
1

1

Logic Minimization

M. Sachdev,
Dept. of Electrical & Computer Engineering
University of Waterloo

ECE 223
Digital Circuits and Systems

2

Karnaugh Maps - Introduction

2-Level Logic implementation using SOP or POS is
not the most economical in terms of #gates &
#inputs
A Karnaugh map is a graphical representation of a
truth table

The map contains one cell for each possible minterm
Adjacent cells differ in only one literal; i.e. x (or x’)
Function is plotted by placing 1 in cells corresponding to

minterms
Put 0 in rest of the cells

2

3

K Map with 2 Variables

m0 m1

10

m3m2

0

1

y
x

m311
1
0
0
x

m20
1
0
y

m1
m0
F

F =f(x,y)

Example, F1 = x’y 10

0

1

y
x

4

K Map with 3 Variables
3 Variable, F = f(x,y,z);
Given F2 = ∑(2,3,4,5)

Represent it on the K map
minimize the function m0 m1

0100

m5m4

0

1

yz
x

m3

m7

m2

m6

11 10

x’y’z’ ’x’y’z

0100

xy’zxy’z’

0

1

yz
x

x’yz

xyz

x’yz’

xyz’

11 10

0100

0

1

yz
x 11 10

3

5

K Map with 3 Variables
3 Variable, F = f(x,y,z);
Given F3 = ∑(3,4,6,7)

Minimize the function using K map
Function minimization

Find maximum size groups that cover all 1s in the map
(Comment – a group should not be a subset of other group)
4 cell group 2 literals can be removed
2 cell group 1 literal can be removed

Guidelines for logic synthesis (SOP)
Fewer groups fewer AND gates, and fewer inputs to the
OR gate
Fewer literals (larger group) fewer inputs to an AND gate

Synthesis Objective: Fewest # of gates and # of inputs

6

K Map with 4 Variables
4 Variable, F = f(w,x,y,z)
Given, F4 = ∑(3,4,5,7,9,13,14,15)

represent it on the map
Minimize the logic

Clues
Make all possible groups
Do we need “the group of 4”?

F4 = w’xy’ +wxy +w’yz +wy’z

m0

m8

0100

m12

m4

00

01

yz
wx

m9

m13

m1

m5

11 10

11

10

m3 m2

m7 m6

m15 m14

m11 m10

0

0

0100

1

0

00

01

yz
wx

1

1

0

1

11 10

11

10

1 0

1 0

1 1

0 0

4

7

Implicants & Prime Implicants, …
Implicant: A group of one or more k map cell
Prime implicant: an implicant that is not a subset of
another implicant
Essential Prime Implicant: a prime implicant that covers
at least one cell not covered by another prime implicant
Example, F5 (w,x,y,z) = ∑(0,1,2,5,6,7,9,13,14)

1

0

0100

0

0

00

01

yz
wx

1

1

1

1

11 10

11

10

0 1

1 1

0 1

0 0

1

0

0100

0

0

00

01

yz
wx

1

1

1

1

11 10

11

10

0 1

1 1

0 1

0 0

8

Product of Sum Expression
Let F be the function F’ = ∑(all minterms not in F)
F = π(all minterms not in F)’ (de Morgan’s theorem)
Therefore, one cam obtain POS expression by

1. Group all 0s on K map
2. Use de Morgan’s theorem to obtain POS expression

F6 = x’z’ +x’y’ + w’y’z (SOP) = (w’ +x’)(y’ +z’)(x’ +z) (POS)
One is often simpler than the other Check both

1

1

0100

0

0

00

01

yz
wx

1

0

1

1

11 10

11

10

0 1

0 0

0 0

0 1

1

1

0100

0

0

00

01

yz
wx

1

0

1

1

11 10

11

10

0 1

0 0

0 0

0 1

5

9

Plotting Product of Sum Expression
Given, F7 = (w +x)(x +y’ +z)(y +z)

F7’ = [(w +x)(x +y’ +z)(y +z)]’
= (w +x)’ +(x +y’ +z)’ +(y +z)’
= w’x’ +x’yz’ +y’z’

F7’ is plotted by putting 0s in
appropriate cells
Can F7’ be simplified further?

F7’ = w’x’ +x’z’ +y’z’
F7 = (w +x)(x +z)(y +z)

0

0

0100

0

0

00

01

yz
wx

1

1

0

1

11 10

11

10

0 0

1 1

1 1

1 0

10

Don’t care Conditions
Some time, not all values of a function are defined

Some inputs conditions will never occur
We don’t care what the output is for that input condition

In these cases, we can choose the output to be wither
0 or 1, whichever simplifies the circuit
Example – A circuit to produce output 1 if a BCD digit
is multiple of 3

BCD – Four inputs (wxyz) 0 (0000) 9 (1001)
Values of wxyz 10 (1010) 15 (1111) don’t care

The function F8 = ∑(3,6,9) +d(10,11,12,13,14,15)

6

11

Don’t Care - Plotting
Don’t care are plotted as X in the K map
SOP expression Treat X as 1 if it allows a larger group
POS expression Treat x as 0 if it allows a larger group
F8_1 = wz +xyz’ +x’yz (SOP)
F8’_2 = xz +w’y’ +x’z’ {F’ = ∑(all minterms not in F)}
F8_2 = (x’ +z’)(w +y)(x +z) de Morgan’s theorem

Is F8_1 = F8_2??

