University of Waterloo Department of Electrical and Computer Engineering ECE 223 Digital Circuits and Systems Final Examination Winter 2001

Duration 3 hours Instructor: M. Sachdev Date April 9, 2001

Full marks 100

Name					Studen	t ID			
1	2	3	4	5	6	7	8	9	Total

Notes

- 1. Attempt all problems.
- 2. If information appears to be missing make a reasonable assumption, state it and proceed.
- 3. Calculators are not needed and are not allowed.
- 4. No additional material is allowed.
- 5. Show all steps

Name:	Student id:
1 141110	Student id

Convert following numbers from one radix to another [8] (A): $(175.175)_{10}$ to binary

(B): $(7562.45)_{10}$ to octal

Name: Student id:

A logic circuit implements the following Boolean function: F = A'C + AC'D'

$$F = A'C + AC'D'$$

It is found that the circuit input combination A = C = I can never occur. Find a simpler expression for *F* using the proper don't care conditions. [8]

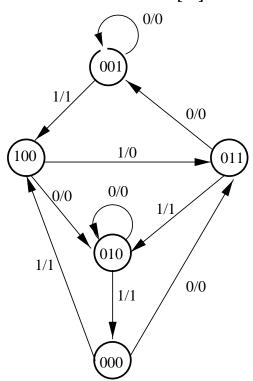
Name:	Student id:
Name	Student id

Simplify the following Boolean function and implement it with a two level NOR gate circuit. Assume true as well as complement values of input variables are available. [12]

$$F(w,x,y,z) = \Sigma_m(5, 6, 9, 10)$$

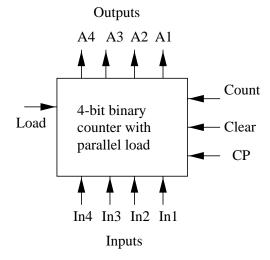
Name:	Student id:
-------	-------------

Design a combinational circuit that adds one to a 4 bit binary number, $A_3A_2A_1A_0$. For example, if the input of the circuit is $A_3A_2A_1A_0 = 1101$, the output is 1110. The circuit should be designed using four half-adders [12]


Name:	Student id:
Name:	Student id:

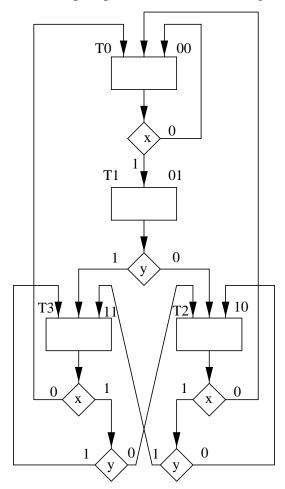
Implement the following Boolean function with a 4x1 multiplexer and external gates. Connect inputs A and B to the select lines. The input requirements for the four data lines will be a function of variables C and D. These values are obtained by expressing F as a function of C and D for each of the four cases when AB = 00, 01, 10, and 11. [12]

$$F(A,B,C,D) = \sum_{m} (0, 1, 5, 8, 9, 11, 13)$$


Name:	Student id:
-------	-------------

A synchronous, sequential circuit has three flip-flops, A, B, C; and one input x; and one output, y. The state diagram is shown in the figure. Design the circuit treating the unused states as don't-care conditions. Show the state table and draw the schematic [12]

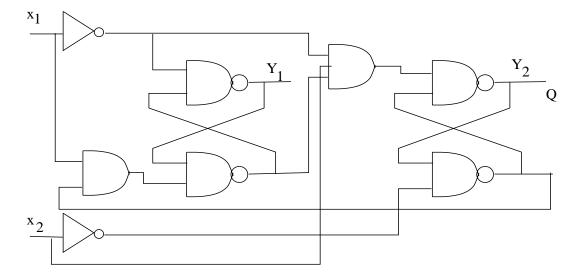
Name:	Student id:
-------	-------------


Using two 4-bit binary up counters (one is shown in the figure), construct a binary counter that counts from binary 4 through binary 99. [12]

Clear	Clock, CP	Load	Count	Function
0	X	X	X	Clear to 0
1	X	0	0	No change
1	A	1	X	Load input
1	A	0	1	Count next binary state

Name:	Student id:
-------	-------------

An ASM chart is illustrated in the figure. Construct the state table for the controller. Draw the synchronous, sequential circuit with D flip-flops and combinational logic. [12]



Name:	Student id:

Name:	Student id:
Name:	Student id:

An asynchronous sequential circuit is shown in the figure:

- (i) Derive the Boolean functions for the outputs of the two SR latches Y_1 and Y_2 .
- (ii) Derive the transition table and derive the output map for output Q of the circuit. [12]

Name:	Student id: