
1

1

VHDL Overview (II)

E&CE 223

Winter 2004

E&CE 223 Digital Circuits and Systems (Winter 2004) 2

VHDL Overview (II)

Process Statement
If-Then-Else
Case-When statement

Component Instantiation
Test Benches



2

E&CE 223 Digital Circuits and Systems (Winter 2004) 3

Concurrent Assignments 
Reviewed

Recall that we have only considered concurrent 
assignments to this point

All statements correspond to hardware and are 
occurring at the same time

Therefore, the order in which they appear is not important

We need to introduce the concept of sequencing and 
control
To accomplish this, we will introduce the process 
statement

E&CE 223 Digital Circuits and Systems (Winter 2004) 4

Introduction to Process 
Statements

In VHDL, a process is effectively a “block” of logic and control

Each process operates in parallel with other processes and in parallel with 
other concurrent VHDL statements

Inside of a process, statements are executed sequentially

This will allow us to introduce sequencing and control

Inside of a process, we can use additional VHDL syntax:

If-Then-Else statements
Case statements

Note: Operations with sequencing (like Case-When and If-Then-Else) 
must, and can only, be used inside of a process



3

E&CE 223 Digital Circuits and Systems (Winter 2004) 5

Illustration of a VHDL Process 
(Using an If-Then-Else)

We can introduce the concept of a VHDL process by coding a 2-to-1 
multiplexer (we have seen several ways to do a multiplexer):

library ieee;
use ieee.std_logic_1164.all;

entity multiplexer_2to1 is
port (x0,x1  : in  std_logic; -- multiplexer inputs

s      : in  std_logic; -- multiplexer select line
f      : out std_logic -- multiplexer output

);
end multiplexer_2to1;

architecture prototype of multiplexer_2to1 is
begin

process (x0,x1,s) -- process has a sensitivity list.
begin

if (s = '0') then -- can use if-then-else inside of a process
f <= x0;

else
f <= x1;

end if;
end process;

end prototype;

E&CE 223 Digital Circuits and Systems (Winter 2004) 6

Breakdown of a Process 
The syntax of a process statement is:

[process_name] : PROCESS sensitivity_list
BEGIN

-- statements.
END process; 

A process can be named;  the naming of a process is optional

The statements inside of the BEGIN … END are evaluated sequentially

A process has a sensitivity list

The execution of the statements inside of the process happens when the value of any signal in 
the sensitivity list changes

So, the signals that should be listed in the sensitivity list are those that can cause outputs to 
change inside of the process



4

E&CE 223 Digital Circuits and Systems (Winter 2004) 7

More Comments on a Process 

Signals changed inside of the process are not changed until 
the process has completed evaluating every statement inside 
of the BEGIN … END

There is no delay associated with the process itself; i.e., a 
process is a programming construct and is assumed to execute 
in 0 time

Of course, statements inside of the process can have delays 
associated with them

E&CE 223 Digital Circuits and Systems (Winter 2004) 8

Example Using If-Then-Elsif-…-Else 
(4-to-1 Multiplexer)

We can write a 4-to-1 multiplexer using a VHDL process to 
illustrate and if-then-else construct with more than two choices:
library ieee;
use ieee.std_logic_1164.all;

entity multiplexer_4to1 is
port (x0,x1,x2,x3  : in  std_logic; -- multiplexer inputs

s            : in  std_logic_vector(1 downto 0); -- select lines
f            : out std_logic); -- multiplexer outputs

end multiplexer_4to1;

architecture prototype of multiplexer_4to1 is
begin
process (x0,x1,x2,x3,s)
begin
if    (s = "00") then 
f <= x0;

elsif (s = "01") then -- notice the syntax “elsif” without spaces
f <= x1;

elsif (s = "10") then
f <= x2;

else
f <= x3;

end if;
end process;

end prototype;



5

E&CE 223 Digital Circuits and Systems (Winter 2004) 9

Example Using Case Statement 
(BCD Decoder)

Consider a circuit that receives a code for a decimal digit 0…9 
encoded using 4-bits

