskhavior of users. However, as we will show later, if
problem. Based on the decomposed problem, the authsush algorithms developed for for concave functions are
in [3] propose a distributed algorithm with a penaltyjow applied to non-concave functions, the system can
function method that converges to the global optimalecome unstable and could cause excessive congestion
rate allocation. They also show that the rates per umitthe network.
charge are proportionally fair. In [4], the authors consider A seemingly logical approach to deal with the issue
the same problem as in [3] but solve it using the dualf non-convexity is to simply approximate a sigmoidal-
Since the dual is a convex programming problem, thelike utility function with a concave function and use one
is no duality gap between it and the primal. Hence, lf the proposed algorithms for concave utility functions.
solving the dual problem, the optimal primal solutiotdowever, this approach could result in a highly ineffi-
(the optimal rate allocation) can be obtained. In thigent solution. For example, suppose that a system has
paper, the authors use a gradient projection algoritransingle bottleneck link with capacity 10 Mbps and 11
for the dual and show that the algorithm converges to theers. Further suppose that each user has the same utility
optimal solution. Their algorithm is implemented usinfunction U (z) that is a step function described below.
Random Exponential Marking (REM) in a following :
7 0, if x <1 Mbps,
paper [5]. In [6], the authors develop a a Nash bargaining U(x) = { :
. . . ) . 1, if x > 1 Mbps
solution that is proportionally fair and Pareto-optimal.
The authors solve the dual problem using a gradiote that the step function is an extreme case of a
ent projection algorithm and implement the algorithreigmoidal-like function. We can approximatgx) with
with resource management packets in the Asynchronaugoncave functiorU/’(z) by taking a concave hull of
Transfer Mode (ATM) network context. In [7], the auU(z) as following:
thors use a similar approach as in [3]. However, they .
) ) . , z, if z <1 Mbps
consider the problem with random loss in the network Uz) = { .
) ) ) - . 1, if z>1 Mbps
and implement the algorithm using Explicit Congestion
Notification (ECN) marking. In [8], a window basedThen, at the global optimal rate allocation with utility
algorithm is proposed by generalizing the works in [Junction U’(z), each user is allocated® = 12 Mbps,
and [10]. In [9], the authors propose a subgradient basetich providesU’(z*) = % but U(z*) = 0. Hence,
algorithm using the number of congested links on theith this approach, we achieve zero total system utility
user’s path as an indicator of network congestion.  for the original utility function. However, by allocating
The common feature in the afore-mentioned works isMbps to 10 users and zero to one user, we can achieve
that they all require the utility functions to be concave total system utility of 10 units.
resulting in a convex programming problem. However, Even though the above example considers an extreme
as mentioned before, concave utility functions are apprease, it emphasizes that to efficiently accommodate di-
priate only for modeling traditional data services, and derse services in the Internet, it is necessary to develop a
not capture the characteristics of services such as audite allocation algorithm that takes into account the prop-
and video that are becoming increasingly popular on teeties of both convex and sigmoidal-like utility functions.
Internet. Hence, for the efficient allocation of transmidn this paper, we will study this problem and focus on
sion rates among services with diverse characteristicissues of convergence and efficiency.
rate control algorithm must be able to efficiently handle The rest of the paper is organized as follows. In
real-time services with sigmoidal-like utility functions assection I, we describe the system model and present
well as data services with concave utility functions. the problem that is being considered in this paper. We
In this paper, we will study this problem by conpropose and study the rate control algorithm in Section
sidering a situation similar to the current Internet. Iil. For the sake of brevity, proofs are omitted. Interested
the Internet, there is no central authority in the systeraaders are referred to our technical report [11]. We



provide numerical results for the proposed algorithm imase-station in cellular systems, which is clearly not ap-
Section IV and conclude in Section V. plicable to decentralized networks, such as the Internet.
In this paper, we will take a different approach to solve

Il. SYSTEM DESCRIPTION AND BASIC PROBLEM problem (A), resulting in a decentralized solution.

We consider a system that has a single bottleneck m
link with capacity C, as shown in Fig. 2. There are
N users that use the bottleneck link. Each usdras
a utility functionU; and maximum transmission raie;
(0 < M; < ). We assume thal/; has the following
properties.
Properties of the utility function:

(U1) U; is an increasing function of; the allocated
rate for users.

(U2) U; has one inflection pointy¢, 0 < a9 < M;, f(z) > f(z) + (z —z)'d, for all z € R".
and ZU) > 0 for z < 29 and L2 < 0 Definition 2: The set of all subgradients of a convex
for z > mil-o. i function f at z € R" is called the subdifferential of

(U3) U; is continuous and differentiable. atz and denoted by f(z).

Remark 1: The utility function that satisfies the above roperties of the subgradient:
properties is either a concave or a sigmoidal-like func- (S1) A function f(z) is differentiable atr, if and

. RATE CONTROL

In this section, we develop a distributed rate control
algorithm for problem (A). We will use the theory of
subdifferentials in this paper. For background, we first
provide definitions and properties of subdifferentials. We
refer readers to [13], [14], [15] for details.

Definition 1: A vectord € R" is a subgradient of a
convex functionf : R* — R atx € R", if

tion. only if it has a unique subgradient at In this
Our objective is to obtain a transmission rate allocation case, the subgradient is equal to the gradient of
for each user that maximizes the total system utility. This [ atz.

is formulated as: (S2) =z € X C R™ minimizes a convex function
N f over a convex sefX, if and only if there

(A) maXZ Us () exists a subgradient such thatd” (z — z) >
i=1 0, for all z € X, whered” is a transpose of a

N vectord.

subjectto Y x; <C (S3) Ifz is an interior point ofX, then (S2) implies

6=1< < MoV g that 2 minimizes a convex functiorf over a
=T = MoV b convex setX, if and only if 0 € 9f (x).
where z; is the allocated data rate for user To  (S4) f'(z;y) = maxsegr)y’d, for all y € R",

avoid trivialities, we will assume throughout the paper where f'(x;y) is a directional derivative of
that >, M; > C. Note that since we allow non- atx in the directiony and defined by
concave u_t|I|ty functions, problem (A) is a non-convex ) — 1 flz+ hy) — f(z)
programming problem, which, usually, is more difficult fxy) = }1?8 h

to solve than a convex programming problem. In [12], a
similar problem to (A) was studied in the context of thg\ Dual problem
power allocation in wireless environment. However, the’

algorithm in [12] requires a central controller, such as aAS Mentioned before, problem (A) is a non-convex
programming problem, which is difficult to solve. We

will consider its dual since the dual has some advantages
over the primal problem. For exampe:

« The dual problem is a convex programming prob-
lem and is thus easier to solve.

« The separable property of the dual problem makes
it easy to implement the algorithm in a distributed
fashion.

« From a networking perspective, the dual problem
will usually have a smaller dimension and simpler
constraints than the primal problem. This will re-

Fig. 2. A system with a single bottleneck link. duce the complexity of the algorithm. In our case,
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the primal problem has a dimension 8f and the We can calculate it by the following equation:

dual problem has a dimension @f, where N is U ()

the number of users in the network aiidis the d(jkf )|w=07 if 27 =0,
number of links in the network. In general, we have; " = i le=ar, 10 <z < M; anda’ exists
L < N L) otherwise,

However, since the primal is not a convex program- . . . . . .
. ) o i wherex? is an inflection point of/; andz’ is a solution
ming problem (e.g., if some of the utility functions ares e féllowin cquation:
sigmoidal), there could be a duality gap between primai g€d '
and its dual. Hence, by solving the dual, we may not dU;(x) o

. . . ; C () —x——"r = 0 < < M,.
obtain the optimal primal solution. This is one of the Ui(w) — @ dx 0, zisr< M
_d|ff|cult|es that we will overcome in this work, espeuallyAISO, defineA;”m for useri as:
in the context of many users.

We now define a Lagrangian function associated with A — max{\ > 0|z;(\) = M;}.
problem (A) as: ) ,
Obviously, \7*** > 0 and A\[*** > A" Then, z;(\)
N N has the following properties.

Lz ) = > Ui(z) +MC =) @), (1) Properties of x;()\):

=1 =1
(R1) If U; is a sigmoidal-like function (i.ez$ > 0),

wherez = (x1,x2,---,2n)". Then, the dual of problem z;(\) has two values (zero and positive) and is
(A) can be defined as: discontinuous ah?***. Otherwise,z;(\) has a
(B) min Q(\) unique value and is continuous.
(R2) =x;()\) is positive and a decreasing function of
subject to A >0, A, for Xin <\ < \mer,
where (R3) zi(A) is zero, fora > A,
(R4) () is M;, fora < A,
Q(\) = max L(z,\), 2) (R5) Ui(xi(Aj***)) is achieved at the concave region
0<z<M of U;.

M = (My,Ms,---,My)T, 0 = (0,0,---,0)T, and Note that, ifU; is a concave functiong;(\) is a con-
the inequality between the two vectors is a componeff2Uous and non-increasing function. Howeveri/ifis a
wise inequality (i.e..z < M implies z; < M; for sigmoidal-like function,z;() is not only discontinuous
i =1,2,---,N). It can easily be shown thap()) is but also has two values ag"*. In the sequely;(})
a convex function of\ [15]. However, as we will show always implies a positive value, if Equation (3) has two
later, @(\) may not be everywhere differentiable. Henc&lutions. _ o
even thoughQ()\) is a convex function, we cannot use a Since the l_agranglanifunctlol;%((.gi,)-)., is_ differen-
simple gradient based algorithm to find a minimizer d&ble for all 0 < z < M, and =53~ is continuous
in [4], [6], since Q()\) does not have a gradient at th@n 0 <z < M for eachz, by Danskin's Theorem [15]
point where it is not differentiable. the subdifferential of2(A), 9Q(}), is obtained as:

To solve problem (B), we will first study the properties OL(z, \)

of Q(\) by using the theory of the subdifferentials. e~ 9Q(\) = conv({—2== [z €z(N)}), (5)

now characterize the subdifferentials@f\). Note that ~ ] ) )
wherez(\) is a set of solutions of Equation (3) &t and

L(z,)\) in Equation (1) is separable in. Thus, z(\) _ _
solves Equation (2) if and only if it solves the following<°nv(G) is @ convex hull of a set. Hence, by using
the properties ofc;(\), the subdifferential of) at A is

zi(A) = arg OSII;%}]{%{U}(JI) —Ar},Vi. (3) obtained by

The properties ofc;(\) were studied in [12]. First, we d]C- _EI;JS (N iy >0,
i max . . J i I0q
define \7*** for user: as: <d<C-— Z z;(AM9T)) )\ = ymar
)\maw . . 0 < )\ U )\ . 0 aQ()\) = i, J 1 7
i =min{0 <A <oo | max {Ui(x) - Av} =0} N
(4) {C = z;(N)}, otherwise
7j=1

ISince, in this paper, we focus on a single bottleneck libks: 1 (6)



where we divide the set of users into three subsets satisfying Equation (11) converges to the dual optimal
users corresponding to each usexs solution. This algorithm can be implemented in a dis-
] ] tributed way. At iterationn, user: transmits its data at
Hi = {j[ A/ >N", 1<j <N, () 3 rate determined by solving Equation (3) with =
Sio= {7 A =N"" 1<j< N}, and (8) A", In this case, we can interprét™ as the price
Li = {j A/ <A, 1<j <N} (9) per unit rate at iteratiom. With this interpretation, by
solving Equation (3), usef tries to maximize its net
~We now solve the dual problem (B). The next propqgiliy without considering other users. This is a natural
sition tell§.us that problem (B) has a unique solutl_on. property of selfishness (non-cooperative property) of the
Proposition 1: The dual problem (B) has & uniqu€ser in a public environment, such as the Internet. Also,
optimal solutionA® > 0. _ _ _ we can interpret\*** as the maximum willingness to
However, as shown in Equation (6).if > 0for U; (i.e., nay per unit rate of usei, since the price per unit rate
Ui is a sigmoidal-like function), then the subgradient ;g higher than\7a%, z;(\) will be zero by property
of Q(A) at \j"** is not unique, while, for concave rs) (je., user does not transmit its data.). Note that
utility functions, the subgradient @(2) is unique. This e yiility and the net utility must be calculated with
implies that, by property (S1), ; is a sigmoidal-like he gjiocated rate. However, the user cannot know its
function, Q(}) is not differentiable ath = A7"*" and, gigcated rate in advance before it transmits data. Thus,
otherwise,Q(1) is differentiable. Hence, there may Nofhe yser maximizes its net utility with the transmission
exist a gradient of)()) for all A > 0. Thus, we cannot (51 assuming that the allocated rate is same as the
use a gradient based method to solve problem (B) afdnsmission rate. Based on the aggregate transmission
we will consider a subgradient projection method, whichye of users, a node updates the price per unit rate of
is formulated using an iterative algorithm such as:  he next jteration by solving Equation (10). This implies

N that a node tries to obtain the optimal price per unit rate

AT = A — a0 =32 (AM)] T, (10)  that solves the dual problem by adjusting it based on the

i=1 congestion level. Also, the node tries to maximize the

where z;(A\(") is a solution of Equation (3) ah = Utilization of its capacity without causing congestion by
A" and [a]t = max{a,0}. By Equation (6),C — equating the aggregate transmission rate of users with its

SN 2;(A™) is a subgradient of)(\) at A = A(™), To capacity.
make Equation (10) converge &8, the optimal solution
of Problem (B), we must have an appropriate sequence-of

€' Properties of the primal solution
o™ In gradient based algorithms in [4], [6], there exists P P

a constant step size™ = a, such that\(") converges  Thus far, we have considered the dual problem of
to A°. However, in the subgradient based algorithm, woblem (A) and proposed an algorithm that converges to
cannot guarantee convergenceX®) using a constant @n optimal solutiom\° of the dual problem. When there
step size, since the subgradiefit— "N, z;(A(), that is no duality gap between the primal problem (A) and
we use in Equation (10), may not be zerodt Hence, the dual problem (B), this results in an optimal solution

we will consider the following sequence: of the primal, sincer(\°) is an optimal solution of the
- primal problem (A). However, when some of the utilities

o™ 0. asn — oo and 3 o™ = . (11) are non-concave the primal problem (A) is not a convex
1 programming problem. In which case there could exist

We can then show (as given by the next Proposition) tkfaatduf”‘”ty gap between the primal and its dual, i.e.,_ the
A" in Equation (10) converges to the optimal Solutioﬁolutlon of the dual problem (B) need not be the optimal

\° of the dual problem (B). with the sequence thas[olution of the primal problem (A). In this paper, we
satisfies conditions in Equati(’)n (11) are more interested in the rate allocation (the primal

Proposition 2: The series of\(") that are generated§OIUti0n) than the price (the dual solution). Thus, it is

by Equations (3) and (10) with(™) in Equation (11) all mpo_rtant to stud_y h(_JW “good” a primal solution can be
converge tox°, the optimal solution of problem (B). obtained by solving its dual. To that end, we next study
' the properties of the primal solution corresponding to its

o _ dual optimal solution.
B. Distributed algorithm for the dual problem Proposition 3: Suppose thai® is an optimal solution
In the previous subsection, we have established thdtthe dual problem (B). Then, if Equation (3) has a
the solution of Equations (3) and (10) with coefficientanique solution at\° for all + and Zf\il z;(A\°) = C,



then, Z(A\(")) converges toz(\°). Moreover, it is a users,Hy., Si., and L. that satisfy one of conditions
global optimal rate allocation. Otherwisg(\(™)) may in Equation (12).

not converge, even thougki™ converges to\°. We first define what we mean by the “self-regulating”
If the condition in Proposition 3 is satisfied, by solvingrroperty and make additional assumptions for the con-
the dual problem (B), we can obtain an optimal solutiovergence of the algorithm having the “self-regulating”
of problem (A). However, if the condition in Propositiorproperty.

3 is not satisfied, we cannot obtain a primal optimal Definition 3: Self Regulating Propertyfhe property
solution by solving its dual. This happens when thef a user that it does not transmit data even though the
exists a userk® such thatz, > 0 and one of the price is less than its maximum willingness to pay, if

following conditions are satisfied: it realizes that it will receive non-positive net utility is
called the “self-regulating” property.
(i) Y m(A\T) < C —e and Note that, with the “self-regulating” property, users
i€ Heo continue to be selfish, i.e., they still preserve the non-
Y @A) > C+ e, cooperative property.
i€ HyoUSko Assumptions:
(ii) Z z;(A7%%) < C' and (A1) Each user is “self-regulating”, i.e., it satisfies
i€Hyo the “self-regulating” policy.
Z Ti(A) > C + €3, or  (12) (A2) Each user; has a threshold of tolerandg;
i€ Hy,0USyo such that if it does not transmit data because
(iif) Z (A1) < C' — ¢4 and the price is higher than its maximum will-
i€Hpo ingness to pay or if it receives negative net
Z z(A92) > O, utility by_transmittir_lg dat._al forth,; iteral_ti_ons
i€HUSko consecutively (i.e., it receives non-positive net
- utility for ¢h; iterations consecutively), it stops
where €1, €2, €3, and e, are some positive constants. transmitting data.

In this case, sinc® c dQ(Ar-), M- is @ dual optimal A3y The node allocates a rate to each user as
solution andA(™ converges to it. However, whek("™)

converges to\,., the rate allocation oscillates between 20 = { zi(N), if Z] 1z5(A) < C,
the feasible solution and the infeasible solution, and does ‘ fi@N), it Yl (A > O,
not converge. Since the rate allocation can be infeasible, wherez;()) is the transmission rate of usér
(i.e., the aggregate transmission rate of users can exceed at pricez)\ and f; is a continuous function af
the capacity of the node), congestion may occur in that satisfies tﬁe following conditions:

the node. Note that this situation happens because of ’
the discontinuity ofz;(\) when U; is a sigmoidal-like
function. Thus, if there exist users having sigmoidal- fi(z) <z and Zfl =
like utility functions, the rate allocation resulting from

solving the dual problem, such as the algorithms in [4f\ 90od candidate for functior; is

[6] (that converges to an efficient rate allocation with fi@) = Ti o

™ . . . 1 - Y
concave utility functions), may cause congestion without ZNzl Zj
convergence.

o - which can be achieved by the First Come First Service
To resolve this situation, we will impose a “self-
(rl]:CFS) policy.

regulating” property on the users. In the next subsectio 'We first define the net utility for usérat price A and
we will study the “self-regulating” property and show
« " received rate- as
that using the “self-regulating” property, the algorlthm
converges to the feasible primal solution that is an NU;(\,7) = U(r)—Mr

asymptotically optimal rate allocation. _ o . )
and the maximum net utility of userat the price\ as

“Self-regulating” property NU(A) = jmax {Ui(r) — Ar}.
To study the “self-regulating” property, we assumBlow, assume that the algorithm in Equations (3) and (10)
that the condition in Proposition 3 is not satisfied iis at themth iteration such thak7'e* < A" < x7az for
this subsection. Thus, there exist ug€rand subsets of all n > m, where 7" = max;cr,, {\]"**} and G =



min,e g, {AM**}. Since AW converges toA2*, the However, even if there exists iteration; after which
dual optimal solution and7'%" < A\ji** < A\j%*, there useri, i € Sk receives negative net utility by trans-
exists such anm that satisfies the above condition. Immitting data, it is not easy for the user to realize that
this case, users in sdi;. do not transmit data, sincemoment. For example, during a transient period, the
the price is higher than their maximum willingness taser may receive negative net utility, even though it may
pay. We can divide the situations into two cases. Firsgceive positive net utility in the future. Hence, it may not
suppose that\(® > A, Then, users in seb;. do be a good strategy to stop transmitting data immediately
not transmit data, since the price is higher than theifter it receives negative net utility. Thus, the idea behind
maximum willingness to pay and their net utility will(A2), to turn user off not immediately, but only after it
be zero. But uset, i € Hy. transmits data at a ratehas received non-positive net utility feh; consecutive
z;(A\™) and it is allocated a rate;(A\(™) = z;(A\("), iterations. This implies that, by appropriately choosing
since iy, z;(\") < C by the conditions given in th;, useri stops transmitting data only afteh; iterations
Equation (12). Hence, it obtains positive net utility, sincef iteration m;. After some users in the sef;. stop

max o transmitting data, we can always have a situation such
= Us(zi(N")) = XA
max n max Ti(Ap"") < Ca 14
< Ui(mOe)) — Az () i O =
< NUPEOr) hereSf i t of that till t itting dat
whereS}; is a set of users that are still transmitting data
= NUAM,2,(A™)). ¢ Y

among users in séf;.. Thus, for the remaining users in
Now, suppose that\(®) < Amaez - Then, useri, SetHy.U SE . we can find a\* < A%* such that
i € Sp U Hp transmits data at a rate;(\(") .
L . (AY) = M; < 15
and it is allocated a rate;(A\(") < z;(A\("), since ‘EHXEJSR zi(A7) .EHZEJSR i< 0 (19
. . . 1 o o 1 o ;0
Sicswu. Ti(A™) > C by conditions in Equation H e
(12). In this case, we can show that X" is close o
enough to\/2** and users in sef. transmit data, they or HZSR zi(A) = C. (16)
obtain negative net utilities. Sineg(\) is a continuous 1e ke oo
function of A for \7%* < X < Ame® and f; is a We can easily show that if Equation (15) is satisfied,
continuous function of: by assumption (A3)z,(\) is a Z(A(™) converges tal/, which is a global optimal rate
continuous function of\ for \7%%* < )\ < A\mer Thus, allocation for the remaining users in séfy. U SE.
NU;(A, 2i())) is also a continuous function of for Also, if Equation (16) is satisfied, by Proposition 3, the
Amar <\ < \mar Moreover, for uset, i € Sio, algorithm converges to the global optimal rate allocation
k© - .. .
for the remaining users in set;. U S¥. Note that,
0 = NUmaz(\maz) : : S ,
i k in this scheme, it is important to have an appropriate

= Ui(xi(A)) — N (A threshold of tolerance;. If it is too small, useri may

> Up(a (A7) — Naz gl (Amae) stop transmitting data during the transient period, even
= NU;(A g (\maz)) (13) if it can receive positive net utility in the future. On the
- ANAY LA R AN )

other hand, if it is too large, the algorithm may take very
where the inequality comes from the fact thdbng to converge.

