* VHDL Overview (1)

E&CE 223

Winter 2004

i VHDL Overview (1)

m Process Statement
= If-Then-Else
» Case-When statement

= Component Instantiation
= Test Benches

E&CE 223 Digital Circuits and Systems (Winter 2004)

Concurrent Assignments
Reviewed

= Recall that we have only considered concurrent
assignments to this point

= All statements correspond to hardware and are
occurring at the same time
= Therefore, the order in which they appear is not important

= We need to introduce the concept of sequencing and
control

= To accomplish this, we will introduce the process
statement

E&CE 223 Digital Circuits and Systems (Winter 2004)

Introduction to Process
Statements

= In VHDL, a process is effectively a “block” of logic and control

= Each process operates in parallel with other processes and in parallel with
other concurrent VHDL statements

= Inside of a process, statements are executed sequentially
= This will allow us to introduce sequencing and control
= Inside of a process, we can use additional VHDL syntax:

= If-Then-Else statements
= Case statements

= Note: Operations with sequencing (like Case-When and If-Then-Else)
must, and can only, be used inside of a process

E&CE 223 Digital Circuits and Systems (Winter 2004)

Illustration of a VHDL Process
(Using an If-Then-Else)

= We can introduce the concept of a VHDL process by coding a 2-to-1
multiplexer (we have seen several ways to do a multiplexer):

library ieee;
use ieee.std_logic_1164.all;

entity multiplexer_2tol is

port (x0,x1 : in std_logic; -- multiplexer inputs
s : in std_logic; -- multiplexer select line
T : out std_logic -- multiplexer output

end multiplexer_2tol;

architecture prototype of multiplexer_2tol is
begin
process (x0,x1,s) -- process has a sensitivity list.
begin
if (s = "0%) then -- can use if-then-else inside of a process
f <= x0;
else
T <= x1;
end if;
end process;
end prototype;

E&CE 223 Digital Circuits and Systems (Winter 2004) 5

Breakdown of a Process

The syntax of a process statement is:
[process_name] : PROCESS sensitivity_list
BEGIN
-- statements.
END process;
A process can be named; the naming of a process is optional
The statements inside of the BEGIN ... END are evaluated sequentially

A process has a sensitivity list

= The execution of the statements inside of the process happens when the value of any signal in
the sensitivity list changes

= So, the signals that should be listed in the sensitivity list are those that can cause outputs to
change inside of the process

E&CE 223 Digital Circuits and Systems (Winter 2004) 6

i More Comments on a Process

= Signals changed inside of the process are not changed until
the process has completed evaluating every statement inside
of the BEGIN ... END

= There is no delay associated with the process itself; i.e., a
process is a programming construct and is assumed to execute
In 0 time

= Of course, statements inside of the process can have delays
associated with them

E&CE 223 Digital Circuits and Systems (Winter 2004) 7

Example Using If-Then-Elsif-...-Else
(4-to-1 Multiplexer)

= We can write a 4-to-1 multiplexer using a VHDL process to
illustrate and if-then-else construct with more than two choices:

library ieee;
use ieee.std_logic_1164.all;

entity multiplexer_4tol is

port (x0,x1,x2,x3 : in std_logic; -- multiplexer inputs
s : in std_logic_vector(1l downto 0); -- select lines
f : out std_logic); -- multiplexer outputs

end multiplexer_4tol;

architecture prototype of multiplexer_4tol is
begin
process (x0,x1,x2,x3,s)
begin
if (s = "00™) then
T <= x0;
elsif (s = "01™) then -- notice the syntax “elsif” without spaces
f <= x1;
elsif (s = "10™) then
f <= x2;
else
T <= x3;
end if;
end process;
end prototype;

E&CE 223 Digital Circuits and Systems (Winter 2004) 8

Example Using Case Statement
(BCD Decoder)

