

Registers

- Register is a group of flip-flops
$\square n$-bit register has n flip-flops
\square Can hold n bits of binary data
\square Register may also contain combinational logic

Register with Parallel Load

- Specific control signal to load n-bit data
\square Load $=0$, register retains the data
\square Load = 1, register accepts new data

Shift Register

- Capable of shifting data in one or both directions

Clock controls the shift operation

- Figure shows a simple shift register with left to right data shifting capability

Fig. 6-3 4-Bit Shift Register

Serial Data Transfer

- Serial mode \rightarrow Data is transferred one bit at a time

(a) Block diagram

(b) Timing diagram

Serial Addition

- Parallel adders
- Faster,
- cost more logic
- Serial adders
- Slower
- n-bit addition \rightarrow n clock cycles
- Less hardware

Fig. 6-5 Serial Adder

Ripple (Asynchronous) Counter

- Counts the binary sequence
\square Negative edge triggered
\square Output of one flipflop \rightarrow Clock to the next
\square Clock skew adds up

(a) With T flip-flops

(b) With D flip-flops

BCD Ripple Counter

■ Counter must reset itself after counting the terminal count

Fig. 6-9 State Diagram of a Decimal BCD-Counter

Synchronous Counters

Count enable

- A common clock is applied to all flip-flops
\square Clock skew does not add up
\square Faster than ripple counters
- Synchronous counters can be designed using sequential circuit procedure
- Synchronous binary counter

Up-Down Binary Counter

- Can count up (0000 \rightarrow 1111) or down (1111 \rightarrow 0000) binary sequence

Synchronous BCD Counter

\square Design a synchronous BCD counter with T flip-flops

Present State				Next State				Out	Flip-flop inputs			
Q8	Q4	Q2	Q1	Q8	Q4	Q2	Q1	\mathbf{y}	TQ8	TQ4	TQ2	TQ1
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1

BCD Counter \& Modulo-N Counter

(a) Using the load input

(b) Using the clear input

Fig. 6-15 Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

- Home work - Suppose we want to design a counter with $1,2,3,4,5,6,7,8,9$ sequence (mod-9 counter)?

Counter with Unused States

- A circuit with n flip-flops has 2^{n} states
$\square \quad$ We may have to design a counter with a given sequence (unused states)
$\square \quad$ Unused states may be treated as don't care or assigned specific next state
$\square \quad$ Outside noise may cause the counter to enter unused state
- Must ensure counter eventually goes to the valid state

Present State				Next State							
Flip-flop Inputs											
A	B	C	A	B	C	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

Counter with Unused States

(b) State diagram

(a) Ring-counter (initial value $=1000$)

Count enable
(b) Counter and decoder

Capable of generating
different timing
signals

(c) Sequence of four timing signals

Johnson Counter

- Number of states of a ring counter can be doubled

(a) Four-stage switch-tail ring counter

Sequence number	Flip-flop outputs				AND gate required for output
nunn	B	C	E	$A^{\prime} E^{\prime}$	
1	0	0	0	0	$A B^{\prime}$
2	1	0	0	0	$B C^{\prime}$
3	1	1	0	0	$C E^{\prime}$
4	1	1	1	0	$A E$
5	1	1	1	1	$A^{\prime} B$
6	0	1	1	1	$B^{\prime} C$
7	0	0	1	1	$C^{\prime} E$
8	0	0	0	1	

(b) Count sequence and required decoding

Book Sections - Registers \& Counters

- Material is covered in Sections 6.1-6.5