Ui(z;(A2**)) is in the concave region by (R5). Since As long as the users are “self-regulating”, the pro-
NU;(A, z3(N)) is a continuous function fok for \7'%* < posed algorithm converges to the feasible rate alloca-
A < AR and NU; (AR, 2 (A*)) < 0, there exists tion. Hence, our rate control algorithm does not cause
a constante; such that if0 < A& — A < ¢, congestion within the network even with non-concave
then useri, i € Si. obtains negative net utility (i.e., utility functions. However, we still need to study its
NU;(\, zi(N\)) < 0) when it transmits data at priceefficiency, since it may not result in a globally optimal
A. This implies that there exists; > 0 such that if rate allocation for all users, even though it results in an
A — A*| < ¢, useri, i € S, receives negative netoptimal rate allocation for the remaining users. Thus, in
utility by transmitting data. Further, sincé™ converges the following, we study the efficiency of the proposed
to A\;2%*, there exists am; such thaﬂ)\(”) — A\ <¢; rate allocation. We still assume that there exist subsets
for all n > m;. Hence, by the “self-regulating” propertyof userst. (n), Sko (n), and L. () that satisfy one of

in assumption (Al), usef, i € Si. Stops transmitting conditions in Equation (12), since, otherwise, we know
data after iterationn;. that our rate allocation is a global optimal rate allocation



for all users. Further, assume tt#ft ,;, is the set of the constant step size for which the algorithm in Equations
remaining users in Equation (14). Herg,is the number (3) and (10) converges.

of users in the system. Theorem 2:With the “self-regulating” property of
First, We define the following variables. users, there exists a constant step siagith which the
« @{y,: the global optimal rate allocation. proposed algorithm converges.
o Ajo(n)- the dual optimal solution.
« T(n(M): the transmission rate at E. Complexity
* T{x)- the proposed rate allocation. In this subsection, we compare the complexity of our
. )‘SN): an equilibrium price at the proposed ratgyhgradient based algorithm that considers both concave

allocation. and sigmoidal-like utility functions with that of the

Then, the next proposition gives us an upper bound gradient based algorithms in [4], [6] that consider only

the difference between the global optimal rate allocati@moncave utility functions.

and the proposed rate allocation. To calculate the price of the next iteration, the sub-
. N . N . gradient based algorithm uses a subgradient while the

Proposition 4: 3 Ui (7 ) — Lili Us(ef(y)) < gradient algorithm uses a gradient. Further, in general,

1=1 .
mag we cannot guarantee convergence of the subgradient
Z Ul(xzv(N)()\kO ))1 WhereSkC;)’(N) = Sku’( ) — g g g

- (V) algorithm with a constant step size, while the gradient
SR’“°’<”’ based algorithm converges with a constant step size.
ke (N)* . . ... _However, in our algorithm, a subgradient is calculated

The next theorem immediately follows from Proposmo? . .
4 rom the difference between the capacity and the ag-

gregate transmission rate of all users that use the node,
which is similar to calculating a gradient in the gradient
based algorithm. Moreover, in Theorem 2, we have

Theorem 1:If ZfilUi(xf(N)) — oo an

X . max
ZiESEOY(N) Ui(@s, v (A& n))

—0asN — oo,

Z:VL Us(@? (n)) shown that our algorithm converges even with a constant
then M —~1asN — oo. step size when each user is “self-regulating”. Thus, our
2 i Ui ) algorithm and the algorithms in [4], [6] have the same

Corollary 1: If Yo, Ui(af ) — o0 @SN — oo
and A" £ N for i # g,
Zjvzl Ui(x:(N))

price update rule at the node. This implies that we need
not modify the algorithm for concave utility functions at
S —~1asN — co. the node to allow sigmoidal-like utility functions.

=1~ *\"i,(N)

Theorem 1 and Corollary 1 show the asymptotic opti- Further, both of the algorithms have the same update

! . rule for the transmission rate in each user, even though
mality of our rate allocation. In other words, our rate

o o imaye require “self-regulating” property of users for conver-
allocation is a good approximation of a global optima ence of our algorithm. This property is required because
rate allocation when there are many users in a syst g ) broperty .

with large capacity and the number of users in%t(m zi(A) in Equation (3) is not continuous ag"**, if the

. . . ytility function of useri is a sigmoidal-like function.
is relatively small. Hence, for our algorithm to convergE|0

o ! o wever, if the utility function of usei is a concave
to an efficient rate allocation, we need the condition that . . .
. ) . : unction, z;(\) is continuous and we do not need the
the number of users in sef; , is relatively small.

