MOSFET: Introduction

- Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs
 - Its major assets are:
 - Higher integration density, and
 - Relatively simple manufacturing process

- As a consequence, it is possible to realize 10^6-7 transistors on an integrated circuit (IC) economically
For an n-channel MOS transistor (NMOS)

- Heavily doped n-type source and drain regions are implanted (diffused) into a lightly doped p-type substrate (body)
- A thin layer (approx. 50 Å) of silicon dioxide (SiO₂) is grown over the region between source and drain and is called thin or gate oxide

Gate oxide is covered by a conductive material, often polycrystalline silicon (polysilicon) and forms the gate of the transistor

MOS transistors are insulated from each other by thick oxide (SiO₂) and reverse biased p-n+ diode

Adding p+ field implant (channel stop implant) makes sure a parasitic MOS transistor is not formed

MOS Transistor as a switch

- \(V_{in} > V_T \): a conducting channel is formed between source and drain and current flows
- \(V_{in} < V_T \): the channel does not form and switch is said to be open
- \(V_{in} > V_T \) current is a function of gate voltage
NMOS, PMOS, and CMOS Technology

- In an NMOS transistor, current is carried by electrons (from source, through an n-type channel to the drain)
 - Different than diode where both holes and electrons contribute to the total current
 - Therefore, MOS transistor is also known as unipolar device

- Another MOS device can be formed by having p+ source and drain and n-substrate (PMOS)
 - Current is carried by holes through a p-type channel

- A technology that uses NMOS (PMOS) transistors only is called NMOS (PMOS) technology
 - In NMOS or PMOS technologies, substrate is common and is connected to +ve voltage, VDD (NMOS) or GND (PMOS)

In a complementary MOS (CMOS) technology, both PMOS and NMOS transistors are used

- NMOS and PMOS devices are fabricated in isolated region from each other (i.e., no common substrate for all devices)

- MOS transistor is a 4 terminal device, if 4th terminal is not shown it is assumed to be connected to appropriate voltage
Static Behavior

- Only the NMOS transistor is discussed, however, arguments are valid for PMOS transistor as well

The threshold voltage

- Consider the case where \(V_{gs} = 0 \) and drain, source and bulk are connected to ground

\[V_{gs} = 0, \] \[V_{sd} = 0, \] \[V_{sb} = 0. \]

- Hence, high resistance between source and drain \((10^7 \, \Omega) \)

If now the gate voltage \((V_{gs}) \) is increased, gate and substrate form plates of a capacitor with oxide as dielectric

- +ve gate voltage causes +ve charge on gate and -ve charge on the substrate side
- In substrate it occurs in two steps (i) depletion of mobile holes, (ii) accumulation of -ve charge (inversion)
At certain V_{GS}, potential at the interface reaches a critical value, where surface inverts to n-type (start of strong inversion).

Further V_{GS} increase does not increase the depletion width but increases electrons in the inversion layer.

Threshold Voltage

$$V_T = V_{TO} + \gamma \left[\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F} \right]$$

Where

$$\gamma = \frac{\sqrt{2qEsiNA}}{C_{ox}}$$

V_T is +ve for NMOS and -ve for PMOS devices.

Current-Voltage Relationship

When $V_{GS} > V_T$

Let at any point along the channel, the voltage is $V(x)$ and gate to channel voltage at that point is $V_{GS} - V(x)$.
If the $V_{GS} - V(x) > V_T$ for all x, the induced channel charge per unit area at x

$$Q_i(x) = -C_{ox}[V_{gs} - V(x) - V_T]$$

Current is given by

$$I_D = -\nu(x)Q_i(x)W$$

The electron velocity is given by

$$\nu_n = -\mu_n E(x) = \mu_n \frac{dV}{dx}$$

Therefore,

$$I_D dx = \mu_n C_{ox} W (V_{gs} - V - V_T) dV$$

Integrating the equation over the length L yields

$$I_D = K'_n \frac{W}{L} \left[(V_{gs} - V_T) V_{ds} \frac{V^2_{ds}}{2} \right]$$

or

$$I_D = K'_n \left[(V_{gs} - V_T) V_{ds} \frac{V^2_{ds}}{2} \right]$$

k'_n is known as the process trans-conductance parameter and equals

$$K'_n = \mu_n C_{ox} = \mu_n \frac{\varepsilon_{ox}}{t_{ox}}$$

If the V_{GS} is further increased, then at some x, $V_{GS} - V(x) < V_T$ and that point the channel disappears and transistor is said to be pinched-off.

Close to drain no channel exists, the pinched-off condition in the vicinity of drain is $V_{GS} - V_{DS} <= V_T$.

Under these conditions, transistor is in the saturation region.

If a complete channel exists between source and drain, then transistors is said to be in triode or linear region.

