## Karnaugh Maps - Introduction

- 2-Level Logic implementation using SOP or POS is not the most economical in terms of \#gates \& \#inputs
- A Karnaugh map is a graphical representation of a truth table
$\square$ The map contains one cell for each possible minterm
$\square$ Adjacent cells differ in only one literal; i.e. x (or x')
$\square$ Function is plotted by placing 1 in cells corresponding to minterms
$\square$ Put 0 in rest of the cells


## K Map with 2 Variables

- F =f(x,y)

| $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{F}$ |
| :---: | :---: | :---: |
| 0 | 0 | m 0 |
| 0 | 1 | m 1 |
| 1 | 0 | m 2 |
| 1 | 1 | m 3 |



Example, F1 = x'y


## K Map with 3 Variables

- 3 Variable, $F=f(x, y, z)$;
- Given F2 $=\sum(2,3,4,5)$

Represent it on the K map
$\square \quad$ minimize the function

| $y z$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | 00 | 01 | 11 | 10 |
| 0 |  |  |  |  |
| 1 |  |  |  |  |



## K Map with 3 Variables

- 3 Variable, $F=f(x, y, z)$;
- $\quad$ Given $\mathrm{F} 3=\Sigma(3,4,6,7)$

Minimize the function using K map
Function minimization

$\square \quad$ Find maximum size groups that cover all 1s in the map
(Comment - a group should not be a subset of other group)
4 cell group $\rightarrow 2$ literals can be removed
2 cell group $\rightarrow 1$ literal can be removed

- Guidelines for logic synthesis (SOP)

Fewer groups $\rightarrow$ fewer AND gates, and fewer inputs to the OR gate
$\square \quad$ Fewer literals (larger group) $\rightarrow$ fewer inputs to an AND gate

- Synthesis Objective: Fewest \# of gates and \# of inputs


## K Map with 4 Variables

- 4 Variable, $F=f(w, x, y, z)$
- $\quad$ Given, $\mathrm{F} 4=\sum(3,4,5,7,9,13,14,15)$
represent it on the map
$\square \quad$ Minimize the logic
- Clues

| $c y z$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $m 0$ | $m 1$ | $m 3$ | $m 2$ |
| 01 | $m 4$ | $m 5$ | $m 7$ | $m 6$ |
| 11 | $m 12$ | $m 13$ | $m 15$ | $m 14$ |
| 10 | $m 8$ | $m 9$ | $m 11$ | $m 10$ |

$\square \quad$ Make all possible groups
$\square \quad$ Do we need "the group of 4"?

F4 = w'xy' +wxy +w'yz +wy'z


## Implicants \& Prime Implicants, ...

- Implicant: A group of one or more $k$ map cell
- Prime implicant: an implicant that is not a subset of another implicant
- Essential Prime Implicant: a prime implicant that covers at least one cell not covered by another prime implicant
- Example, $\mathrm{F} 5(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,5,6,7,9,13,14)$

| $w x^{y z}$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | 1 | 0 | 1 |
| 01 | 0 | 1 | 1 | 1 |
| 11 | 0 | 1 | 0 | 1 |
| 10 | 0 | 1 | 0 | 0 |



## Product of Sum Expression

- Let $F$ be the function $\rightarrow F^{\prime}=\sum$ (all minterms not in $F$ )
- $\quad \mathrm{F}=\pi($ all minterms not in $F$ )' (de Morgan's theorem)
- Therefore, one cam obtain POS expression by

1. Group all Os on K map
2. Use de Morgan's theorem to obtain POS expression

F6 = $x^{\prime} z^{\prime}+x^{\prime} y^{\prime}+w^{\prime} y^{\prime} z(S O P)=\left(w^{\prime}+x^{\prime}\right)\left(y^{\prime}+z^{\prime}\right)\left(x^{\prime}+z\right)(P O S)$

- One is often simpler than the other $\rightarrow$ Check both

| $w x^{y z}$ | 00 | 01 | 11 | 10 | $w x^{y z}$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | 1 | 0 | 1 | 00 | 1 | 1 | 0 | 1 |
| 01 | 0 | 1 | 0 | 0 | 01 | 0 | 1 | 0 | 0 |
| 11 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
| 10 | 1 | 1 | 0 | 1 | 10 | 1 | 1 | 0 | 1 |

## Plotting Product of Sum Expression

- Given, $\mathrm{F} 7=(\mathrm{w}+\mathrm{x})\left(\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}\right)(\mathrm{y}+\mathrm{z})$

$$
\begin{aligned}
\text { F7 } 7^{\prime} & =\left[(w+x)\left(x+y^{\prime}+z\right)(y+z)\right]^{\prime} \\
& =(w+x)^{\prime}+\left(x+y^{\prime}+z\right)^{\prime}+(y+z)^{\prime} \\
& =w^{\prime} x^{\prime}+x^{\prime} y z^{\prime}+y^{\prime} z^{\prime}
\end{aligned}
$$

- F7' is plotted by putting 0 s in appropriate cells
- Can F7' be simplified further?