We will study the effect that this condition has on thes_elf—regulatlng property for user. Hence, c_ompared
- : with the algorithms in [4], [6], in our algorithm, we
efficiency of our algorithm later and also propose some

methods to make this number small. only have to add the “self-regulating” property to users

Thus far, we have shown that the algorithm base\zlgth sigmoidal-like utility functions. This requires only

. “ A calculating the received net utility by measuring the
on the subgradient and the “self-regulating” propert . . . .
. . . received rate. This can be easily done by counting the
converges to the feasible and asymptotically optima - o
. . . ._number of ACK packets or by explicit notification of the
rate allocation. As mentioned before, in the subgradient . e
) received rate from the destination.
based algorithm, we cannot guarantee convergence wi

a constant step size. Hence, we use a step size that

diminishes to zero. However, the constant step siZe The worst case

can more efficiently track system variations, such asin the previous subsection, we have shown that the
initiation and completion of calls than the diminishingproposed rate allocation could be a good approximation
step size. In the next theorem, we will show that if eaatf the global optimal rate allocation. However, it could
user applies the “self-regulating” property, there existsadso be inefficient in certain cases. Here, we show an

then



example of the worst case and provide solutions to ! L
resolve it. We assume that each usehas the same 08 e

utility function U that is a sigmoidal-like function and

the same threshold of toleran¢g. By assuming that 2%

each user has the same utility function, each user has S04 E—
the same maximum willingness to pay™**. Further i - U,
assume tha}"Y | z;(\"%*) > C. In this case Hy. = 0, 02/ Us
Lo = 0, and Sx. = {1,2,---,N}. Moreover, all G-" P "U"
users in sefS;. stop transmitting data at the same time 0 02 i laemips 0%t
(i.e., S = {1,2,---,N}), since all users have the

same threshold of toleran¢g. Hence, the system utility Fig. 3. The utility function of each user.

achieved by the proposed rate allocation will be zero.
To resolve this problem, we propose two solutions that

attempt to make the number of users in §&t small. _ o e
If the number of user in setC. is small, by Proposition maximum transmission rate of use(it is not necessary

4 we can obtain an efficient rate allocation that is 8 normalize the utility function). Userhas its threshold

good approximation of the global optimal rate aIIocatior‘I)_.f tolerance,th; and st%rts transmlttlngfdata pickets "’_‘t
First, we can slightly perturb (randomly) the utility"M€ st Sec. We provide parameters for each user in

function of each user. By doing this, each usdras a Table | and plot the utility function of each user in Fig.
different maximum willingness to pay;"**, with high

probability while making the effect on the performance The node updates its price per unit rate every 200
of each user small. This makes the number of usersfi$ec using Equation (10) with a constant step size of
setS;. (and, thusS,?o) small with high probability, since 0.03. To forward the price to users, we add a field for
users in setS;. have the same maximum willingness téhe price in the header of a packet. Whenever a packet
pay )\Zloam_ Second, we can assume that the threshold RASSES through a node, the node writes its current price
tolerance of each user depends on the preference of fhehe field and it is sent to the destination. At the
user. Thus, some users can tolerate negative net utif§stination, the price in the received packet is copied to
for a long time while some users can tolerate it for &€ field of an ACK packet and is sent to the source. We
short time. This makes users stop transmitting data @gsume that a data packet and an ACK packet consist
different iterations even if they have the same maximu@f 500 bytes and 40 bytes, respectively. The source

willingness to pay. Hence, the number of users in s@gtimates the received rate by counting the number of
SC, can be small. ACK packets and calculates the received utility and the

received net utility by using the estimated received rate.
By the transmission rate update rule, if the price becomes

_ _ . _ _ _ higher than its maximum willingness to pay, a user does
In this section, we provide simulation results using g yransmit data packets. However, if the user does

nsg S|rr21ul<|3ttorH_W<?_ consider a smgle tr)]ottleneck_ SYSI§IBt transmit data packets during the transient period, it
In Fig. 2. In this Tigure, we provide the capacity angannot be informed of the price for the next iteration,

the kprop}agatlon delay of ea(tjch !'nk'_ User(tjransmlrt]s since the price is conveyed by ACK packets from the
packets from source nod to destination nodd; wit destination in our simulation setting. Thus, we allow

utility function U;. Users 1 and 4 have a sigmoidal utiIitythe user to transmit packets at a very low rate, even

function defined as though its transmission rate that maximizes its net utility
U(z) = of 1 +dy), is zero during the transient period. By doing this, the user
1+ e~ailz=bi) can be informed the price for the next iteration by the
where ¢; and d; are used for the normalization of theACK packets from the destination. To that end, in the
function andz is a rate in a unit of Megabit per secongimulation, a user transmits two packets that consist of
(Mbps). Users 2 and 3 have a log utility function definedO bytes, every iteration (200 msec).
as We compare two systems: a system with the “self-
B regulating” property and a system without the “self-
Ui(z) = cilloglaiw +b;) + dy). regulating” property. Note that the algorithm for the
In this simulation, we normalize the utility function suctsystem without the “self-regulating” property is the same
that U;(0) = 0 and U;(M;) = 1, where M; is the as the gradient based algorithms in [4], [6]. Thus, the re-

IV. NUMERICAL RESULTS
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TABLE |
PARAMETERS FOR USERS
| Users || Type l a; | b; | M; | th; | sti | )\;maz I xi()\'inaz) | l‘i(AT‘n) |

1 Sigmoid | 15| 0.6 | 1 20| O 1.210 0.756 0
2 Log 50| 1 1 20 | 10 | 12.717 0.190 0.179
3 Log 10| 1 1 20 | 20 | 4.170 0.245 0.226
4 Sigmoid | 20 | 0.6 | 1 20 | 50 | 1.276 0.734 0.731

1 Userl 1 User2 1 Userl 1 User2

%0 5 %0.5 %O %O.S
0 0’ 0
0 50 100 0 50 100 100 0 5 100

50 0
Time (sec) Time (sec) Time (sec) Time (sec)
User3 User4 User3 User4

Data rate (Mbps)
=)
o (5]
Data rate (Mbps)
o
o @
Data rate (Mbps)
o
o 3
Data rate (Mbps)
o
@ -

100 G0

100

[
Q
1=}
o

50 50 50 50
Time (sec) Time (sec) Time (sec) Time (sec)

(a) Without self-regulating. (a) Without self-regulating.