Replacing V_{DS} by $V_{GS} - V_T$ in the current equation we get, MOS current-voltage relationship in saturation region

$$I_D = \frac{K_n W}{2 L} (V_{gs} - V_T)^2$$
This equation is not entirely correct, the position of pinch-off point and hence the effective channel length is a function of \(V_{ds} \), a more accurate equation is given as

\[
I_D = \frac{K_n W}{2 L} (V_{gs} - V_T)^2 \left(1 + \lambda V_{ds} \right)
\]

where \(\lambda \) is an empirical constant parameter called channel length modulation factor.

Dynamic Behavior

MOS transistor is a unipolar (majority carrier) device, therefore, its dynamic response is determined by time to (dis)charge various capacitances.

MOS capacitances

- **Gate oxide capacitance**: \(C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \) per unit area,
- For a transistor of width, \(W \) and length, \(L \), the \(C_g = WL \frac{\varepsilon_{ox}}{t_{ox}} \)
- From current equation it is apparent that \(C_{ox} \) should be high or gate oxide thickness should be small.
- Gate capacitance consists of several components.
- Source and drain diffusions extend below the thin oxide (lateral diffusion) giving rise to overlap capacitance.
MOSFET Overlap Capacitance

- Source and drain diffusions extend below the thin oxide (lateral diffusion) giving rise to overlap capacitance.
- x_d is constant for a technology and this capacitance is linear and has a fixed value $C_{gsO} = C_{gdO} = C_{ox} x_d W = C_0 W$.

MOSFET Channel Capacitance

- Gate to channel capacitance consists of C_{gs}, C_{gd} and C_{gb} components.
- All these components are non-linear and their value depends on operation region of the device.
- Average/estimated values are used to simplify the analysis.

<table>
<thead>
<tr>
<th>Operation region</th>
<th>C_{gb}</th>
<th>C_{gs}</th>
<th>C_{gd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff</td>
<td>$C_{ox} W L_{eff}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Triode</td>
<td>0</td>
<td>$C_{ox} W L_{eff}/2$</td>
<td>$C_{ox} W L_{eff}/2$</td>
</tr>
<tr>
<td>Saturation</td>
<td>0</td>
<td>$(2/3)C_{ox} W L_{eff}$</td>
<td>0</td>
</tr>
</tbody>
</table>
MOSFET: Junction Capacitances

- This component is contributed by the reverse biased source-bulk and drain-bulk pn-junctions
 - Depletion region (also known as diffusion) capacitance is non-linear and decreases as reverse bias is increased
 - **Bottom plate junction capacitance**: is formed by source \((N_D)\) and bulk regions \((N_A)\), \(C_{\text{bottom}} = C_jW_L_s\)
 - **Side wall junction capacitance**: is formed by source \((N_D)\) and \(p^+\) channel stop implant with doping \(N_A^+\)
 - Doping concentration is higher for channel stop implant hence the capacitance per unit area is also higher, \(C_{\text{sw}} = C_j\text{sw} x_j (W + 2L_s)\), since \(x_j\) is fixed for a technology \(C_{\text{sw}} = C_j\text{sw}(W + 2L_s)\)
 - Total diffusion capacitance \(C_{\text{diff}} = C_{\text{bottom}} + C_{\text{sw}} = C_j\cdot\text{area} + C_j\text{sw}\cdot\text{perimeter} = C_jW_L_s + C_j\text{sw}(W + 2L_s)\)

MOS: Capacitive Device Model

- \(C_{\text{GS}} = C_{gs} + C_{gsO}\)
- \(C_{\text{GD}} = C_{gd} + C_{gdO}\)
- \(C_{\text{GB}} = C_{gb}\)
- \(C_{\text{SB}} = D_{\text{diff}}\)
- \(C_{\text{DB}} = C_{\text{diff}}\)
Actual MOS Transistor: Short Channel Effects

- Realistic MOS transistor behaves differently from an ideal one owing to several factors
 - Owing to scaling, transistor channel length becomes comparable to other device parameters (e.g., junction depth, depletion width)
 - Assumptions such as, current flows only on surface, electric field is only in the direction of current flow, etc., are no longer true
 - Such a short channel device can not be adequately described by simple one dimensional model
 - Hence, a two dimensional model is widely used

Short Channel Effects: V_T Variations

$$V_T = V_{TO} + \gamma [\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F}]$$

- Equation suggests V_T is a function of technology and applied VSB
 - V_T should be constant for all NMOS and all PMOS transistors
 - As dimensions are reduced, threshold potential becomes a function of W, L and V_{DS}
 - Influence of Source and Drain over channel helps in depleting the charge from channel
 - As a consequence, a lower V_T is required to cause strong inversion
 - **Drain induced barrier lowering**: as V_{DS} increases, the depletion region width also becomes wider resulting in lower V_T
Hence V_T is a function of operating voltage

- **Hot carrier effect**
 - As transistor dimensions are scaled, electric field strength is increased significantly
 - Higher electric field enables electrons (holes) to acquire high energy so that they can tunnel into thin oxide and modify the V_T
 - For NMOS V_T is increased and for PMOS V_T is reduced

