
E & C E 2 2 3

1

Department of Electrical Engineering, University of Waterloo

Section 3: Combinational Logic
DesignMajor Topics

Design Procedure
Multilevel circuits
Design with XOR gates
Adders and Subtractors
Binary parallel adder
Decoders
Encoders
Multiplexers
Programmed Logic Devices

Department of Electrical Engineering, University of Waterloo

Combinational Logic

The outputs are functions only of current values of the inputs
(no history)

Combinational
logic

n inputs m outputs

E & C E 2 2 3

2

Department of Electrical Engineering, University of Waterloo

Comment on Circuit Analysis
1) Algebraic

(a) Label all gate outputs
(b) Write equation for each gate
(c) Simplify
F = z + w
w = (d + e)’
z = x i y
y = c'
x = (a i b)'
F = x i y + (d + e)'

= (ab)' c' + (d + e)' = (a' + b')c' + d' e'
= a' c' + b' c' + d' e'

Department of Electrical Engineering, University of Waterloo

2) Write truth table from Inspection of Circuit
Sometimes easier
More error prone
harder to check

a b c d e F

X X X O O 1

X O O X X 1

O X O X X 1

all others 0

E & C E 2 2 3

3

Department of Electrical Engineering, University of Waterloo

Design Procedure
Problem stated
Input and Output variables determined
Input and Output variables are assigned names
Truth table developed for all Outputs
A simplified Boolean function for each Output is obtained **

** constraints - minimum number of gates and Inputs to gate
- minimum number of IC packages and interconnections
- propagation times (delay, speed)
- drive capacity of gates
- POWER !

Logic Diagram drawn
Normally assume complements of Inputs are available
If not, generate them with inverter

Department of Electrical Engineering, University of Waterloo

Evolution of Logic Design
Till the mid-1960’s each gate in a logic circuit was a vacuum tube
or transistor and the design goal was very simple

Minimize the number of gates

With the development of Integrated Circuits (ICs) two design goals
emerged

For the chip designer
placing a complex function in a limited chip area

this requires that the number of gates and interconnections be
minimized

For the system designer
minimize the number of IC packages required for the circuit

E & C E 2 2 3

4

Department of Electrical Engineering, University of Waterloo

As time progressed the complexity of IC packages available
increased

SSI Small Scale
Integration

≈ 10 gates (4 NAND gates)

MSI Medium Scale
Integration

≈ 102 gates (4 bit adder)

LSI Large Scale
Integration

≈ 103 gates (microprocessors,
memory, PLD)

VLSI Very Large
Scale Integration

> 104 gates (complex processors,
large memories, gate
arrays)

Department of Electrical Engineering, University of Waterloo

Large system logic design has gone in cycles between using
standard components and developing customs circuits

Standard Components

1957 1967 1977 1987 1997 2007

Custom chips
for TVs,

calculators

Mask-
programmable

gate arrays

standard
discrete

components

Memories,
PALs, PLAs,

Microprocessors

field-
programmable

gate arrays

E & C E 2 2 3

5

Department of Electrical Engineering, University of Waterloo

Custom Components
(Adapted from “Makimoto’s Wave”, IEEE Spectrum, Jan 1992)

It should be noted that, for a given technology, custom circuits
are faster and can provide greater functionality.
Typical large system evolution:

Field-programmable
gate array

Mask-programmed
gate array

Custom VLSI
(standard cells)

Department of Electrical Engineering, University of Waterloo

Digital Logic Families
The most widely used logic families are:

TTL Transistor-transistor logic
For many years this was the standard

ECL Emitter-coupled logic
Used for high speed circuits

CMOS Complementary metal-oxide semiconductor
Very low power consumption, good speed
High packing density
Easy fabrication

Originally CMOS was slower than TTL, but progress in CMOS
(smaller features) improved CMOS speed and it became the
dominant technology around 1990.

