E&CE 223 Digital Circuits & Systems

Winter 2004

Lecture Transparencies (Introduction)

M. Sachdev

Course Information: People

Instructor

• M. Sachdev, CEIT 4015, ext. 3370, msachdev@uwaterloo.ca

Lab Technologists

• Eric Praetzel, E2 - 2357, E.Praetzel@ece.uwaterloo.ca

Teaching Assistants

- Mohammed El Gebaly, mgebaly@vlsi.uwaterloo.ca
- Shahab Ardalan ardalan@vlsi.uwaterloo.ca
- Augstine Dominguez adominguez@engmail.uwaterloo.ca
- Syed Iftekar Ali, sali@engmail.uwaterloo.ca

Course Information: Text

Text

o M. Marris Mano, Digital Design (3rd edition); Printice Hall

Lecture notes are at (http://ece.uwaterloo.ca/~msachdev)

Laboratory Manual

download from http://ece.uwaterloo.ca:80/~ece223/

DC reserves

• M. Marris Mano, Digital Design (3rd edition); Printice Hall

Lectures

- Lectures: Mon, Wed, Fri 9.30am 10.20 am, MC 1085
- Tutorials: Tue @10.30 MC4041; Thurs@ 9.30 PHY235; @11.30 RCH 204

Course Information: Labs

Labs

• Three afternoons; 1.30 - 4.20; E2 2363

Labs

- Lab 0 & 1: individually; Labs 2, 3 : group of 2
- For labs 2, 3; two 1.5 hr. slots will be available each lab day
- You will be allowed to reserve four 1.5 hr. slots over each schedule lab period, with no more than 2 reservations in a single week. 4 slots include your DEMO period. Reservation is done electronically via Watstar

Marks

- Final exam marks>= 50% : Labs 30%, Midterm 20%, Final 50%
- Final exam marks < 50% : Labs 0%, Midterm 0%, Final 100%

Coverage of Topics

Introduction [1]

This lecture

Number systems [2]

Radix, radix conversion, complements, subtraction, number representation, codes

Boolean algebra & logic circuits [8]

Boolean algebra, theorems, functions, minterms, maxterms, standard forms, Karnaugh maps, product of sum, sum of products, don't cares, prime implicants, multioutput circuits, Quine-McCluskey method

Coverage of Topics

Combinational logic design [8]

Design constraints, multi-level circuits, common term elimination, XOR circuits, adders & subtractors, iterative design, decoders/encoders, (de)multiplexers, programmed logic devices (ROM, PLA, FPGA)

Synchronous sequential circuits [8]

Sequential circuit types, flip-flops, triggering, analysis & design of clocked sequential circuits, transistion design, state reduction, design examples, registers, shift registers, special sequential circuits, timing considerations

Asynchronous sequential circuits [8]

fundamental mode systems with latches, design procedure, races, Moore & Mealy designs, hazards

Relationship to Future Courses

- This course provides basis for higher order digital system courses
 - E&CE 222 Digital Computers
 - E&CE 324 Microprocessor Systems & Interfacing
 - E&CE 427 Digital Systems Engineering
 - E&CE 429 Computer Structures

E&CE223 Assignments

Assignments 1

 Mano 1.3, 1.5, 1.6, 1.8, 1.15, 1.17, repeat 1.17 with 1's complements, 1.19, 1.23,

Assignment 2

o Mano 2.2, 2.3, 2.6, 2.7, 2.9, 2.11, 2.13, 2.14, 2.19

Assignment 3

Mano 3.2, 3.3, 3.9, 3.10, 3.12, 3.23, 3.27

Assignment 4

o Mano 4.1, 4.7, 4.19, 4.28

Assignment 5

○ 5.15, 5.16, 5.18, 5.24, 5.26, 5.27, 5.28, 5.32, 5.33, 5.34

E&CE223 Assignments

Assignment 6

Mano 6.1, 6.2, 6.4, 6.9, 6.12, 6.21, 6.25

Assignment 7

o 7.4, 7.9, 7.17, 7.23, 7.27

Assignment 8

- O 9.3, 9.5, 9.6, 9.12, 9.15, 9.18, 9.19
- Assignment problems and solutions are based on the 2nd edition of the book (see the course website for details)