Userl User2 Userl User2

Data rate (Mbps)
)
o [5] =
Data rate (Mbps)
o
S @ -
Data rate (Mbps)
o
o (5] =
Data rate (Mbps)
o
o 3l -
m

0 50 100 0 50 100 0 50 100 0 0 100
Time (sec) Time (sec) Time (sec) Time (sec)
User3 User4 User3 User4
1 1 1 1
H = H H
;.‘_; 0.5 % 0.5 % 0.5 % 0.5
s s s s
S 8 S 8
0 0 0 0
0 50 100 0 50 100 0 50 100 0 50 100
Time (sec) Time (sec) Time (sec) Time (sec)
(b) With self-regulating. (b) With self-regulating.
Fig. 4. Transmission data rate. Fig. 5. Received data rate.

sults for this system show the behavior of the algorithms (A°) +z2(A\°) +23(A°) = 1.5 (Mbps) that satisfies the
developed in the literature for concave utility functionsondition in Proposition 3 and the algorithm converges to
when applied to a network supporting users with bothe optimal rate allocation without relying on the “self-
concave and sigmoidal utility functions. We plot theegulating” property of users.
transmission rate, the received rate, and the received netlowever, when all four users are in the system, as
utility of each user in Figs. 4, 5, and 6, respectively. Wshown in Table |,z1(A7%%®) + xo(A7%%) + x3(A\]*9%) +
also compare the variation of the price per unit rate ef,(\7***) = 1.925 (Mbps) > 1.5 (Mbps) and
each system in Fig. 7. T2 (AT) + z3(AT") 4+ x4 (A*) = 1.169 (Mbps) <
The results show that before user 4 starts transmittihd (Mbps), whereA7*** is the smallest maximum will-
packets (50 sec), the two systems yield the same resuiligness to pay among users. Thus, there is\figuch
When only users 1, 2, and 3 are in the system, Hmtz;(\°)+x2(\°)+23(\°)+24(A°) = 1.5 (Mbps) and
shown in Table lz1 (A7) + x2(A"**) 4+ z3(A]***) = the condition in Proposition 3 is not satisfied. Therefore,
1.191 (Mbps) < 1.5 (Mbps), where\7*** is the smallest in the system without the “self-regulating” property, after
maximum willingness to pay among those of users imser 4 starts transmitting packets, the transmission rate
the system. Thus, we can hawé < A7"** such that of user 1 (the primal solution) keeps oscillating, as
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Fig. 7. Price.
(a) Without self-regulating.

having received non-positive net utility values ftir;
consecutive iterations. After user 1 stops transmitting
i packets, as shown in Table da(\]'%*) + x3( A7) +
x4(AJ**) = 1.136 (Mbps) < 1.5 (Mbps), whereX\]***
o o is the smallest maximum willingness to pay among those
Mo Mesra” of users that remain in the system. Thus, we can have
A* < AP = 1.276 such thatze(\*) + z3(\*) +
xz4(A*) = 1.5 (Mbps). This satisfies the condition in
Proposition 3 and the algorithm converges to the global

Userl User2
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o
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|
o
o
|
o
o

o
a
=3
o
a
=3

N
N

Netutility
o
o?
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ey Y g ™ optimal rate allocation for the remaining users. In this
case, the aggregate transmission rate for users converges
(b) With self-regulating. to the capacity of the node (1.5 Mbps). Thus, as shown
in Figs. 4(b) and 5(b), the transmission rate of each user
Fig. 6. Received net utility. converges and the received rate of each user is almost

same as its transmission rate. This implies that with
the “self-regulating” property, the system stabilizes and

shown in Fig. 4(a), even though the price (the du%ngestion is alleviated

solution) in Fig. 7 converges to around™** = 1.210

he dual ootimal soluti in P iton 3. | In these results, we must note that user 1 that has
(t 1e dua optimal solution), as proven in roposition 3. eready been in the system stops transmitting packets by
this case, when user 1 transmits packets, the aggregg

o . %earrival of a new user (user 4). It may be undesirable
transmission rate of all users exceeds the capacity interrupt existing serviceés However, recall that, in

. . 8
the node. This causes congestion at the node an(ish% paper, we consider the situation that is similar to
large numl_aer 9f losses of packets for all users. Thucﬁe current Internet in which the system does not have
as shown in Figs. 4(a) and 5_(a)., each user has a Iggg entral authority for call admission control and rate
difference between the transmission rate and the receN&htrol, and a user adjusts its transmission rate according

rate. Furthgr, due'to these .p.acket losses, some u36"a congestion indicator from the system without con-
have negative received net utility, even though each uge

q ) . - by E : 3 (ﬁering the other users. In such a situation, as shown in
_ etermines its trgnsmlsspr_l rate by _ quation (3) S0 ﬂ}% results, by continuing to transmit packets, user 1 has
it has non-negative net utility assuming that there is

ket | As sh in Fig. 6 t 4 r?1%gative net utility value as well as a large number of
packet loss. As shown in Fig. 6(a), after user Starﬁ%cket losses that might be unsatisfactory to the service.

transmltyhg pa::kets, ;hi het ut|I|_'|[y offuser 1490e$|| to '?herefore, it may be beneficial not only to the other users
hon-positive value and the net utility of user 4 oscillalgg 5154 1o yser 1 itself for it to stop transmitting packets.