E & C E 2 2 3

6

Department of Electrical Engineering, University of Waterloo

Typical gate characteristics (two input NAND)

Noise
Margin
(V)

Fan-out Power
(mW)

Nominal
Delay (ns)

TTL 0.4 10 10 10

Schottky
TTL

0.4 10 20 3

ECL 0.15 25 25 0.05

CMOS 0.5 4 0.001 0.1

(100 Mhz)

Department of Electrical Engineering, University of Waterloo

MSI PLDs
Programmable

Gate Arrays
Gate

Arrays
Custom

VLSI
Integration in
Gates 100 100-2k 1k-10M 1k-100k 1k-100M

Speed Fast
Slow to
Medium Slow to Medium

Slow to
Fast Fast

Function
defined by User No Yes Yes Yes Yes
Time to
Customize - Seconds Seconds Weeks Months

User
Programmable No Yes Yes No No

E & C E 2 2 3

7

Department of Electrical Engineering, University of Waterloo

Design of Large Systems
FACTS:

If inverters are ignored, minimum number of gates is normally given
by a two level OR-AND or AND-OR circuits (single function)
Two level circuits have minimum delay (unless the number of
inputs is large)

However:
Cannot ignore inverters
Often generating multiple functions – Logic resuse
Two level circuits often require that gates have an excessive
number of inputs
There are tricks in NAND and NOR circuits to eliminate inverters

Department of Electrical Engineering, University of Waterloo

Multi-Level Circuit Design
(1) Try to reduce the number of inputs to the gates by factoring

Consider:

 yz
 wx

00 01 11 10

00 1 1

01 1 1 1

11

10 1 1 1 1

F

w'
y'

w'

x'

z

w

x

F = w’xy + w’z + wx’

2 2-input gates

2 3-input gates

3 inverters

7 gates with 13 inputs

E & C E 2 2 3

8

Department of Electrical Engineering, University of Waterloo

If only two-input gates are permissible, splitting the three input
gates yields:

x'

z

w

F

w'

y'
w'

x

Department of Electrical Engineering, University of Waterloo

Multi-Level NAND Circuit: Design
and Analysis

Given Boolean expression, draw the schematic with AND, OR and
Inverter gates
Convert all AND gates to NAND gates with AND-Invert symbols
Convert all OR gates to NAND gates with Invert-OR symbols
Check all inversion symbols (small circles) along signal paths, if
needed add an inverter (1-input NAND gate)

E & C E 2 2 3

9

Department of Electrical Engineering, University of Waterloo

F = w’(xy’ + z) + wx'

5 2-input gates

5 inverters

x'

z Fy'
w'

x

x'
w

z' F
y'

w'

x

wN.B.

Department of Electrical Engineering, University of Waterloo

Multi-Level NOR Circuit: Design and
Analysis

Given the algebraic expression, draw the AND-OR logic diagram
Convert all OR gates to NOR gates with ON-Invert symbols
Convert all AND gates to NOR gates with Invert-AND symbols
Any inversion (small circle) that is not compensated by another
small circle, needs an inversion (10input NOR gate)

E & C E 2 2 3

10

Department of Electrical Engineering, University of Waterloo

F = (w’ + x’) (w + x + z) (w + y’ + z)
= (w’ + x’) (w + z + xy')

3 2- input NORs
1 3- input NORs
2 inverters

6 gates

x

z F
y'

x'
w

F
y

w'

x'

x'

Department of Electrical Engineering, University of Waterloo

If only two-input gates are available some gates must be split

x
y'

y
x'

w
z

z

x'
w'

w

w'
x'

F

F

5 input NOR
3 inverters

8 gates

E & C E 2 2 3

11

Department of Electrical Engineering, University of Waterloo

Circuit Design Using XOR Gates
Example

Looks nasty!
F = (w ⊕ x ⊕ y ⊕ z)´
= (w ⊕ x ⊕ y ⊕ z)´

yz
wx 00 01 11 10

00 1 1

01 1

11 1 1

10 1 1
w
x

z
y

F

1

Department of Electrical Engineering, University of Waterloo

Adders and Subtractors
Adders and subtractors are important components in many logic
circiuts
3.6.1 Half- Adder

(CS)2 = x plus y

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

S = x´y + xy´= x ⊕ y
C = xy

x y

C S

HA

E & C E 2 2 3

12

Department of Electrical Engineering, University of Waterloo

Full - Adder
(CS)2 = x plus y plus z

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0
1 0 0 0 1

1 0 1 1 0

1 1 0 1 0
1 1 1 1 1

x y z

SC

FA

c2

yx

HA

z

S
C

HA

s1

c1

Department of Electrical Engineering, University of Waterloo

 yz
 x

00 01 11 10

0 1

1 1 1 1

 yz
 x

00 01 11 10

0 1 1

1 1 1

S C

CS

x

x

y

y

z

z

x´

y

x

x

x´

y´

y´

y

z

z´

z´

z
Note: The circuit inputs are symmetrical in x, y and z

S = x´y´z + x´yz´ + xy´z´ + xyz = x ⊕ y ⊕ z
C = xy + xz + yz

E & C E 2 2 3

13

Department of Electrical Engineering, University of Waterloo

Half - Subtractor
Generate x - y.
Let

D - Difference
B - Borrow

x y B D
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

D = x´y + x y´ = S of Half- Adder
B = x´y

Department of Electrical Engineering, University of Waterloo

Full - Subtractor
(x - y) -z where (z represents a borrow)