0

0

0100

X

0

00

01

yz
wx

1

X

0

0

11 10

11

10

1 0

0 1

X X

X X

0

0

0100

X

0

00

01

yz
wx

1

X

0

0

11 10

11

10

1 0

0 1

X X

X X

12

Simplest 2-Level Expression
Example, F(w,x,y,z) = ∑(0,1,2,5,6,7,9,14) +d(13)

Determine essential and prime implicants

1

0

0100

0

0

00

01

yz
wx

1

X

1

1

11 10

11

10

0 1

1 1

0 1

0 0

1

0

0100

0

0

00

01

yz
wx

1

X

1

1

11 10

11

10

0 1

1 1

0 1

0 0

Essential prime implicants Prime implicants

7

13

Simplest 2-Level Expression
Example, F(w,x,y,z) = ∑(0,1,2,5,6,7,9,14) +d(13)

Determine essential and prime implicants

D√√w’xy (6,7)

149765210
 ۞√√√y’z (1,5,9,13)

√

√

√
√

w’yz’ (2,6)

w’xz (5,7)
w’x’z’ (0,2)
w’x’y’ (0,1)
xyz’ (6,14)

√
√

√

√ √

E

√ C
B
A
 ۞

All minterms must be covered
i.e., essential prime implicants must be included
Different choices for prime implicants

B +C; or B +D; or A +C +E; or A +D +E

14

Tabulation (Quine-McCluskey) Method
The map method of simplification is convenient if # of
variables ≤ 4

Tabulation method is preferred for function with large # of variables

For F(w,x,y,z) consider adjacent minterms
let a = m4 +m5 = w’xy’z’ + w’xy’z = w’xy’
or = 0100 + 0101 = 010-
Similarly, b =m12 +m13 = wxy’z’ + wxy’z = wxy’ = 110-

Let c = a +b = m4 +m5 +m12 +m13
w’xy’ +wxy’ = xy’ = -10-

Adjacent terms differ by a single bit in their representation
Tabulation method consists of grouping of minterms and
systematically checking for single bit differences

8

15

Tabulation (Quine-McCluskey) Method
Example, F(w,x,y,z) = ∑(0,3,4,6,7,8,10,11,15) +d(5,9)

Place minterms in different Sections according to # of 1’s in their
binary representation
Each member of each Section is compared with each member of
Sections below; all reduction are recorded in next column
Mark terms that combine
All unmarked terms are prime implicants

16

Tabulation Method - Example
Example

9

17

NAND & NOR Implementation
In digital logic families NAND & NOR implementations
are cheaper compared to AND & OR implementations

Hence, NAND & NOR are preferred

NAND and NOR are universal gates
Can mimic any logic gate
Example, NAND gate can implement:
NOT short inputs
AND {(xy)’}’
OR (x’y’)’ = x +y

Similarly for NOR gate, one can show its universality

18

NAND – 2-level Implementation
Can implement any arbitrary logic
Example, F = AB + CD

10

19

NAND – 2-level Implementation
Given, F9 (x,y,z) = ∑(1,2,3,4,5,7)

Minimize the function, and implement it with NAND gates

20

NAND – 2-level Implementation Procedure

1. Simplify the function and express it in SOP form
2. Draw a NAND gate for each product term
3. Draw a single gate using AND-invert or invert-OR

symbol for the sum term
4. A term with single literal, complement if needed

Multi-level NAND Circuits
1. Convert all AND gates to NAND gates
2. Convert all OR gates to NAND gates with invert-OR

symbols
3. Balance all bubbles, insert an inverter if needed

11

21

NOR – Implementation
NOR gate is a dual of NAND

Same rules and procedures

Example, F = (A +B)(C +D)E

22

Wired Logic
Two logic gate outputs are not shorted together

May create logical conflicts Logic is not defined
In some technologies, it is possible to short O/Ps
of some logic gates (wired logic)

F1 = (AB)’(CD)’ = (AB + CD)’ (wired AND)
F2 = (A +B)’ + (C +D)’ = [A +B)(C +D)]’ (wired OR)

12

23

Exclusive-OR Function
XOR gate is expensive to implement in silicon

XOR = xy’ +x’y
XNOR = (xy’ +x’y)’ = xy +x’y’

But they are useful in
Parity checking
Arithmetic circuits (adders, subtractors)

0
1
1
0

XOR

111
1
0
0

x

00
1
0

y

0
1

XNOR

24

Exclusive-OR Function
XOR gate properties

Commutative
Associative

Odd and Even Functions

13

25

Exclusive-OR Function
4 Variable XOR

26

Parity Generation and Checking
Parity checking is useful for detecting and
correcting errors when transmitting binary data

We can always append a parity bit to the end of the
data bits (e.g. 32) so that the number of 1s in the
packet is always even or odd

If we lose a bit in transmission, we can use the
parity bit to tell us there has been a problem

14

27

Book Sections – Logic Minimization

Material is covered in Sections 3.1 – 3.8

