E\&CE 223
 Digital Circuits \& Systems

Winter 2004

Lecture Transparencies
(Introduction)
M. Sachdev

Course Information: People

- Instructor
o M. Sachdev, CEIT 4015, ext. 3370, msachdev@uwaterloo.ca
- Lab Technologists
o Eric Praetzel, E2-2357, E.Praetzel@ece.uwaterloo.ca
- Teaching Assistants
- Mohammed El Gebaly, mgebaly@vlsi.uwaterloo.ca
- Shahab Ardalan ardalan@vIsi.uwaterloo.ca
- Augstine Dominguez adominguez@engmail.uwaterloo.ca
- Syed Iftekar Ali, sali@engmail.uwaterloo.ca

Course Information: Text

- Text
- M. Marris Mano, Digital Design (3rd edition); Printice Hall
o Lecture notes are at (http://ece.uwaterloo.ca/~msachdev)
- Laboratory Manual
o download from http://ece.uwaterloo.ca:80/~ece223/
- DC reserves
o M. Marris Mano, Digital Design (3rd edition); Printice Hall
- Lectures
o Lectures: Mon, Wed, Fri 9.30am - 10.20 am, MC 1085
- Tutorials: Tue @10.30 MC4041; Thurs@ 9.30 PHY235; @11.30 RCH 204

Course Information: Labs

- Labs
o Three afternoons; 1.30-4.20; E2 2363
- Labs
o Lab 0 \& 1: individually; Labs 2, 3 : group of 2
o For labs 2, 3; two 1.5 hr . slots will be available each lab day
o You will be allowed to reserve four 1.5 hr . slots over each schedule lab period, with no more than 2 reservations in a single week. 4 slots include your DEMO period. Reservation is done electronically via Watstar
- Marks
o Final exam marks>= 50\% : Labs 30\%, Midterm 20\%, Final 50\%
o Final exam marks < 50\% : Labs 0\%, Midterm 0\%, Final 100\%

Coverage of Topics

- Introduction [1]

This lecture

- Number systems [2]

Radix, radix conversion, complements, subtraction, number representation, codes

- Boolean algebra \& logic circuits [8]

Boolean algebra, theorems, functions, minterms, maxterms, standard forms, Karnaugh maps, product of sum, sum of products, don't cares, prime implicants, multioutput circuits, Quine-McCluskey method

Coverage of Topics

- Combinational logic design [8]

Design constraints, multi-level circuits, common term elimination, XOR circuits, adders \& subtractors, iterative design, decoders/encoders, (de)multiplexers, programmed logic devices (ROM, PLA, FPGA)

- Synchronous sequential circuits [8]

Sequential circuit types, flip-flops, triggering, analysis \& design of clocked sequential circuits, transistion design, state reduction, design examples, registers, shift registers, special sequential circuits, timing considerations

- Asynchronous sequential circuits [8]
fundamental mode systems with latches, design procedure, races, Moore \& Mealy designs, hazards

Relationship to Future Courses

- This course provides basis for higher order digital system courses
o E\&CE 222 - Digital Computers
o E\&CE 324-Microprocessor Systems \& Interfacing
- E\&CE 427 - Digital Systems Engineering
- E\&CE 429-Computer Structures

E\&CE223 Assignments

- Assignments 1
o Mano 1.3, 1.5, 1.6, 1.8, 1.15, 1.17, repeat 1.17 with 1 's complements, 1.19, 1.23,
- Assignment 2
o Mano 2.2, 2.3, 2.6, 2.7, 2.9, 2.11, 2.13, 2.14, 2.19
- Assignment 3
o Mano 3.2, 3.3, 3.9, 3.10, 3.12, 3.23, 3.27
- Assignment 4
- Mano 4.1, 4.7, 4.19, 4.28
- Assignment 5
o $5.15,5.16,5.18,5.24,5.26,5.27,5.28,5.32,5.33,5.34$

E\&CE223 Assignments

- Assignment 6
o Mano 6.1, 6.2, 6.4, 6.9, 6.12, 6.21, 6.25
- Assignment 7
o 7.4, 7.9, 7.17, 7.23, 7.27
- Assignment 8
- 9.3, 9.5, 9.6, 9.12, 9.15, 9.18, 9.19
- Assignment problems and solutions are based on the $2^{\text {nd }}$ edition of the book (see the course website for details)

Lab and Tutorial Schedule (Tentative)

Week	Dates	Lab	Tutorial
1	Jan 5-9	---	
2	Jan 12-16	---	----
3	Jan 19-23	Lab0	Ass1
4	Jan 26-30	Lab0	Ass2
5	Feb 2-6	----	Lab1 Intro
6	Feb 9-13	Lab1	Ass3
7	Feb 16-20	midterm	Ass4/Review
8	Feb 23-27	Lab1	Ass5
9	Mar 1-Mar 5	Lab1	Lab2 Intro
10	Mar 8-12	Lab2	Ass6
11	Mar 15-19	Lab2	Lab3 Intro
12	Mar 22-26	Lab3	Ass7
13	Mar 29-31	Lab3	Ass8

Section 1: Number Systems \& Representations

- Major topics
o Radix
o r's complements
- ($r-1$)'s complements
o Subtraction using complements
- Binary number representation
o Codes

General Radix Representation

- A decimal number such as 7392 actually represents
- $7392=7 \times 10^{3}+3 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$
- $7.392=7 \times 10^{0}+3 \times 10^{-1}+9 \times 10^{-2}+2 \times 10^{-3}$
- It is practical to write only the coefficients and deduce necessary power of 10s from position
- In general, any radix (base) can be used
- Define coefficients a_{i} in radix r
$0<=a_{i}<r$
$a_{n} r^{n}+a_{n-1} r^{n-1}+\ldots \ldots+a_{0} r^{0}+a_{-1} r^{-1}+\ldots \ldots \ldots .+a_{-m} r^{-m}$
- Common radics include $r=2,4,8,10,16$

General Radix Representation

$\mathbf{r}=\mathbf{1 0}$ (dec.)	$\mathbf{r = 2 (b i n .)}$	$\mathbf{r = 8}$ (Octal)	$\mathbf{r}=\mathbf{1 6 (h e x)}$
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D

14	1110	16	E
15	1111	17	F

- Notation
- Usually shows radix as a subscript
$(1234.4)_{5}=1 \times 5^{3}+2 \times 5^{2}+3 \times 5^{1}+4+4 \times 5^{-1}=(194.8)_{10}$ $(\text { F75C.B })_{16}=15 \times 16^{3}+7 \times 16^{2}+5 \times 16+12+11 \times 16^{-1}$
$=(63,324.6875)_{10}$

Radix Conversion

- To convert the integral part of a number to radix r, repeatedly divide by r with the reminders becoming the a_{i}
o Convert (77) ${ }_{10}$ to binary ($\mathrm{r}=2$)

Integer	Remainder	Coefficient
77		
38	1	a_{0}
19	0	a_{1}
9	1	a_{2}
4	1	a_{3}
2	0	a_{4}
1	1	a_{5}
0	a_{6}	
$\square(77)_{10}=(1001101)_{2}$		

Radix Conversion

- Convert (173) ${ }_{10}$ to $\mathrm{r}=7$

Integer
173
24
3
0

Remainder
5
3
3

Coefficient
a_{0}
a_{1}
a_{2}

- $(173)_{10}=(335)_{7}$

Fraction Conversion

- To convert the fractional part of a number to radix r, repeatedly multiply by r with the integral parts of the products becoming \mathbf{a}_{i}
- Convert (0.7215) 10 $_{10}$ to binary

0.1715×2	$=1.443$	$a-1=1$
0.443×2	$=0.886$	$a-2=0$
0.886×2	$=1.772$	$a-3=1$
0.772×2	$=1.544$	$a-4=1$
0.544×2	$=1.088$	$a-5=1$
0.088×2	$=0.176$	$a-6=0$
0.176×2	$=0.352$	$a-7=0$

■ $(0.7215)_{10}=(0.1011100 \ldots)_{2}$

Fraction Conversion

■ Convert (0.312) ${ }_{10}$ to $r=7$

0.312×7	$=2.184$	$a-1=2$
0.184×7	$=1.288$	$a-2=1$
0.288×7	$=2.016$	$a-3=2$
0.016×7	$=0.112$	$a-4=0$

■ $(0.312)_{10}=(0.2120 \ldots)_{7}$

Arithmetic Operations

- The arithmetic operations of addition, subtraction, multiplication and division can be performed in any radix by using appropriate addition and multiplication tables
- Example, r=2

Complements

- In a computer the representation and manipulation of negative numbers is usually performed using complements
- Complements for a radix come in two forms
o r's complement
- (r - 1)'s complement

+	0	1
0	0	1
1	1	10

X	0	1
0	0	0
1	0	1

- r's complement
- Given a positive number N which has n digit inte-

$$
\begin{array}{r}
1011 \\
+\quad 101 \\
\hline 10000
\end{array}
$$

1011
$\mathrm{X} \mathrm{\quad 101}$
1011
000
1011
110111

ger part, the r's complement of N is defined as
$\mathrm{r}^{\mathrm{n}}-N$ for $N \neq 0$, zero otherwise

Complements

- 10's Complement
- 10's complement of $(37218)_{10}=10^{5}-37218=62782$
- 10 's complement of $(0.12345)_{10}=10^{0}-0.12345=0.87655$
- 2's Complement
o 2's complement of $(101110)_{2}=2^{6}-(101110)=010010$
- 2's complement of $(0.0110)_{2}=2^{0}-(0.0110)=0.1010$