F7' $=w^{\prime} x^{\prime}+x^{\prime} z^{\prime}+y^{\prime} z^{\prime}$


F7 $=(w+x)(x+z)(y+z)$

## Don't care Conditions

- Some time, not all values of a function are defined
$\square$ Some inputs conditions will never occur
We don't care what the output is for that input condition
- In these cases, we can choose the output to be wither 0 or 1 , whichever simplifies the circuit
- Example - A circuit to produce output 1 if a BCD digit is multiple of 3

BCD - Four inputs (wxyz) 0 (0000) $\rightarrow 9$ (1001)
$\square \quad$ Values of wxyz
10 (1010) $\rightarrow 15$ (1111) don't care

- The function $\mathrm{F} 8=\Sigma(3,6,9)+\mathrm{d}(10,11,12,13,14,15)$


## Don’t Care - Plotting

- Don't care are plotted as X in the K map
- SOP expression $\rightarrow$ Treat $X$ as 1 if it allows a larger group
- POS expression $\rightarrow$ Treat $x$ as 0 if it allows a larger group
- F8_1 = wz +xyz' +x'yz (SOP)

F8'_2 $=x z+w^{\prime} y^{\prime}+x^{\prime} z^{\prime} \quad\left\{F^{\prime}=\sum\right.$ (all minterms not in $\left.\left.F\right)\right\}$
F8_2 $=\left(x^{\prime}+z^{\prime}\right)(w+y)(x+z)$ de Morgan's theorem
Is F8_1 = F8_2??

| $w x$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 0 | 1 | 0 |
| 01 | 0 | 0 | 0 | 1 |
| 11 | $x$ | $x$ | $x$ | $x$ |
| 10 | 0 | 1 | $x$ | $x$ |


| $c y z$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 0 | 1 | 0 |
| 01 | 0 | 0 | 0 | 1 |
| 11 | $x$ | $x$ | $x$ | $x$ |
| 10 | 0 | 1 | $x$ | $x_{11}$ |

## Simplest 2-Level Expression

- Example, $F(w, x, y, z)=\sum(0,1,2,5,6,7,9,14)+d(13)$
$\square \quad$ Determine essential and prime implicants


Essential prime implicants


Prime implicants

## Simplest 2-Level Expression

- Example, $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,5,6,7,9,14)+\mathrm{d}(13)$

Determine essential and prime implicants

|  | 0 | 1 | 2 | 5 | 6 | 7 | 9 | 14 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y'z (1,5,9,13) |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  | - |
| xyz' $(6,14)$ |  |  |  |  | $\checkmark$ |  |  | $\checkmark$ | - |
| w'x'y' $(0,1)$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  | A |
| $w^{\prime} x^{\prime} z^{\prime}(0,2)$ | $\checkmark$ |  | $\checkmark$ |  |  |  |  |  | B |
| w'xz (5,7) |  |  |  | $\checkmark$ |  | $\checkmark$ |  |  | C |
| w'xy (6,7) |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  | D |
| w'yz' $(2,6)$ |  |  | $\checkmark$ |  | $\sqrt{ }$ |  |  |  | E |

- All minterms must be covered
i.e., essential prime implicants must be included

Different choices for prime implicants
$\mathrm{B}+\mathrm{C}$; or $\mathrm{B}+\mathrm{D}$; or $\mathrm{A}+\mathrm{C}+\mathrm{E}$; or $\mathrm{A}+\mathrm{D}+\mathrm{E}$

## Tabulation (Quine-McCluskey) Method

- The map method of simplification is convenient if \# of variables $\leq 4$

Tabulation method is preferred for function with large \# of variables

- For $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})$ consider adjacent minterms
let $\mathrm{a}=\mathrm{m} 4+\mathrm{m} 5$
or
Similarly, $b=m 12+m 13=w x y^{\prime} z^{\prime}+w x y^{\prime} z=w x y{ }^{\prime}=110-$

$$
\begin{aligned}
& =w^{\prime} x y^{\prime} z^{\prime}+w^{\prime} x y^{\prime} z=w^{\prime} x y^{\prime} \\
& =0100+0101=010- \\
& =w x y^{\prime} z^{\prime}+w x y^{\prime} z=w x y^{\prime}=110-
\end{aligned}
$$

