University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Feb 12, 2004

Total Time = 90 Minutes, Total Marks = 100

Student Name:			Student	t ID:	
1.	2.	3.		4.	Total

Attempt all problems. Show all work. If information appears to be missing make a reasonable assumption, state it, and proceed. Calculators are not needed and are not allowed.

Problem 1 [28 marks]

A) Convert the following numbers from one radix to another radix [6+4]: (1E.F)₁₆ to radix 8, and 10.

 $(1E.F)_{16} = (0001, 1110.1111)_2 = (36.74)_8$

 $(1E.F)_{16} = (1*16^{1}) + (14*16^{0}) + (15*16^{-1}) = 30 + 15/16 = (30.9375)_{10}$

B) Convert the following number from "excess-3" code to "84-2-1" code. [8] (0111 1001 1011) excess-3 to (.....) 84-2-1

 $0111: 0111 - 11 = 0100 = 4 (BCD) = 0100_{(84-2-1)}$ $1001: 1001 - 11 = 0110 = 6 (BCD) = 1010_{(84-2-1)}$ $1011: 1011 - 11 = 1000 = 8 (BCD) = 1000_{(84-2-1)}$

=> (0111 1001 1011) excess-3 = (468) BCD = (0100 1010 1000) 84-2-1

C) Assuming that we use 8 bits to represent binary numbers. For given numbers A and B, perform (*B*-*A*) operation using 2's complement arithmetic. Show all steps. [5+5]

i) $A = (101001)_2$ and $B = (11001011)_2$

ii)
$$A = (0000)_2$$
 and $B = (10111001)_2$

i)

 $B = (11001011)_2$

2's Comp. A = $(11010111)_2$ +

 $(10100010)_2$

ii)

 $B = (10111001)_2$

2's Comp. A = $(0000000)_2$ +

 $(10111001)_2$

Problem 2 [12 marks]

A) An operator # is defined by A # B = A' + B [6] Is this operation commutative and associative? Explain

i) $A' + B \neq B' + A =>$ not commutative

ii) $A\#(B\#C) \neq (A\#B) \# C$

 $\begin{array}{l} \mathbf{A'} + \mathbf{B} \# \mathbf{C} \neq (\mathbf{A} \# \mathbf{B})' + \mathbf{C} \\ \mathbf{A'} + \mathbf{B'} + \mathbf{C} \neq (\mathbf{A'} + \mathbf{B})' + \mathbf{C} \\ \mathbf{A'} + \mathbf{B'} + \mathbf{C} \neq \mathbf{A} \cdot \mathbf{B'} + \mathbf{C} \end{array}$

=> not associative

B) Given a function, F = (A+B'+C')' (A+B') + A'C Find its complement in **simplest** "sum of products" form. [6]

F = (A+B'+C')' (A+B') + A'C= A'BC.(A + B') + A'C = A'BCA + A'BCB' + A'C = A'CF' = (A'C)'= A + C'F' = [(A+B'+C')']' + (A+B') + A'C]'= $[(A+B'+C')']' + (A+B')' \cdot (A'C)'$ = $[(A+B'+C') + A'B] \cdot (A + C')$ = $(A + B' + C' + A'B) \cdot (A + C')$ = $(A + B + B' + C') \cdot (A + C')$ = $(A + B + B' + C') \cdot (A + C')$ = $(A + I + C') \cdot (A + C')$ = $1 \cdot (A + C')$ = A + C'

Problem 3 [30 marks]

i)

Simplify the following Boolean function F, together with the don't-care conditions d using four-variable map method into:

- i) Sum of the products [15]
- ii) Product of sums [15]

 $F(A, B, C, D) = \sum (0, 7, 8, 12) + d(A, B, C, D) = \sum (2, 3, 4, 10, 13)$

F = C'D' + ACD

ii)

 \mathbf{C} 00 01 11 10 AB\CD 00 1 0 d d 01 d 0 1 0 11 1 d 0 0 1 10 0 0 d

$$F' = CD' + C'D + AD \implies F = (C + D') \cdot (C' + D) \cdot (A' + D')$$

Problem 4 [30marks]

A transmitter is transmitting a total of three bits D (data), P (even parity bit) and Q (odd parity bit). Assuming only 1 bit may be corrupted during transmission, we are able to detect and correct the erroneous bit.

- i) Draw a truth table for transmitted codes. [5]
- ii) Draw a logic circuit for transmitted parity bits. [5]
- iii) Draw a truth table containing all possible combinations of received bits, Parity Error Check bit (C) and Recovered (corrected) data bit (R). [10]
- iv) Derive the circuits for Parity Error Check bit (C), and Recovered data bit (R) in any "two level" form. [10]

Example: if D is 0, transmitter sends 001 (DPQ). For this transmission, if the receiver receives 101, it's able to detect the error as well as recover data which is 0)

i)

Transmitted Data

D	Р	Q
0	0	1
1	1	0

ii) Logic circuit for generating transmitted parity bits

C = D'P'Q + DPQ'

 $R = DQ^{\prime} + DP + PQ^{\prime}$

				• P	
	D\PQ	00	01	11	10
	0	0	0	0	1
D	1	1)	0	1	\bigcirc

iv)

R = D'PQ' + DP'Q' + DPQ' + DPQ

C = D'P'Q + DPQ'

Received Bit at Receiver			Parity Check Corrected Data			
D	Р	Q		C	R	
0	0	0*		0	0	
0	0	1		1	0	
0*	1	0		0	1	
0	1*	1		0	0	
1	0*	0		0	1	
1*	0	1		0	0	
1	1	0		1	1	
1	1	1*		0	1	
* Corrupted data						

Recovered or

iii)