= Consider a circuit that receives a code for a decimal digit 0...9
encoded using 4-bits

inputs decimal outputs
cp c1 cp c3| value |spg s1 Sp S3 S4 S5 Sg segment 3
0O 0 0 O 0 1 1 1 1 1 1 0
0 0 0 L L 0 0 0 0 1 1 0 segment 2 lsegment 4
0O o 1 o0 2 1 1 0 1 1 0 1
0o 0o 1 1 3 0 o o 1 1 1 1 __ segment6
0O 1 0 O 4 o 0 1 0 1 1 1
O 1 0 1 5 1 0 1 1 0 1 1 segment 1 segment 5
o 1 1 0O 6 1 11 1 0 1 1
01 1 1 7 0 0 0 1 1 1 0 segmento
1 0 0 O 8 1 1 1 1 1 1 1
1 0 0 1 9 0 O 1 1 1 1 1

= We want to decide how to drive the segments of a 7-segment
display in order to illuminate the decimal digit we receive at the

circuit input.
E&CE 223 Digital Circuits and Systems (Winter 2004) 9

Example Using Case-When
Statement Continued

= We can write a VHDL Description using a process and a case statement:

library ieee;
use ieee.std_logic_1164.all;

entity bcd_decoder is

port (code : in std_logic_vector(3 downto 0); -- coded inputs
leds : out std_logic_vector(6 downto 0)); -- signal outputs

end bcd_decoder;

architecture prototype of bcd_decoder is
begin
process (code)
begin
case code is
when 0000 => leds <= “0111111" ;
when 0001 => leds “0110000" ;
when "0010" => leds
when "0011" => leds
when "0100" => leds
when "0101" => leds
when "0110" => leds
when "0111" => leds
when ""1000" => leds
when ""1001" => leds <= H
when others => leds <= null ; -- the default case.
end case;
end process;
end prototype;

E&CE 223 Digital Circuits and Systems (Winter 2004) 10

Case Statement Comments

= Notice that our process still has a sensitivity list

= The syntax of the case statement is:

CASE signal_name IS
when (conditionl) => (signal_assignment1l) ;
when (condition2) == (signal_assignment2) ;

when others == (default_assignment);
ENS CASE;

= Note: Our case statement has a default for situations where no
condition matches (we use the “others” keyword)

= In the default assignment we can use the “null” keyword which is much
like saying “doesn’t matter, so do nothing/whatever”

E&CE 223 Digital Circuits and Systems (Winter 2004) 11

Final Comments on Process
Statements

= In addition to statements like case statements and if-then-else
statements, the concurrent signal assignment
= i.e., lhs <=rhs; --works inside a process (we used it!)

= This is to keep concurrent and sequential statements
separated

E&CE 223 Digital Circuits and Systems (Winter 2004) 12

i Process (Summary)

= Wrapper for “sequential” statements
= (sensitivity list)

= Tells simulator to re-simulate the process when any
member of the list changes value

= Sequential-type statements can onl/y appear inside
a process:
<= If-Then-Elsif-Else Case-When

= Concurrent-type statements can appear anywhere

= Processes together become concurrent blocks
of logic

E&CE 223 Digital Circuits and Systems (Winter 2004) 13

i VHDL Overview (1)

= Component Instantiation
» Test Benches

E&CE 223 Digital Circuits and Systems (Winter 2004) 14

i Component Instantiation

Often we will have a VHDL Description of part of a circuit that we
would like to use inside of another circuit

= An example of this is a 3-input AND gate:

= We might have the VHDL Description of a 2-input AND gate
= We might want to build a 3-input AND gate using a 2-input AND gate

= We can use VHDL Descriptions inside of other VHDL Descriptions by:
= Declaring components we wish to use
= Creating or instantiating copies of the components

= Connecting together the components

E&CE 223 Digital Circuits and Systems (Winter 2004) 15

i Our First Example (AND Gate)

= A simple AND2 gate description:

-- VHDL for AND2 Gate.

library ieee; [
use ieee.std_logic_1164.all; a d Y(O)
entity AND2 is
port(a,b : in std_logic; Y(l)
z : out std_logic); C

end AND2;

architecture prototype of AND2 is
begin

z <= a and b; -- output
end prototype;

