E&CE 223 Digital Circuits & Systems

Lecture Transparencies (Asynchronous Sequential Circuits)

M. Sachdev

Department of Electrical & Computer Engineering, University of Waterloo

■ E&CE 223 ■

Department of Electrical & Computer Engineering, University of Waterloo

222 of 243

Department of Electrical & Computer Engineering, University of Waterloo

224 of 243

Department of Electrical & Computer Engineering, University of Waterloo

226 of 243

■ E&CE 223 ■

■ E&CE 223 ■

 $\label{eq:2.1} Y_{\text{L}2} = S2 + R'2y2 = x1x2 + (x2 + y'1)y2 = x1x2 + x2y2 + y_2^2 \text{L}y_2^2 + y_2^2 + y_2^2 + y_2^2 \text{L}y_2^2 + y_2^2 + y_2^2 + y_2^2 \text{L}y_2^2 + y_2^2 + y_2^$

Design Example

E&CE 223 🔳

To design a gated latch

• D, data input; G, gating input; Q, the output

.

 \circ Q <-- D if G = 1 and Q retains its previous value if G = 0

Gated latch state table

state	Inputs		Output	Comments
	D	G	Q	
а	0	1	0	G = 1
b	1	1	1	G = 1
С	0	0	0	after state a or d
d	1	0	0	after state c
е	1	0	1	after state b or f
f	0	0	1	after state e

Department of Electrical & Computer Engineering, University of Waterloo

234 of 243

■ E&CE 223 ■

E&CE 223 🔳

.

Systematic reduction of Flow and State Tables

■ E&CE 223 ■

Two techniques:

- o (i) Implications table, and
- o (ii) Merger diagram

Implication table

- Tabulation of possible equivalent states (rows)
- o Tick for equivalent, and X for not equivalent
- o Two states, a, b are equivalent iff

(i) outputs are equivalent

(ii) transfers to the same (or equivalent state(s) for given input sequence

Department of Electrical & Computer Engineering, University of Waterloo

■ E&CE 223 ■

Example: Implication Table								
State table to be reduced								
Present	Next		Outp	but				
state	sta X=	ate :0 X=1	X=0	X=1				
а	d	b	0	0				
b	е	а	0	0				
С	g	f	0	1				
d	а	d	1	0				
е	а	d	1	0				
f	С	b	0	0				
g	а	е	1	0				

■ E&CE 223 ■

Department of Electrical & Computer Engineering, University of Waterloo

■ E&CE 223 ■