(r-1)'s Complement

- Given a positive number \mathbf{N} with integer part \mathbf{n} bits, fractional part m bits, the ($r-1$)'s complement is defined as
$\left(r^{n}-n^{-m}-N\right)=r r . \ldots . . r r . r r . \ldots \ldots . . r r-N$
- 9's complement ($r=10$)

9's complement of $(37218)_{10}=10^{5}-1-37218=62781$
9 's complement of $(0.12345)_{10}=\left(10^{0}-10^{-5}-0.12345\right)$
$=0.99999-0.12345=0.87654$
9 's complement of (25.639) $10=\left(10^{2}-10^{-3}-25.639\right)=$
$=99.999-25.639=74.360$

$(r-1)$'s Complement

- 1's complement ($r=2$)
o 1 's complement of $(101100)_{2}=2^{6}-1-(101100)$ $=111111-101100=010011$
- 1 's complement of $(0.0110)_{2}=2^{0}-2^{-4}-(0.0110)$ $=0.1111-0.0110=0.1001$

r's Complement Subtraction

- For positive numbers, A and B the r's complement subtraction ($A-B$) is performed as follows:
- Add the r's complement of B to A
o If and end carry occurs, ignore it; else take the r's complement of the result and treat it as a negative number
- Proof

Let $\mathrm{X}=\mathrm{A}-\mathrm{B}, \quad A \geq 0, B \geq 0$
Let $Y=A+\left(r^{n}-B\right)$

- (1) If $A \geq B$
$\mathrm{Y}=\mathrm{r}^{\mathrm{n}}+(\mathrm{A}-\mathrm{B})=\mathrm{r}^{\mathrm{n}}+\mathrm{X}$
The r^{n} is the carry out from ($n-1$)th (most significant digit). If this carry out is (end carry) is discarded, the value of Y is the true positive result X
- If $\quad \boldsymbol{A}<\boldsymbol{B}$
$Y=r^{n}-(B-A)=r^{n}-(-X)$
Note that -X has a positive value. Hence Y is the r's complement of the negative of the true value.
QED
- 10's complement subtraction
A $=72532$
$\mathrm{A}^{\prime}=27468$
$B=03250$
$B^{\prime}=96750$

A - B
72532

+ 96750
169282
B - A
03250
+ 27468

$$
30718 \text {--> - } 69282
$$

- 2's complement subtraction

$A=1010100$	$A^{\prime}=0101100$
$B=1000100$	$B^{\prime}=0111100$
A - B	$\begin{array}{r} 1010100 \\ +\quad 0111100 \end{array}$
	10010000
$B-A$	$\begin{array}{r} 1000100 \\ +\quad 0101100 \end{array}$
	1110000 --> - $(0010000)_{2}$

$$
\begin{aligned}
& \mathrm{A}^{\prime}=0101100 \\
& \mathrm{~B}^{\prime}=0111100 \\
& \\
& +\quad 010100 \\
& +----------- \\
& \hline 10010000
\end{aligned}
$$

$$
+\quad 0101100
$$

$$
1110000-->-(0010000)_{2}
$$

(r-1)'s Complement Subtraction

- For positive numbers A and B the ($r-1$)'s complement subtraction ($A-B$) is performed as follows:
o Add the ($r-1$)'s complement of B to A
o If an end carry occurs, add 1 to the least significant digit of the result (end-round-carry)
else, take (r - 1)'s complement of result and treat it as a negative number
o Proof
Let $\mathrm{X}=\mathrm{A}-\mathrm{B}, \quad A \geq 0, B \geq 0$
Let $\left.Y=\left(A+\left(r^{n}-r^{-m}\right)-B\right)\right)$
- (1) If $A>B$
$Y=r^{n}+\left(A-B-r^{-m}\right)=\left(r^{n}+X-r^{-m}\right)$

The r^{n} is the carry out from ($n-1$)th (most significant digit). If this carry out is (end carry) is discarded and r^{-m} (one in the least significant digit) is added to the result, the value of Y is the true positive result X

- (2) $A=B$
$Y=\left(r^{n}-r^{-m}\right)+(A-B)=\left(r^{n}-r^{-m}\right)$
The result is the ($r-1$)'s complement of the true result zero
- (2) $A<B$
$\mathrm{Y}=\left(\mathrm{r}^{\mathrm{n}}-\mathrm{r}^{-m}\right)-(B-\mathrm{A})=\left(\mathrm{r}^{\mathrm{n}}-\mathrm{r}^{-m}\right)-(-\mathrm{X})$
Note that $(-X)$ is a positive value. Hence, Y is the ($r-1$)'s complement of the nagative of the true value QED
- 9's complement subtraction
A $=72532$
$\mathrm{A}^{\prime}=27467$
$B=03250$
$\mathrm{B}^{\prime}=96749$
A - B 72532
+ 96749
169281 00001
69282
$B-A$

```
    03250
+ 27467
    30717 --> - 69282
```