= We are required to build a 3-input logic component using two
2-input AND gates

E&CE 223 Digital Circuits and Systems (Winter 2004) 16

VHDL for a 3-input Logic component
— Component Instantiation

= Before we can use the AND2 gate, we need to declare it inside
of the declarative section of the architecture:

-- VHDL for Logic_component gate

library ieee;
use ieee.std_logic_1164.all;

entity logic_block is
port (a: in std_logic;
b: in std_logic;
c: in std_logic;
y: out std_logic_vector(l downto 0)):
end logic_block;

architecture prototype of logic_block is
-- “component” keyword

component AND2
std_logic;

-- need to declare the components (other VHDL descriptions) we will use.
-- like the entity of the circuit we want to use, but notice the

port (a,b T in
z : out std_logic); Component
end component; deCIaratiOn
signal d: std_logic;
begin T_emporary
-~ description will go here. Slgnal
end prototype;
E&CE 223 Digital Circuits and Systems (Winter 2004) 17

VHDL for Logic_component —
Instantiation of Components.

= Once we have declared components, we can instantiate copies

and connect them together:

-- VHDL for the logic function.
-- continued from previous page (architecture body only).

architecture prototype of Logic_component is
component AND2

port (a,b :in std_logic;
z : out std_logic);
end AND2;

signal d: std_logic;

Begin
Y(0) <= d;
AND_GATE1: AND2

port map (a=>a, b=>b, z=>d);
AND_GATE2: AND2

port map (a=>c, b=>d, z=>y(1));
end prototype;

35 d Y(0)
. Y(1)

component
declaration

component
instantiations
and wiring

E&CE 223 Digital Circuits and Systems (Winter 2004) 18

Component Instantiation Summary

= Once we declare a component (another VHDL Description), we can
create a copy of it using the syntax:

instance_name : component_name
PORT MAP (signal_in_component == signal_in_current_circuit,
signal_in_component == signal_in_current_circuit,

signal_in_component == signal_in_current_circuit

);

= The notation “=>" inside of the “port map” is like connecting or wiring
the signal in the current circuit to an input or output pin of the sub-
circuit (the component)

E&CE 223 Digital Circuits and Systems (Winter 2004) 19

i Additional Notes

= Note that we needed temporary signals in order to connect the
one component to another:

architecture prototype of Logic_component is
-- component declarations..

signal d : std_logic; -- temporary signals needed in the architecture.
begin

-- cicuit description..
end prototype;

= The syntax for this is:

signal signal_name : type ;

E&CE 223 Digital Circuits and Systems (Winter 2004) 20

10

i VHDL Overview (1)

= Test Benches

E&CE 223 Digital Circuits and Systems (Winter 2004) 21

i Test bench

= Verifies the functionality of a module

= Uses component instantiation of the
module

» Applies fest vectors to inputs
= Output can be verified

E&CE 223 Digital Circuits and Systems (Winter 2004) 22

11

Test bench for AND2 gate

LIBRARY IEEE; T, '
USE IEEE.STD_LOGIC_1164.ALL; i H
ENTITY and_bench 1S a 3
END and_bench; H C !
‘i 1
ARCHITECTURE testbench_arch OF and_bench IS ! '
COMPONENT AND2 L,,,_:
PORT (
a : In std_logic;
b :
c:
);
END COMPONENT;
SIGNAL a : std_logic;
SIGNAL b : std_lo H
SIGNAL ¢ : std_logic;
BEGIN
UUT : AND2
PORT MAP (
a=> a,
b => b,
c=>c
);
E&CE 223 Digital Circuits and Systems (Winter 2004) 23
(cont.)
PROCESS
BEGIN
Test
Vectors
WAIT FOR 10 ns; -- Time=10 ns
a <= "0";
b <= "1%;
FOR 10 ns; -- Time=20 ns
= "0":
FOR 10 ; -- Time=30 ns
1%
WAIT FOR 10 ns; -- Time=40 ns
END PROCESS;
END testbench_arch;
CONFIGURATION and2_cfg OF and_bench IS Configuration
FOR testbench_arch .
END FOR; - section
END and2_cfg;
E&CE 223 Digital Circuits and Systems (Winter 2004) 24

12