between positive and negative values. These results srlgg\ér 1 may restart its transmission after some random
that if there exist users with non-concave utility functio m
Yy

in the system, using a rate control algorithm devised on

for concave utility functions could result in an unstable 2This happens because of the property of utility and pricing based

System as We” as a Iarge amount Of network Congestlmorlthms Hence, this may happen even in the system in which all

. . “ . __,users have concave utility functions, if users do not have the minimum

However, in the _SySt_em with the “self-regulating rate that must be guaranteed or their maximum willingness to pays
property, as shown in Fig. 4(b), user 1 stops transmire not infinity.

ting packets due to the “self-regulating” property, after *Finding a good strategy for this will be a topic for future research.
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The results also tell us the following. First, a serviceystem. In future work we will investigate the imple-
with a concave utility function can be better adapted toentation of the algorithms in a network with multiple
congestion on the link than a service with a sigmoidabottleneck links. Here, the issues are on how to aggregate
like utility function. The former can adjust its transmisthe prices from multiple bottleneck links to provide users
sion data rate gradually according to the congestion leweith the signal to self-regulate.
on the link, while the latter can adjust its transmission
rate gradually only up to a certain level. Further, the REFERENCES
former has a hlgher degree of adap_tat_lon j[O the Ievﬂ] S. Shenker, “Fundamental design issues for the future Internet,”
of the congestion than the latter. This implies that by * |EgE journal on selected area in communicatiomsl. 13, pp.
modeling traditional data services with concave utility —1176-1188, 1995.
functions and real-time streaming services as sigmoidak] F P- Kelly, “Charging and rate control for elastic traffic,

. . . . . European Transactions on Telecommunicatjorsd. 8, pp. 33—
like utility functions, we can exploit the characteristics 5, 1997

of each service appropriately. Second, if a real-timgs) £ p. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in
service with a sigmoidal-like utility function wants to communication networks: shadow prices, proportional fairness
have a higher priority to be served than a data service and stability,” Journal of the Operational Research Socjety

: . . . . vol. 49, pp. 237-252, 1998.

W'th_a Conc‘?‘\{e utility function, it must have a h_'gher[4] S. H. Low and D. E. Lapsley, “Optimization flow control-I:
maximum willingness to pay than the data service. In  basic algorithm and convergenc¢Z2EE/ACM Transactions on
this case, in general, the real-time service pays more for Networking vol. 7, pp. 861-874, 1999. _
the service than the data service, since real-time servi€d S: Athuraliya and S. H. Low, "Optimization flow control-Ii
o - Implementation,” submitted for publication.
keep transmitting data even though the data services St H. yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theo-
transmitting because of the high price. This implies that retic framework for bandwidth allocation and pricing of elastic
the real-time service must be more expensive than the connections in broadband networks: theory and algorithms,”
. . . . IEEE/ACM Transactions on Networkingol. 8, pp. 667—678,
data service. Thirdly, when a new service enters into ,5qq
the network, it may be inevitable to interrupt existing[7] s. Kunniyur and R. Srikant, “End-to-end congestion control
services to preserve the system efficiency without incur- schemes: utility function, random losses and ECN marks,” in
; ; ; ; IEEE Infocom’0Q 2000, pp. 1323-1332.
fing congestion. Hence, to prevent th.ls from happenlnis] R. J. La and V. Anantharam, “Utility-based rate control in
the system should have an appropriate, preferably diS- the intemet for elastic traffic,JEEE/ACM Transactions on
tributed, call admission control that admits a new service Networking vol. 10, pp. 272-286, 2002.

if it does not interrupt existing (real_time) services. [9] K. Kar, S. Sarkar, and L. Tassiulas, “A simple rate control al-
gorithm for maximizing total user utility,” iHEEE Infocom’01

2001, pp. 133-141.
V. CONCLUSION [10] J. Mo and J. Walrand, “Fair end-to-end window-based conges-
In this paper, we studied the distributed rate control tion control,” IEEE/ACM Transactions on Networkingol. 8,
Igorithm nsiderin h sigmoidal-like an - Pp. 556-567, 2000.
algorit i b)f/ co .S dering b?]t Sg ﬁd"’? he and co 111 J. W. Lee, R. R. Mazumdar, and N. B. Shroff.
Cavg uti It.y ur_]Ct'OnS_'_ We s O_W(e that in t ? presence (2003) Non-convexity issues for Internet rate control
of sigmoidal-like utility functions, an algorithm that with  multi-class ~ services: stability and optimality.
converges to an efficient rate allocation for a system Technical Report, Purdue University. [Online]. Available:
; o : http://expert.cc.purdue.edulee46/Documents/src.pdf
Wlth_ (,)nly ConFave utility fu_nctlons, may not conv«_argerlz] ——, “Downlink power allocation for multi-class CDMA wire-
exhibiting oscillatory behavior. Further, such algorithms ~ |ess networks” iINEEE Infocom’02 2002, pp. 1480—1489.
may result in excessive congestion within the networf.3] N. Z. Shor,Minimization methods for non-differentiable func-
This implies that rate control algorithms that have been _ tions Springer-Verlag, 1985. _ ,
. . . i14] M. Minoux, Mathematical programming:theory and algorithms
developed only for concave functions might be inet- Wiley, 1986.
ficient in more realistic settings. To overcome thesges] D. P. BertsekasNonlinear programming Athena Scientific,
difficulties, we have developed a distributed algorithm  1999.
where each user has a “self-regulating” property. Our
algorithm works for both sigmoidal-like and concave
utility functions. We have shown that our algorithm
converges to the asymptotic optimal rate allocation and
that its complexity is comparable to that of algorithms
developed only for concave utility functions.
In this paper, we have focused on the study of the
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