We want to decide how to drive the segments of a 7-segment 
display in order to illuminate the decimal digit we receive at the 
circuit input. 

segment 5

segment 4segment 2

segment 1

segment 0

segment 6

segment 3

E&CE 223 Digital Circuits and Systems (Winter 2004) 10

Example Using Case-When 
Statement Continued

We can write a VHDL Description using a process and a case statement: 
library ieee;
use ieee.std_logic_1164.all;

entity bcd_decoder is
port (code  : in  std_logic_vector(3 downto 0); -- coded inputs

leds : out std_logic_vector(6 downto 0)); -- signal outputs
end bcd_decoder;

architecture prototype of bcd_decoder is
begin
process (code)
begin
case code is
when "0000"  => leds <= “0111111" ;
when "0001"  => leds <= “0110000" ;
when "0010"  => leds <= “1011011" ;
when "0011"  => leds <= “1111000" ;
when "0100"  => leds <= “1110100" ;
when "0101"  => leds <= “1101101" ;
when "0110"  => leds <= “1101111" ;
when "0111"  => leds <= “0111000" ;
when "1000"  => leds <= "1111111" ;
when "1001"  => leds <= “1111100" ;
when others  => leds <= null ; -- the default case.

end case;
end process;

end prototype;



6

E&CE 223 Digital Circuits and Systems (Winter 2004) 11

Case Statement Comments
Notice that our process still has a sensitivity list

The syntax of the case statement is:

CASE signal_name IS
when (condition1) => (signal_assignment1) ;
when (condition2) => (signal_assignment2) ;
…
when others => (default_assignment);

ENS CASE;

Note: Our case statement has a default for situations where no 
condition matches (we use the “others” keyword)

In the default assignment we can use the “null” keyword which is much 
like saying “doesn’t matter, so do nothing/whatever”

E&CE 223 Digital Circuits and Systems (Winter 2004) 12

Final Comments on Process 
Statements

In addition to statements like case statements and if-then-else 
statements, the concurrent signal assignment

i.e., lhs <= rhs ; -- works inside a process (we used it!)

This is to keep concurrent and sequential statements 
separated



7

E&CE 223 Digital Circuits and Systems (Winter 2004) 13

Process (Summary)
Wrapper for “sequential” statements

( sensitivity list )
Tells simulator to re-simulate the process when any 
member of the list changes value

Sequential-type statements can only appear inside 
a process:

<= If-Then-Elsif-Else Case-When
Concurrent-type statements can appear anywhere

Processes together become concurrent blocks 
of logic

E&CE 223 Digital Circuits and Systems (Winter 2004) 14

VHDL Overview (II)

Process Statement
If-Then-Else
Case-When statement

Component Instantiation
Test Benches



8

E&CE 223 Digital Circuits and Systems (Winter 2004) 15

Component Instantiation
Often we will have a VHDL Description of part of a circuit that we 
would like to use inside of another circuit

An example of this is a 3-input AND gate:

We might have the VHDL Description of a 2-input AND gate
We might want to build a 3-input AND gate using a 2-input AND gate

We can use VHDL Descriptions inside of other VHDL Descriptions by:

Declaring components we wish to use
Creating or instantiating copies of the components
Connecting together the components

E&CE 223 Digital Circuits and Systems (Winter 2004) 16

Our First Example (AND Gate)
A simple AND2 gate description:

-- VHDL for AND2 Gate.

library ieee;
use ieee.std_logic_1164.all;

entity AND2 is
port( a,b : in std_logic;

z   : out std_logic);
end AND2;

architecture prototype of AND2 is
begin

z   <= a and b;  -- output
end prototype;