- 1's complement subtraction
$A=1010100$
$A^{\prime}=0101011$
$B=1000100$
$\mathrm{B}^{\prime}=0111011$

A - B	$\begin{array}{r} 1010100 \\ +\quad 0111011 \end{array}$
	$\begin{array}{rr} 1 & 0001111 \\ & 0000001 \end{array}$
	0010000
B - A	$\begin{array}{r} 1000100 \\ +\quad 0101011 \end{array}$
	1101111

Signed Binary Number Representation

- In most computer applications, integers are represented in a fixed number of bits (fixed format)
- With n bits, positive numbers from 0 to $2^{n}-1$ can be represented

00000	0	01011	11	10110	22
00001	1	01100	12	10111	23
00010	2	01101	13	11000	24
00011	3	01110	14	11001	25
00100	4	01111	15	11010	26
00101	5	10000	16	11011	27
00110	6	10001	17	11100	28
00111	7	10010	18	11101	29
01000	8	10011	19	11110	30
01001	9	10100	20	11111	31
01010	10	10101	21		

Signed Number Representation

- It is often required to represent both positive \& negative numbers in the same n-bit format; three common methods
- Sign \& magnitude
- Signed 1's complement
- Signed 2's complement
- In all cases, the leftmost bit is the sign: 0 --> positive 1 --> negative
o All three forms have the same representation for positive numbers
- Sign \& magnitude
- Most significant bit (MSB) is the sign and the rest is the magnitude
- Commonly used for fractional numbers (real, floating point) in computers
- Signed 1's complement
- The MSB is the sign bit, the rest is
-- the actual value for the positive numbers
-- the 1 's complement form for negative numbers
o Has two representations for zero!!
- No longer widely used
- Signed 2's complement
- The common method of representing signed integers on computers
- Restrict the number range to ($\mathrm{n}-1$) bits. Use 2's complement for negative number representation
+M --> M (most significant bit is 0)
$-M-->2^{n}-M$ (n-bit $2^{\prime \prime}$ s complement)
$=2^{n-1}+\left[2^{n-1}-M\right]=2^{n-1}+[n-1$ bit 2 's complement $]$
- MSB indicates the sign of the number (sign bit)
- Numerical value of a number is given by

$$
\left(-a_{n-1}\right) 2^{n-1}+a_{n-2} \times 2^{n-2}+\ldots \ldots+a_{1} \times 2^{1}+a_{0} \times a
$$

o With a 5-bit 2's complement number, we can represent the range from -16 to +15
$00110-->(-0) 2^{4}+0 x 2^{3}+1 x 2^{2}+1 x 2^{1}+0 x a^{0}=6$ $10110-->(-1) 2^{4}+0 x 2^{3}+1 x 2^{2}+1 x 2^{1}+0 x a^{0}=-10$
o 5-bit number in 2's complement

10000	-16	11011	-5	00110	6
10001	-15	11100	-4	00111	7
10010	-14	11101	-3	01000	8
10011	-13	11110	-2	01001	9
10100	-12	11111	-1	01010	10
10101	-11	00000	0	01011	11
10110	-10	00001	1	01100	12
10111	-9	00010	2	01101	13
11000	-8	00011	3	01110	14
11001	-7	00100	4	01111	15
11010	-6	00101	5		

Codes

- Decimal numbers are coded using binary bit patterns
- Binary coded decimal (BCD): each decimal digit is represented by a 4-digit binary number; e.g. $(743)_{10}=(011101000011)_{B C D}$
- Table of various binary codes for decimal digits

decimal	8421 (BCD)	$84-2-1$	excess-3	2 out of 5	gray
0	0000	0000	0011	00011	0000
1	0001	0111	0100	00101	0001
2	0010	0110	0101	00110	0011
3	0011	0101	0110	01001	0010
4	0100	0100	0111	01010	0110
5	0101	1011	1000	01100	1110
6	0110	1010	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1000	1011	10100	1001
9	1001	1111	1100	11000	1000

- 8421 and 84-2-1 are weighted codes. The latter is convenient for 9's complement operations

■ Excess-3 is BCD plus 3. It is convenient 9's complement operations

- 2 out of 5 is useful for error checking (exactly 2 bits are ones)
- In Gray code consecutive digits differ only by one bit. Useful for mechanical position decoding.

ASCII Codes

- There are several codes for representing textual information in computers. The most common is ASCII (American Standard Code for Information Interchange)
o 7 bit code
- 95 printing characters, 33 control characters
o Originally designed for punched paper tape and teletypes