Lab and Tutorial Schedule (Tentative)

Week	Dates	Lab	Tutorial
1	Jan 5- 9		
2	Jan 12-16		
3	Jan 19 - 23	Lab0	Ass1
4	Jan 26- 30	Lab0	Ass2
5	Feb 2 - 6		Lab1 Intro
6	Feb 9- 13	Lab1	Ass3
7	Feb 16 - 20	midterm	Ass4/Review
8	Feb 23- 27	Lab1	Ass5
9	Mar 1- Mar 5	Lab1	Lab2 Intro
10	Mar 8- 12	Lab2	Ass6
11	Mar 15 -19	Lab2	Lab3 Intro
12	Mar 22- 26	Lab3	Ass7
13	Mar 29 - 31	Lab3	Ass8

Section 1: Number Systems & Representations

Major topics

- \circ Radix
- o r's complements
- o (r-1)'s complements
- o Subtraction using complements
- Binary number representation
- \circ Codes

General Radix Representation

■ A decimal number such as 7392 actually represents

$$57392 = 7x10^3 + 3x10^2 + 9x10^1 + 2x10^0$$

- \circ 7.392 = 7x10⁰ + 3x10⁻¹ +9x10⁻² + 2x10⁻³
- It is practical to write only the coefficients and deduce necessary power of 10s from position

• In general, any radix (base) can be used

 $\odot\,$ Define coefficients a_i in radix r

0<= a_i < r

 $a_n r^n + a_{n-1} r^{n-1} + \dots + a_0 r^0 + a_{-1} r^{-1} + \dots + a_{-m} r^{-m}$

■ Common radics include r = 2, 4, 8, 10, 16

General Radix Representation

r =10 (dec.)	r=2(bin.)	r=8(Octal)	r=16(hex)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D

14	1110	16	Е
15	1111	17	F

Notation

• Usually shows radix as a subscript $(1234.4)_5 = 1x5^3 + 2x5^2 + 3x5^1 + 4 + 4x5^{-1} = (194.8)_{10}$ $(F75C.B)_{16} = 15x16^3 + 7x16^2 + 5x16 + 12 + 11x16^{-1}$ $= (63,324.6875)_{10}$

To convert the integral part of a number to radix r, repeatedly divide by r with the reminders becoming the a_i

 \odot Convert (77)₁₀ to binary (r=2)

Integer	Remainder	Coefficient
77		
38	1	a ₀
19	0	a ₁
9	1	a ₂
4	1	a ₃
2	0	a ₄
1	0	a ₅
0	1	a ₆
■ (77) ₁₀ = (100110	1) ₂	

Radix Conversion

■ Convert (173)₁₀ to r = 7

Integer 173	Remainder	Coefficient
24	5	a ₀
3	3	a ₁
0	3	a ₂

$$\bullet (173)_{10} = (335)_7$$

Fraction Conversion

- To convert the fractional part of a number to radix r, repeatedly multiply by r with the integral parts of the products becoming a_i
- Convert (0.7215)₁₀ to binary

0.1715x2	= 1.443	a-1 = 1
0.443 x2	= 0.886	a-2 = 0
0.886 x2	= 1.772	a-3 = 1
0.772 x2	= 1.544	a-4 = 1
0.544 x2	= 1.088	a-5 = 1
0.088 x2	= 0.176	a-6 = 0
0.176 x2	= 0.352	a-7 = 0

• $(0.7215)_{10} = (0.1011100 \dots)_2$

Fraction Conversion

■ Convert (0.312)₁₀ to r = 7

0.312 x7	= 2.184	a-1 = 2
0.184 x7	= 1.288	a-2 = 1
0.288 x7	= 2.016	a-3 = 2
0.016 x7	= 0.112	a-4 = 0

• $(0.312)_{10} = (0.2120....)_7$

Arithmetic Operations

The arithmetic operations of addition, subtraction, multiplication and division can be performed in any radix by using appropriate addition and multiplication tables

○ Example, r =2

Complements

In a computer the representation and manipulation of negative numbers is usually performed using *complements*

Complements for								
a radix come in two forms	+	0	1		X	0	1	
 r's complement 	0	0	1	-	0	0	0	
 (r-1)'s comple- ment 	1	1	10		1	0	1	
r's complement						101	1	
 Given a positive number N which 	-	1011 + 10	1		2	X 10	1	
has n digit inte-		10000)		1	$101 \\ 000 \\ 011$	1	
					1	1011	1	

ger part, the r's complement of N is defined as

 r^{n} - *N* for $N \neq 0$, zero otherwise

Complements

■ 10's Complement

- \circ 10's complement of (37218)₁₀ = 10⁵ 37218 = 62782
- 10's complement of $(0.12345)_{10} = 10^0 0.12345 = 0.87655$

2's Complement

- 2's complement of $(101110)_2 = 2^6 (101110) = 010010$
- 2's complement of $(0.0110)_2 = 2^0 (0.0110) = 0.1010$

(r-1)'s Complement

Given a positive number N with integer part n bits, fractional part m bits, the (r-1)'s complement is defined as

 $(r^n - n^{-m} - N) = rr....rr.rr.rr.$

■ 9's complement (r = 10)

9's complement of $(37218)_{10} = 10^5 - 1 - 37218 = 62781$ 9's complement of $(0.12345)_{10} = (10^0 - 10^{-5} - 0.12345)$ = 0.999999 - 0.12345 = 0.87654 9's complement of (25.639)10 = $(10^2 - 10^{-3} - 25.639) =$ = 99.999 - 25.639 = 74.360

(r-1)'s Complement

■ 1's complement (r = 2)

- 1's complement of $(101100)_2 = 2^6 1 (101100)$ = 111111 - 101100 = 010011
- 1's complement of $(0.0110)_2 = 2^0 2^{-4} (0.0110)$ = 0.1111 -0.0110 = 0.1001

r's Complement Subtraction

- For positive numbers, A and B the r's complement subtraction (A-B) is performed as follows:
 - Add the r's complement of B to A
 - If and end carry occurs, ignore it; else take the r's complement of the result and treat it as a negative number
 - \circ Proof

Let X = A - B, $A \ge 0$, $B \ge 0$

- Let $Y = A + (r^n B)$
- $\bullet (1) \text{ If } A \geq B$

 $Y = r^{n} + (A - B) = r^{n} + X$

The rⁿ is the carry out from (n-1)th (most significant digit). If this carry out is (end carry) is discarded, the value of Y is the true positive result X

$\blacksquare \quad If \qquad A < B$

 $Y = r^{n} - (B - A) = r^{n} - (-X)$

Note that -X has a positive value. Hence Y is the r's complement of the negative of the true value.

QED

10's complement subtraction

A = 72532 B = 03250	A' = 27468 B' = 96750
A - B	72532 + 96750
	1 69282
B - A	03250 + 27468
	30718> - 69282

A = 1010100	A' = 0101100
B = 1000100	B' = 0111100
A - B	1010100 + 0111100
	1 0010000
B - A	1000100 + 0101100
	1110000> - (0010000) <u>/</u>

(r-1)'s Complement Subtraction

- For positive numbers A and B the (r -1)'s complement subtraction (A-B) is performed as follows:
 - Add the (r-1)'s complement of B to A
 - If an end carry occurs, add 1 to the least significant digit of the result (end-round-carry) else, take (r-1)'s complement of result and treat it as a negative number

 \circ Proof

Let X = A - B, $A \ge 0$, $B \ge 0$

Let $Y = (A + (r^n - r^{-m}) - B))$

• (1) If
$$A > B$$

 $Y = r^{n} + (A - B - r^{-m}) = (r^{n} + X - r^{-m})$

The r^n is the carry out from (n-1)th (most significant digit). If this carry out is (end carry) is discarded and r^{-m} (one in the least significant digit) is added to the result, the value of Y is the true positive result X

■ (2) A = B

 $Y = (r^{n} - r^{-m}) + (A - B) = (r^{n} - r^{-m})$

The result is the (r-1)'s complement of the true result zero

■ (2) *A* < *B*

$$Y = (r^{n} - r^{-m}) - (B - A) = (r^{n} - r^{-m}) - (-X)$$

Note that (-X) is a positive value. Hence, Y is the (r-1)'s complement of the nagative of the true value