- **Hot carrier damage remains a long term reliability threat**

Source-Drain Resistance

- With transistor scaling, junctions are made shallower & contacts windows are made smaller while their depth is increased

$$R_{S,D} = \frac{L_{S,D}}{W} R_0 + R_C$$

- Technology and design objective is to reduce source-drain resistance
- Often source drain regions are covered by titanium or tungsten (silicidation) to reduce the resistance
Variation in I-V Characteristics

- While developing the I-V equation we assumed that carrier velocity is proportional to E
 - However, as $E = E_{sat}$ (approx. 10^4/micron), the carrier velocity saturates, as a consequence
 $$I_{DSAT} = \upsilon_{sat}C_{ox}W(V_{GS} - V_{DSAT} - V_T)$$
- In long channel MOSFET we also assumed that there is no vertical electric field
 - However, as transistor scales, $E_{vertical}$ can not be ignored
 - Carrier mobility is decreased as vertical electric field is increased

Sub-threshold Conduction

- MOS transistor partially conducts for $V_{gs} < V_T$
 - Known as sub-threshold conduction or weak-inversion conduction
 - Very small for long-channel (10^{-12}A/micron)
 - The inverse rate of decrease in current with respect to V_{gs} is given by
 $$S = \left(\frac{d}{dV_{gs}}\ln(I_D)\right)^{-1} = \frac{kT}{q}\ln 10(1 + \alpha)$$
 - $kT\ln 10 = 60$ mV/decade and α is 0 for an ideal transistor
 - However, α is greater than 1 for real transistor making $S = 80$ mV/decade
Narrow Channel Effects

- Owing to small width, transistor exhibits non-ideal behavior

- LOCOS isolation
 - Depletion region is not limited to the area just under the thin oxide,
 - **If W is large**: part of the depletion region on the sides is small fraction and may be neglected
 - **If W is small**: gate also depletes the sides, hence larger V_T

![Diagram of LOCOS isolation](image)

- Shallow trench isolation
 - Field lines beyond gate region helps in depleting the channel & causing the inversion at lower gate voltage
 - Hence, lower V_T

![Diagram of Shallow trench isolation](image)
Spice Model for the MOS Transistor

- Several MOS models have been developed
 - Model complexity is a trade-off between accuracy and run time in simulator
 - In SPICE, model complexity is set by LEVEL parameter
 - Level 1: spice model is based on long channel MOS I-V equation; no longer used
 - Level 2: geometry, physics based; uses several short channel effects; complex and inaccurate; no longer used
 - Level 3: semi-empirical model
 - Level 4: empirical model based on extracted values from experimental data; widely used

- Several other models are available; virtually every semiconductor fab has some model development group

Technology Scaling & CMOS

- Ever since ICs were invented, dimensions are scaled to
 - Integrated more transistors in the same area
 - Allow higher operational speed

- Scaling has profound impact on many aspects of ICs

- Constant Voltage Scaling
 - All device dimensions are scaled by a factor S
 - Voltage (i.e., V_{DD}) after the scaling is same as before
 - This method of scaling is followed till 0.8 micron
 - However for lower geometries, higher electric field resulted in poor device reliability
Therefore, for advanced technologies today Constant Field Scaling is followed

- All dimensions including power supply is scaled by a factor S

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relation</th>
<th>CVS</th>
<th>CFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W, L, t_{ox}</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td></td>
</tr>
<tr>
<td>V_{DD}, V_T</td>
<td>1</td>
<td>$1/S$</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>WL</td>
<td>$1/S^2$</td>
<td>$1/S^2$</td>
</tr>
<tr>
<td>C_{ox}</td>
<td>t_{ox}</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C_L</td>
<td>$C_{ox}W/L$</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>k_n, k_p</td>
<td>$C_{ox}W/L$</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>I_{av}</td>
<td>$k_{n,p}V^2$</td>
<td>S</td>
<td>$1/S$</td>
</tr>
<tr>
<td>J_{av}</td>
<td>$I_{av}/Area$</td>
<td>S^3</td>
<td>S</td>
</tr>
<tr>
<td>t_p (intrinsic)</td>
<td>C_LV^2/I_{av}</td>
<td>$1/S^2$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>P_{av}</td>
<td>C_LV^2/t_p</td>
<td>S</td>
<td>$1/S^2$</td>
</tr>
<tr>
<td>PDP</td>
<td>C_LV^2</td>
<td>$1/S$</td>
<td>$1/S^3$</td>
</tr>
</tbody>
</table>

Concluding Remarks

- MOS transistor is the backbone of contemporary VLSIs
- Constant motivation for scaling
 - Scaling improves, Power, switching delay and PDP
- Experts predict slow down in scaling below 0.10 micron
 - Transistor characteristics are influenced by several short and narrow channel effects