We are required to build a 3-input logic component using two 
2-input AND gates

Y(1)

a
b

c

Y(0)d



9

E&CE 223 Digital Circuits and Systems (Winter 2004) 17

VHDL for a 3-input Logic component 
– Component Instantiation

Before we can use the AND2 gate, we need to declare it inside 
of the declarative section of the architecture: 
-- VHDL for Logic_component gate

library ieee;
use ieee.std_logic_1164.all;

entity logic_block is
port ( a: in std_logic;

b: in std_logic;
c: in std_logic;
y: out std_logic_vector(1 downto 0));

end logic_block;

architecture prototype of logic_block is
-- need to declare the components (other VHDL descriptions) we will use.
-- like the entity of the circuit we want to use, but notice the 
-- “component” keyword
component AND2
port (a,b : in   std_logic;

z      : out  std_logic);
end component;

signal d: std_logic;

begin
-- description will go here.

end prototype;

Component
declaration

Temporary
signal

E&CE 223 Digital Circuits and Systems (Winter 2004) 18

VHDL for Logic_component –
Instantiation of Components.

Once we have declared components, we can instantiate copies 
and connect them together:

-- VHDL for the logic function.

-- continued from previous page (architecture body only).

architecture prototype of Logic_component is
component AND2

port (a,b : in   std_logic;
z      : out  std_logic);

end AND2;

signal d: std_logic;

Begin
Y(0) <= d;
AND_GATE1: AND2

port map (a=>a, b=>b, z=>d);  
AND_GATE2: AND2

port map (a=>c, b=>d, z=>y(1));
end prototype;

component
declaration

component
instantiations
and wiring

Y(1)

a
b

c

Y(0)
d



10

E&CE 223 Digital Circuits and Systems (Winter 2004) 19

Component Instantiation Summary

Once we declare a component (another VHDL Description), we can 
create a copy of it using the syntax:

instance_name : component_name
PORT MAP (signal_in_component => signal_in_current_circuit, 

signal_in_component => signal_in_current_circuit,
…

signal_in_component => signal_in_current_circuit
);

The notation “=>” inside of the “port map” is like connecting or wiring 
the signal in the current circuit to an input or output pin of the sub-
circuit (the component) 

E&CE 223 Digital Circuits and Systems (Winter 2004) 20

Additional Notes
Note that we needed temporary signals in order to connect the 
one component to another:

The syntax for this is:

signal signal_name : type ;

architecture prototype of Logic_component is
-- component declarations…

signal d : std_logic; -- temporary signals needed in the architecture.

begin
-- cicuit description…

end prototype;



11

E&CE 223 Digital Circuits and Systems (Winter 2004) 21

VHDL Overview (II)

Process Statement
If-Then-Else
Case-When statement

Component Instantiation
Test Benches

E&CE 223 Digital Circuits and Systems (Winter 2004) 22

Test bench

Verifies the functionality of a module
Uses component instantiation of the 
module
Applies test vectors to inputs
Output can be verified



12

E&CE 223 Digital Circuits and Systems (Winter 2004) 23

Test bench for AND2 gate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY and_bench IS
END and_bench;

ARCHITECTURE testbench_arch OF and_bench IS

COMPONENT AND2
PORT (

a : In  std_logic;
b : In  std_logic;
c : Out  std_logic

);
END COMPONENT;

SIGNAL a : std_logic;
SIGNAL b : std_logic;
SIGNAL c : std_logic;

BEGIN
UUT : AND2
PORT MAP (

a => a,
b => b,
c => c

);

a
b c

E&CE 223 Digital Circuits and Systems (Winter 2004) 24

Test bench for AND2 gate 
(cont.)

PROCESS
BEGIN

-- --------------------
a <= '1';
b <= '0';
-- --------------------
WAIT FOR 10 ns; -- Time=10 ns
a <= '0';
b <= '1';
-- --------------------
WAIT FOR 10 ns; -- Time=20 ns
a <= '0';
b <= '0';
-- --------------------
WAIT FOR 10 ns; -- Time=30 ns
a <= '1';
b <= '1';
-- --------------------
WAIT FOR 10 ns; -- Time=40 ns

END PROCESS;
END testbench_arch;

CONFIGURATION and2_cfg OF and_bench IS
FOR testbench_arch
END FOR;

END and2_cfg;

Test
Vectors

Configuration
section