- Let $\mathrm{c}=\mathrm{a}+\mathrm{b}=\mathrm{m} 4+\mathrm{m} 5+\mathrm{m} 12+\mathrm{m} 13$
$w^{\prime} x y^{\prime}+w x y^{\prime}=x y^{\prime}=-10-$
- Adjacent terms differ by a single bit in their representation
- Tabulation method consists of grouping of minterms and systematically checking for single bit differences


## Tabulation (Quine-McCluskey) Method

- Example, $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,3,4,6,7,8,10,11,15)+\mathrm{d}(5,9)$

Place minterms in different Sections according to \# of 1's in their binary representation
$\square$ Each member of each Section is compared with each member of Sections below; all reduction are recorded in next column
$\square$ Mark terms that combine
$\square \quad$ All unmarked terms are prime implicants

## Tabulation Method - Example

- Example


## NAND \& NOR Implementation

- In digital logic families NAND \& NOR implementations are cheaper compared to AND \& OR implementations

Hence, NAND \& NOR are preferred

- NAND and NOR are universal gates
$\square \quad$ Can mimic any logic gate
- Example, NAND gate can implement:

NOT $\rightarrow$ short inputs
AND $\rightarrow\left\{(x y){ }^{\prime}\right\}$
OR $\rightarrow\left(x^{\prime} y^{\prime}\right)^{\prime}=x+y$

- Similarly for NOR gate, one can show its universality


## NAND - 2-level Implementation

- Can implement any arbitrary logic

Example, $\mathrm{F}=\mathrm{AB}+\mathrm{CD}$

(a)

(b)

(c)

Fig. 3-20 Three Ways to Implement $F=A B+C D$

## NAND - 2-level Implementation

- Given, F9 ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) $=\Sigma(1,2,3,4,5,7)$

Minimize the function, and implement it with NAND gates

(a)

(b)

(c)

## NAND - 2-level Implementation Procedure

1. Simplify the function and express it in SOP form
2. Draw a NAND gate for each product term
3. Draw a single gate using AND-invert or invert-OR symbol for the sum term
4. A term with single literal, complement if needed

- Multi-level NAND Circuits

1. Convert all AND gates to NAND gates
2. Convert all OR gates to NAND gates with invert-OR symbols
3. Balance all bubbles, insert an inverter if needed

## NOR - Implementation

- NOR gate is a dual of NAND

Same rules and procedures
Example, F = (A +B) (C +D)E


Fig. 3-26 Implementing $F=(A+B)(C+D) E$

## Wired Logic

- Two logic gate outputs are not shorted together

May create logical conflicts $\rightarrow$ Logic is not defined

- In some technologies, it is possible to short O/Ps of some logic gates (wired logic)

$$
\begin{array}{ll}
F 1=(A B)^{\prime}(C D)^{\prime}=(A B+C D)^{\prime} & (\text { wired AND }) \\
\left.F 2=(A+B)^{\prime}+(C+D)^{\prime}=[A+B)(C+D)\right]^{\prime} & (\text { wired OR })
\end{array}
$$


(a) Wired-AND in open-collector TTL NAND gates.
(AND-OR-INVERT)

(b) Wired-OR in ECL gates
(OR-AND-INVERT)

## Exclusive-OR Function

XOR gate is expensive to implement in silicon

$$
\begin{aligned}
& \text { XOR }=x y^{\prime}+x^{\prime} y \\
& \text { XNOR }=\left(x y^{\prime}+x^{\prime} y\right)^{\prime}=x y+x^{\prime} y^{\prime}
\end{aligned}
$$

- But they are useful in
$\square$ Parity checking
$\square$ Arithmetic circuits (adders, subtractors)

| $\mathbf{x}$ | $\mathbf{y}$ | XOR | XNOR |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

## Exclusive-OR Function

- XOR gate properties

Commutative
Associative

- Odd and Even Functions

(a) Odd function $F=A \oplus B \oplus C$

(a) Even function $F=(A \oplus B \oplus C)$

Fig. 3-33 Map for a Three-variable Exclusive-OR Function

## Exclusive-OR Function

- 4 Variable XOR

(a) Odd function $F=A \oplus B \oplus C \oplus D$

(b) Even function $F=(A \oplus B \oplus C \oplus D)^{\prime}$

Fig. 3-35 Map for a Four-variable Exclusive-OR Function

## Parity Generation and Checking

- Parity checking is useful for detecting and correcting errors when transmitting binary data
$\square$ We can always append a parity bit to the end of the data bits (e.g. 32) so that the number of 1 s in the packet is always even or odd
- If we lose a bit in transmission, we can use the parity bit to tell us there has been a problem

(a) 3-bit even parity generator

(a) 4-bit even parity checker


## Book Sections - Logic Minimization

■ Material is covered in Sections 3.1-3.8