x y z B D
0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0
1 0 0 0 1

1 0 1 0 0

1 1 0 0 0
1 1 1 1 1

x y z

DB

FS

D = x´y´z + x´yz´ + x y´y´ + xyz
= S of Full- Adder
= x ⊕ y ⊕ z

B = x´y + x´z + yz
(same as C of Full - Adder except
x is inverted)

E & C E 2 2 3

14

Department of Electrical Engineering, University of Waterloo

Binary Parallel Adder
Required: Add two n - bit numbers plus carry

(1) Classical Approach
2n + 1 inputs, n + 1 outputs
Design a (n + 1) output, 2 level design
Problem:

Too many gates
Fan-in too large
Not practical for n > 3

Department of Electrical Engineering, University of Waterloo

(2) Use iterative circuit; reduces gate count and fan-in

For n = 4 8 inputs a, b
1 inputs c1
4 outputs si
1 output c5
2 VCC , ground
16 pin package

c1

b1a1b2b3bn a2a3an

s1s2s3sn

c2c3c4cncn+1 . . .FA FA FA FA

E & C E 2 2 3

15

Department of Electrical Engineering, University of Waterloo

Problem:
Although fewer gates, slower than 2-level circuit because of
carry propagation

Propagation delay = (average delay of gate) x (no. of gate
levels)

2 gate delays per Full - Adder for carry
For an n - bit adder:
delay = 2n x gate delay

ai

ci

sibi

Ci+1

Department of Electrical Engineering, University of Waterloo

Compare with the classical (and impractical) 2-level method:
delay = 2 x gate delay

To make faster
Faster gates

expense
heat

More complexity but less delay
Most common approach

Carry Look ahead

E & C E 2 2 3

16

Department of Electrical Engineering, University of Waterloo

Carry Lookahead Logic
Define:

Carry Propagate
Pi = ai bi

Carry Generate
Gi = ai bi

Now
si = ai bi ci

= Pi ci

ci+1 = ai bi + ai ci + bi ci

= ai bi + ai bi´ci + ai´bi ci

= Gi + ci Pi

⊕

⊕
⊕

⊕

Department of Electrical Engineering, University of Waterloo

Observe:
All carries can be generated simultaneously

c2 = G1 + P1c1

c3 = G2 + P2c2 = G2 + P2G1 + P2P1c1

c4 = G3 + P3c3 = G3 + P3G2 + P3P2 G1 +P3 P2P1c1

Delay?
Pi , Gi

XOR and AND 2 gate delays
ci

two-level AND - OR 2 gate delays
si

XOR 2 gate delays
6 gate delays independent of n

n limited by connections and gate loading

E & C E 2 2 3

17

Department of Electrical Engineering, University of Waterloo

Note:
c5 = G4 + P4 c4

= G* + P* c1

Where
G* = G4 + P4 G3 + P4 P3 G2 + P4 P3 P2 G1

P* = P4 P3 P2 P1

Typical Adder chip

P* sG*

c5

a b

c14 - bit
Adder

44

4

Department of Electrical Engineering, University of Waterloo

Ripple Carry Between Chips

c1c17

s16 - 13

a16 - 13 b16 -13

c134 - bit
Adder

44

4

a12 - 9

s4 - 1

a4 - 1 b4 -1

4 - bit
Adder

44

4
s12 - 9

b12 - 9

c94 - bit
Adder

44

4
s8 - 5

a8 - 5 b8 - 5

4 - bit
Adder

44

4

c5

E & C E 2 2 3

18

Department of Electrical Engineering, University of Waterloo

Twos Complement Adder/Subtractor
Let an . . . a1 and bn . . . b1 be binary numbers in twos complement
representation
Consider the circuit

If X = 0 the circuit adds an . . . a1 and bn . . . b1

If X = 0 the circuit subtracts bn . . . b1 from an . . . a1

The same circuit will also add/subtract unsigned binary numbers

X

Cn+1

an b2

c1

si s2 s1

bn a2 a1 b1

n - bit adder

Department of Electrical Engineering, University of Waterloo

Magnitude Comparator

Classical Approach
3 outputs, 2n inputs
Almost impossible if n > 3

Approach
Do in two steps

(1) Define
xi ≡ (Ai Bi) = Ai Bi + Ai´Bi´ , 0 < i < 3

F1 (A = B)
F2 (A > B)
F3 (A < B)

magnitude
comparator

4

4

A

B

≡

≡
≡

E & C E 2 2 3

19

Department of Electrical Engineering, University of Waterloo

(2) Now
F1 = (A = B) = x3x2x1x0

F2 = (A > B) = (A3 > B3)
+ (A3 = B3) • (A2 > B2)
+ (A3 = B3) • (A2 = B2) • (A1 > B1)
+ (A3 = B3) • (A2 = B2) • (A1 = B1) • (A0 > B0)

= A3 B´3 + x3 A2B´2 + x3x2 A1B´1 + x3 x2x1 A0B´0

F3 = A´3 B3 + x3 A´2B2 + x3x2 A´1B1 + x3 x2x1 A´0B0

= (F1 + F2)´

Department of Electrical Engineering, University of Waterloo

Decoders and Multiplexers
As well as the intended application, these circuits can frequently
be used to realize simple functions at low cost

Decoders

Demultiplexer

Encoder

Multiplexer

E & C E 2 2 3

20

Department of Electrical Engineering, University of Waterloo

Decoders
Code of n bits can represent 2n elements
n - to - m line decoder converts an n bit input into m distinct
outputs
If m = 2n, decoder produces all minterms

Example: 2 - to - 4 decoder
Truth Table

Note: Only one output asserted

x y D0 D1 D2 D3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

= D0

= D2

= D1

= D3

x

y

x yx´

x

yx´

y´

y´

y´

x´

x y

Department of Electrical Engineering, University of Waterloo

Decoder with enable line

Note inverters
Uniform load of one gate on all inputs

Truth Table

Y0

Y2

Y1

Y3
E

x

y

Y0
Y1

E

y

x

Y2
Y3

21 2 x 4
20 decoder

(enable)

E x y Y0 Y1 Y2 Y3

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

E & C E 2 2 3

21

Department of Electrical Engineering, University of Waterloo

Expanding Decoders

k x j
decoder

n x m
decoder

n x m
decoder

n x m
decoder

m

m

m

n

k

E

(k + n) to (j x m)

n x m
decoder

n m

n x m
decoder

m

(n+ 1) to 2m

Department of Electrical Engineering, University of Waterloo

Common Decoders (other than n -to- 2n)

BCD to decimal

BCD to 7 segment
Normally organized so “don’t care” conditions are 0 outputs

Applications
Address decoding (in components etc.)
Sequential circuits (state decoding)
Boolean function implementation

104

4 7

E & C E 2 2 3

22

Department of Electrical Engineering, University of Waterloo

Function Implementation Using
Decoders

Example : F1 = ∑ (0,4,5,7) F2 = ∑ (1,4,7)

Reasonable method if
many outputs
each output has only a few minterms

If any function requires more than half of the minterms generate F´ and
use a NOR gate

0
1
2
3
4
5
6
7

20

21

22

3 x 8
decoder

x

y

z

F1 (x,y,z)

F2 (x,y,z)

Department of Electrical Engineering, University of Waterloo

Demultiplexer
Put input on one of m output lines, according to values on select
lines

Just decoder with lines renamed

Selected output equals E, all others 1

Y0
Y1
Y2
Y3

E

select

(input
signal)

output

E & C E 2 2 3

23

Department of Electrical Engineering, University of Waterloo

Encoders

Reverse operation to decoder
Assumes only one input line active
Example : 4 lines to 2 (binary)

binary number output is (yz)2

D3

y = D2 + D3

z = D1 + D3

D2

D1

D0

Department of Electrical Engineering, University of Waterloo

Priority Encoders
More than 1 active input line

Output corresponds to input line with highest subscript
D0 D1 D2 D3 x y z
X X X 1 1 1 1

