University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007

Total Time = 90 Minutes, Total Marks = 50

Student Nam	e:		Student ID:		
1		2	4	-	
1	2	3	4	5	Total
/7	/8	/18	/10	/7	/50

Attempt all problems. Show all work. If information appears to be missing make a reasonable assumption, state it, and proceed. Calculators are not needed and are not allowed.

Problem 1 [7 Marks]

(a) Convert $(853)_{10}$ to Excess-3 and 2421 code. [2 Mark]

(1110 0101 0011)₂₄₂₁ (1110 1011 1001)₂₄₂₁

(Note: There are multiple solutions to the 2421 code)

(1011 1000 0110) Excess-3

(b) For BCD addition, explain with two examples when and why it is necessary to add 6 to obtain the correct answer. [2 Marks]

> The addition of $6 = (0110)_2$ to the binary sum converts it to the correct digit and produces a carry as required 16-10=6.

4	0100	4	0100
<u>5</u>	<u>0101</u>	<u>8</u>	<u>1000</u>
9	1001	12	1100
			0110
			10010

 (c) Convert (10 0110 1000 0111 1001 0011.11011)₂ to base 8 format. [2 Marks]
Organize the bits in group of three (11503623.66)₈

- (d) True of False: Even function can be used to implement odd parity checker and generator, and an XOR gate implements an even function. [1 Mark]
- *False: Even function is used to implement odd parity checker and generator. However, an XNOR gate implements an even function, not an XOR gate*

Problem 2 [8 Marks]

(a) Do not use K-Map! Simplify the following expression to a minimum number of literals by algebraic means. [3 Marks]

 $F = a \oplus b \oplus c + a'b'c' + a'bc + ab'c + abc'$ = $a \oplus b \oplus c + (a'b' + ab)c' + (a'b + ab')c$ = $a \oplus b \oplus c + (a \oplus b)'c' + (a \oplus b)c$ = $a \oplus b \oplus c + (a \oplus b \oplus c)'$ = 1

(b) Find (-75)₁₀ – (20)₁₀ using 8-bit signed 2's complement form. Express you answer in signed 2's complement format. Show all your work! [5 Marks]

 $(-75)_{10} = (10110101)$ in Signed and 2's complement $(-20)_{10} = (11101100)$ in Signed and 2's complement

Discard the carry, the final answer is 10100001 in Signed and 2's complement format.

Problem 3 [18 Marks]

 $F(A, B, C, D) = \prod (3, 7, 12, 13, 14, 15)$

 (a) Express the complement of the above expression in both canonical *sum of products* and *product of sums* form. [2 Marks]

F' (A, B, C, D) =
$$\sum (3, 7, 12, 13, 14, 15)$$

F' (A, B, C, D) =
$$\prod (0, 1, 2, 4, 5, 6, 8, 9, 10, 11)$$

(b) Simplify the expression F in (i) sum of products and (ii) product of sums forms.

[6 Marks]

$$F = AB'+A'C'+A'D'$$
$$F' = AB + A'CD$$
$$F = (A'+B')(A + C'+D')$$

(c) List all the prime implicants and essential prime implicants. Show all your work!

[6 Marks]

	0	1	2	4	5	6	8	9	10	11
(0, 1, 8, 9) (B'C')	Δ	Δ					Δ	Δ		
(0, 2, 4, 6) (A'D')	Δ		Δ	Δ		Δ				
(0, 1, 4, 5) (A'C')	Δ	Δ		Δ	Δ					
(0, 2, 8, 10) (B'D')	Δ		Δ				Δ		Δ	
(8, 9, 10, 11) (AB')							Δ	Δ	Δ	Δ

Prime Implicants: (0, 1, 8, 9), (0, 2, 4, 6), (0, 1, 4, 5), (0, 2, 8, 10), (8, 9, 10, 11) Essential Prime Implicants: (0, 1, 4, 5), (0, 2, 4, 6), (8, 9, 10, 11)

(d) P(A, B, C, D) = $\sum (0, 1, 2, 5, 8, 9, 10)$

Based on the K-Map provided below, fill out the K-map provided below for expression P. Is it possible to simplify the expression in terms of product of sums directly from the K-Map without finding the complement of P? You may use the example in this question to explain your answer. [4 Marks]

AB\CD	11	10	00	01
11	0	0	0	0
10	0	1	1	1
00	0	1	1	1
01	0	0	0	1

Yes, it is possible.

- Combine all the zeroes
- Look at the corresponding variables.
- Write out the product of sums in terms the complement of the corresponding variables.
 - For example, combine all the zeroes in the row where AB is equal to "11"; the corresponding maxterm is then (A'+B')
 - Combine all the zeroes in the column where CD is equal to "11"; the corresponding maxterm is then (C'+D') P = (A'+B)(C'+D')(B'+D)

Problem 4 [10 marks]

You are asked to design a digital system with the following characteristics and criteria. There are four inputs (A, B, C, D) and one output (Y) to the system. The output *Y* is true (i.e. logic "1") when ABCD is greater than 7 and the binary input value is odd. When the binary value of ABCD is less than 7, output *Y* follows the result of the expression $B \oplus C$. You can assume A is the most significant digit and D is the least significant digit.

Α	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	Х
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

(a) Complete the truth table provided below [4 Marks]

(b) Implement the digital system described above using two-level NOR gates. You may assume both the input and its complement form are available. [6 Marks]

AB\CD	00	01	11	10
00	0	0	1	1
01	1	1	х	0
11	0	1	1	0
10	0	1	1	0

Y = (A + B + C)(A'+D)(B'+C'+D)

Problem 5 [7 Marks]

(a) With the addition of few logic gates, an *n*-bit ripple carry adder can be used to compare the magnitude of two n-bit unsigned numbers. For vectors $A = a_3 a_2 a_1 a_0$ and $B = b_3 b_2 b_1 b_0$, design a 4-bit digital circuit with appropriate logic gates and adder block diagrams with output *X* such that *X* is true when A = B. You may assume both A and B are unsigned numbers. Specify the value of any required control signals. [5 Marks]

(b) Modify your design slightly to include another output Y such that Y is true when $A \ge B$. [2 Marks]

See above diagram