QED

9's complement subtraction

A = 72532	A' = 27467
B = 03250	B' = 96749

A - B	1010100 + 0111011
	1 0001111 0000001
	0010000
B - A	1000100 + 0101011
	1101111> - (0010000) ₂

■ E&CE 223 ■

Signed Binary Number Representation

In most computer applications, integers are represented in a fixed number of bits (fixed format)

 \odot With n bits, positive numbers from 0 to 2ⁿ -1 can be represented

00000	0	01011	11	10110	22
00001	1	01100	12	10111	23
00010	2	01101	13	11000	24
00011	3	01110	14	11001	25
00100	4	01111	15	11010	26
00101	5	10000	16	11011	27
00110	6	10001	17	11100	28
00111	7	10010	18	11101	29
01000	8	10011	19	11110	30
01001	9	10100	20	11111	31
01010	10	10101	21		

Signed Number Representation

- It is often required to represent both positive & negative numbers in the same n-bit format; three common methods
 - Sign & magnitude
 - o Signed 1's complement
 - Signed 2's complement
- In all cases, the leftmost bit is the sign: 0 --> positive
 1 --> negative
 - All three forms have the same representation for positive numbers

■ Sign & magnitude

 Most significant bit (MSB) is the sign and the rest is the magnitude Commonly used for fractional numbers (real, floating point) in computers

Signed 1's complement

- The MSB is the sign bit, the rest is
 - -- the actual value for the positive numbers
 - -- the 1's complement form for negative numbers
- Has two representations for zero!!
- No longer widely used

Signed 2's complement

- The common method of representing signed integers on computers
- Restrict the number range to (n-1) bits. Use 2's complement for negative number representation

+M --> M (most significant bit is 0)

-M -->
$$2^{n}$$
 - M (n-bit 2's complement)
= 2^{n-1} + [2^{n-1} - M] = 2^{n-1} + [n-1 bit 2's complement]

\circ MSB indicates the sign of the number (sign bit)							
 Numerical value of a number is given by (-a_{n-1})2ⁿ⁻¹ + a_{n-2}x2ⁿ⁻² + + a₁x2¹ + a₀xa 							
 With a 5-bit 2's complement number, we can represent the range from -16 to +15 							
$00110 -> (-0)2^{4} + 0x2^{3} + 1x2^{2} + 1x2^{1} + 0xa^{0} = 6$							
$10110> (-1)2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 0xa^0 = -10$							
o 5-bit number in 2's complement							
10000	-16	11011	-5	00110	6		
10001	-15	11100	-4	00111	7		
10010	-14	11101	-3	01000	8		
10011	-13	11110	-2	01001	9		
10100	-12	11111	-1	01010	10		
10101	-11	00000	0	01011	11		
10110	-10	00001	1	01100	12		
10111	-9	00010	2	01101	13		
11000	-8	00011	3	01110	14		
11001	-7	00100	4	01111	15		
11010	-6	00101	5				

Codes

Decimal numbers are coded using binary bit patterns

- Binary coded decimal (BCD): each decimal digit is represented by a 4-digit binary number; e.g. $(7 4 3)_{10} = (0111 \ 0100 \ 0011)_{BCD}$
- $\odot\,$ Table of various binary codes for decimal digits

decimal	8421 (BCD)	84-2-1	excess-3	2 out of 5	gray
0	0000	0000	0011	00011	0000
1	0001	0111	0100	00101	0001
2	0010	0110	0101	00110	0011
3	0011	0101	0110	01001	0010
4	0100	0100	0111	01010	0110
5	0101	1011	1000	01100	1110
6	0110	1010	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1000	1011	10100	1001
9	1001	1111	1100	11000	1000

- 8421 and 84-2-1 are weighted codes. The latter is convenient for 9's complement operations
- Excess-3 is BCD plus 3. It is convenient 9's complement operations
- 2 out of 5 is useful for error checking (exactly 2 bits are ones)
- In Gray code consecutive digits differ only by one bit. Useful for mechanical position decoding.

ASCII Codes

- There are several codes for representing textual information in computers. The most common is ASCII (American Standard Code for Information Interchange)
 - \circ 7 bit code
 - o 95 printing characters, 33 control characters
 - Originally designed for punched paper tape and teletypes