X X 1 0 1 1 0
X 1 0 0 1 0 1

1 0 0 0 1 0 0

0 0 0 0 0 0 0
x = D0 + D1 + D2 + D3
y = D2 + D3
z = D3 + D1D´5

E & C E 2 2 3

24

Department of Electrical Engineering, University of Waterloo

Multiplexers
Multiplexing

Concentrating information from a large number of lines onto a
smaller number of lines

Example: Telecommunications

1.544 Mbit/s

A/D

A/D

MUX DEMUX

64 kbit/s64 kbit/s

Department of Electrical Engineering, University of Waterloo

Example: Computers

n
R0

MUX ALU

R1

Rm

n

n

n

E & C E 2 2 3

25

Department of Electrical Engineering, University of Waterloo

Key Component: Multiplexer (MUX)
Example: 4 x 1 MUX

output

3

1
0

Y

I0

2

s1 s0

select

I1
I2
I3

s1 s0 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Department of Electrical Engineering, University of Waterloo

Implementation : Obvious

Note: Looks like a decoder with extra input line to AND gate,
and AND outputs Ored
Usually, also on “enable” (or “strobe”) input for expanding
multiplexers.

s1s0

I0

I1

I2

I3

s´1s´0

s´1s0

s1s´0

Y

s0

s1

s´0s0

s´1s1

E & C E 2 2 3

26

Department of Electrical Engineering, University of Waterloo

Applications
1) Multiplexing Applications
2) Sequential Circuits
3) Boolean Function Implementation

a) naïve approach, n select lines for function of n variables
0
1
2
3
4
5
6
7

Ii tied to 1 if
minterm i is
present, 0 if

absent

F (s2,s1,s0) = ∑ mi

s2 s1 s0

Y

inputs
two level AND-OR circuit

Department of Electrical Engineering, University of Waterloo

b) Better approach, (n - 1) select lines for functions of n variables

How: (n - 1) variables go to select lines, nth variables,
complement, 0 or 1 goes to MUX inputs

Example: F (x,y,z) = ∑ (2,3,4,6)

00 01 10 11
I0 I1 I2 I3
m0
m4

m1
m5

m2
m6

m3
m7

select:

output:

inputs:

desired output

yz

x = 0
1

(Ii)

E & C E 2 2 3

27

Department of Electrical Engineering, University of Waterloo

When yz = 00 Then F = x
yz = 01 F = 0
yz = 10 F = 1
yz = 11 F = x´

F (x,y,z)
Y

x

y

z

0
1

I0
I1
I2
I3 s1 s0

Department of Electrical Engineering, University of Waterloo

Note: Should try several selections for MUX input

saved an inverter

F (x,y,z) = ∑ (2,3,4,6)
00 01 10 11
I0 I1 I2 I3
m0
m4

m1
m5

m2
m6

m3
m7

select:

output:

inputs:

xz

y = 0
1

(Ii)

F (x,y,z)
Y

y

x

z

0
1

I0
I1
I2
I3 s1 s0

E & C E 2 2 3

28

Department of Electrical Engineering, University of Waterloo

Summary
Decoder

For many outputs, few minterms

MUX
For single output, many minterms

Use for small combinational circuits not available in MSI or LSI

For large circuits, use programmed logic devices (PLDs) or
custom logic

Department of Electrical Engineering, University of Waterloo

Programmable Logic Devices
Programmable Logic Devices (PLDs) are intended for prototyping
or for final applications where the volume does not justify the cost
and delay of custom VLSI design

There are four major classifications

Read - Only Memory (ROM)
Programmable Array Logic (PAL)*
Programmable Logic Array (PLA)
Field Programmable Gate Arrays (FPGA) & Complex
Programmable Logic Devices (CPLD)

* PAL is a trade mark of Advanced Micro Devices

E & C E 2 2 3

29

Department of Electrical Engineering, University of Waterloo

All four come in many forms. Some key distinctions:

Mask Programming
The logic design is fixed during the last few steps of
manufacturing

Programmable
With appropriate hardware the logic gates are
“programmed” to have the desired configuration

Erasable
The pattern that was programmed can be erased
Some devices are erased by ultraviolet light, others are
erased electrically

Department of Electrical Engineering, University of Waterloo

Read - Only Memory (ROM)

Use input variables as the address to a memory location

Memory contents are function values

Can use to generate m functions of n variables

mn 2n x m
ROM (output)(address)

E & C E 2 2 3

30

Department of Electrical Engineering, University of Waterloo

Internal Construction : (in principle)

