University of Waterloo Department of Electrical and Computer Engineering ECE 223 Digital Circuits and Systems

Midterm Examination

Instructor: M. Sachdev/J. Hamel Total Marks = 100

Date Feb 10, 2001

Attempt all problems. If information appears to be missing make a reasonable assumption, state it and proceed. Calculators are not needed and are not allowed

Problem 1

(A): Convert following number from one radix to another [8]

(i) $(10.11111)_2$ to radix 8 to five significant decimal places

(ii) $(157)_{BCD}$ to radix 12

Name:	Student id:
1 vaiii C	

(B):

(i) Given $A = (0111\ 0001)2$ and $B = (0101\ 0101)2$; Perform B - A operation using 1's complement arithmetic. Show all steps. [6]

(ii) Assuming that a computer uses 8 bits to represent numbers, show how the numbers $(-21)_{10}$ and $(-33)_{10}$ would be represented in the computer using the signed 2's complement binary number system. Perform the operation { $(-21)_{10} - (33)_{10}$ } as it would occur in this computer using 8-bit signed 2's complement binary arithmetic, converting the answer to signed magnitude binary and decimal numbers. [6]

Name:..... Student id:....

Problem 2

Simplify the following functions using the K-map method expressing them in product of sums form. Implement them with two-level NOR gate circuits (assume that complement versions of all input variables are already available to the circuit). **[20]**

(i) $F = W \overline{X} + \overline{Y} \overline{Z} + \overline{W} Y \overline{Z}$

(ii) $F(W,X,Y,Z) = \Sigma m(5,6,9,10)$

Name:..... Student id:.....

Problem 3

Given the function F (w, x, y, z) = Σ m(0, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15) [20]

- (i) Derive the Truth Table for the function F
- (ii) Simplify the function using 4 variable K-map
- (iii) List all the essential prime implicants

(iv) Express the simplified function in the "Sum of products form"

Name:..... Student id:.....

Problem 4

(A): Verify algebraically that the circuit shown below implements the following Boolean function, $F = \overline{C} (\overline{A} + \overline{B}) + \overline{D}$ [10]

(B): Implement the above function F using only 2-input NOR gates [10]

Student id:....

Problem 5

Derive the truth table of the circuit shown below [20]

Name:.....