“Fuses” are
a) Mask Programmable
b) “Blown” by “programming” device (PROM)

Some PROM can be erased (EPROM or EEPROM)
Good for generating several functions of many variables
Good for prototype
Inefficient use of space if there are many “don’t care” cases

Fm

0
1
2

2n - 1

n x 2n

decoder

n

fuses removed to
get desired function

F1

minterms

Department of Electrical Engineering, University of Waterloo

Several technologies for ROM implementation
ROM – Customized in manufacturing, one time programmable
PROM (Programmable Read Only Memory)

PROM contains fuses giving logic 1 or 0 to a particular bit. User
blows the fuse for programming
One time programmable

EPROM (Electrically Programmable Read Only Memory)
Can be “erased” by exposure to UV light; otherwise same as a
PROM
Multiple time programmable

EEPROM (Electrically Erasable Programmable Read Only Memory)
Can be “erased electrically” otherwise same as a PROM
Multiple time programmable

Extra pins in these devices for programming data (bit stream) is
applied

Types of ROM

E & C E 2 2 3

31

Department of Electrical Engineering, University of Waterloo

Programmable Logic Array (PLA)
Same idea as ROM except “don’t cares” can be eliminated
Generalized AND-OR and AND-OR-INVERT which is mask or field
programmed by removing unwanted fuses
General Form

Fn

F1

fuses

F2

n inputs k product terms m sum terms

Department of Electrical Engineering, University of Waterloo

One set of fuses determines variables input into AND gates

Second set of fuses determines product terms input into OR gates

Third set of fuses selects AND-OR or AND-OR-INVERT realization

not all PLAs have the AND-OR-INVERT choice

E & C E 2 2 3

32

Department of Electrical Engineering, University of Waterloo

Example:
Note: Unrealistically small

F1 = ∑ (0,4,5,7,9) F2 = ∑ (0,1,2,8,10,11,12,13,14,15)

 yz
 wx

00 01 11 10

00 1

01 1 1 1

11

10 1

 yz
 wx

00 01 11 10

00 1 1 1

01
11 1 1 1 1

10 1 1 1

 yz
 wx

00 01 11 10

00 1 1 1

01
11 1 1 1 1

10 1 1 1

 yz
 wx

00 01 11 10

00 1

01 1 1 1

11

10 1

F2

F´2

F1

F´1

Department of Electrical Engineering, University of Waterloo

F1 = w´y´z´ + w´xz + wx´y´z F2 = w´x´y´ + wx + wy + x´z´
F´1= w´x´z´ + yz´+ wx + wz´+ wy F´2 = w´x + wx´y´z
or = w´x´z´ + yz´+ wx + wz´+ x´y
Select whichever of

F1 F2 , F1 F´2 , F´1 F2 or F´1 F´2

minimizes the number of product terms
(Number of product terms is the limiting factor)

PLA specification product
term

inputs
 w x y z

outputs
 F1 F2

w´y´z´ 1 0 - 0 0 1 -

w´xz 2 0 1 - 1 1 -

wx´y´z 3 1 0 0 1 1 1

w´x 4 0 1 - - - 1

w´yz 5 0 - 1 1 - 1
true / complement → T C

E & C E 2 2 3

33

Department of Electrical Engineering, University of Waterloo

Programmed Array Logic Devices
A Programmed Array Logic (PAL)* device is an alternative to a
PLA

Only one level of programming
Programmable AND
Fixed OR
Opposite of ROM

Easier to program but less flexible
Less expensive to manufacture and somewhat faster due to only
having one level of configurable logic
Many PALs have some bi-directional input/output pins
Many PALs have flip-flops

* PAL is a trademark of Advanced Micro Devices

Department of Electrical Engineering, University of Waterloo

Programmable Array Logic (PAL)

f1

f2

x1 x2 x3

Example of a PAL:

E & C E 2 2 3

34

Department of Electrical Engineering, University of Waterloo

Programmable Array Logic (PAL)

Sometimes the outputs are fed back internally and can be used to create
product terms.

f2

x3x1 x2

f1

Department of Electrical Engineering, University of Waterloo

Simple Programmable Logic Device
(SPLD)

To implement sequential circuits, take a PAL and add some flip-flops at the
output of the OR plane.

For example…

D Q

R

S

from OR plane

to AND plane

Above circuit (plus SOP from the AND plane and OR gate) form a MacroCell.

Several MacroCells together in the same IC is called an SPLD.

E & C E 2 2 3

35

Department of Electrical Engineering, University of Waterloo

Complex Programmable Logic
Device (CPLD)

PLA, PAL and SPLD typically contain small number of outputs (e.g., 16
outputs) with many inputs (e.g., 36 inputs) and a fair number of product
terms.

Therefore only good for simple circuits where each equation has a wide fanin.

Using a Complex Programmable Logic Device (CPLD) is the “next step” if we
have a large complicated circuit…

CLPD consists of many SPLD connected together by a Programmable
Routing Fabric all in the same IC.

Department of Electrical Engineering, University of Waterloo

Complex Programmable Logic
Device (CPLD)

Typical architecture (each PAL-like block has many inputs – e.g., 36 - ,
many product terms – e.g., 80 – and several outputs – e.g., 16).

PAL-like
block

PAL-like
block

PAL-like
block

PAL-like
block

PAL-like
block

PAL-like
block

PAL-like
block

PAL-like
block

IO
 b

lo
ck

IO
 b

lo
ck

IO
 b

lo
ck

IO
 b

lo
ck

IO
 b

lo
ck

IO
 b

lo
ck

IO
 b

lo
ck

IO
 b

lo
ck

In
te

rc
on

ne
ct

io
n

w
ire

s

E & C E 2 2 3

36

Department of Electrical Engineering, University of Waterloo

Types of PLA, PAL, SPLD and CPLD
Programming of these devices is similar to ROM; i.e., these devices are
typically either PROM, EPROM or EEPROM.
Programming info is generated (perhaps with a software tool), and the bit
stream of program info is provided to one (or a few) additional pins on the
device.
Also possible (these days) to have SRAM-based PLDs…

In SRAM devices, the programming info is lost when power is turned off.
Necessary to re-program device every time the system is powered up.
Often to see a configuration EPROM beside an SRAM based PLD on a
circuit board.

Two chip solution… The EPROM holds the program that gets applied to the
PLD upon power up.

Department of Electrical Engineering, University of Waterloo

Field Programmable Gate Array
(FPGA)

Another type of programmable device capable of handling large circuits.

Different from a CPLD:

Logic is not implemented in terms of Product Terms/MacroCells

Implemented using Lookup Table (LUT) which are like little memories

E & C E 2 2 3

37

Department of Electrical Engineering, University of Waterloo

Field Programmable Gate Array
(FPGA)

Typical FPGA consists of many small logic blocks interconnected by
programmable routing resources.

Logic Logic Logic Logic

Logic Logic Logic Logic

Logic Logic Logic Logic

Logic Logic Logic Logic

IO
 b

lo
ck

IO
 b

lo
ck

IO block

IO block

switch blockconnection block

Department of Electrical Engineering, University of Waterloo

Field Programmable Gate Array
(FPGA)

Can “zoom in” around a logic block.

Logic Logic

IO IO IO IO

Routing resources around the logic blocks need to be programmed so
signals get “routed” to where they are needed.

E & C E 2 2 3

38

Department of Electrical Engineering, University of Waterloo

Field Programmable Gate Array
(FPGA)

Can “zoom in” inside a logic block (e.g., 3-input logic block):

inputs from
routing fabric

D Q

R

S

x1 x2 x3

output to
routing fabric

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

Can implement any 3-input function by properly programming the
configuration bits.

Department of Electrical Engineering, University of Waterloo

Random Access Memory (RAM)
Storage device to which we can both read and write information.

data inputs

data outputs

address

read

write

k

n

n

2^k x n
RAM

E & C E 2 2 3

39

Department of Electrical Engineering, University of Waterloo

Random Access Memory (RAM)

S Q

R

output

read/write

select

input

Internally, we need to be able to both read and write to bits of memory.

Consider the following circuit that can function as a bit of memory:

1 bit
memory

read/write

select

outputinput

Note: circuit is not really made like this, but this will function correctly to
explain the concept…

Department of Electrical Engineering, University of Waterloo

Random Access Memory (RAM)
Take 1-bit memory and connect them into an array:

1 bit
memory

read/write

select

outputinput

address
decoder

A(2)

A(1)

A(0)

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

1 bit
memory

D(0)D(1)D(2)D(n-1)

D(0)D(1)D(2)D(n-1)

data outputs

data inputs

read/write

A(k-1)

