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Inverter: Introduction

■ The inverter is the simplest of all digital logic gates

❍ However, building understanding for its properties and opera-
tion is crucial for the design and analysis of larger/complexer
logic gates

❍ We will discuss,

❍ General properties of an inverter (and logic gates)

❍ Inverter implementation issues in MOS and bipolar technolo-
gies
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General Properties: Area and
Complexity

■ Small area is a desirable property for a digital logic gate

❍ Larger packing density

❍ Small parasitic capacitances

❍ Shorter interconnects,

❍ smaller chip area, hence higher number of devices per wafer
(lower cost)

■ Fewer transistors for a logic gate usually results into small-
er area

❍ Hence, minimum possible number of transistors for a give
gate are important
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Inverter: Static Behavior

■ Static behavior of an inverter can be described by voltage
transfer characteristics

❍ VOL and VOH are low and high logic values of an inverter

❍ VM is the logic (gate, or switching) threshold of an inverter
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Noise Margin

■ In real life applications, output voltage of a gate may not
have the nominal value

❍ Owing to load, high switching speed, etc.

❍ Hence, it is desirable to define an acceptable voltage range
for logic 1 and logic 0, respectively
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Noise Margin, Regenerative Property
& Fan-in, Fan-out

❍ For logic robustness large noise margin is desirable

❍ NML = VIL - VOL

❍ NMH = VOH - VIH

■ Logic gates have the property to restore the proper output
logic values despite of non-ideal input levels (regenerative
action)

■ Fan-out is the number of logic gates that can be driven from
a given logic gate (maximum fan-out)

■ Fan-in is the number of inputs to a logic gate, large fan-in
results in poorer performance
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Dynamic Behavior

■ Performance is an important attribute to any logic gate and
determines its dynamic behavior

❍ Performance is measured by propagation delay through the
logic gate (tplh and tphl) and its rise and fall times

■ Performance is a strong function of the output load

❍ Often ring oscillator is used to compare different technologies
objectively

❍ However, ring oscillator performance has little correlation to
actual logic gate or IC performance

■ Exercise

❍ Simulate a 21 stage CMOS ring oscillator and measure its fre-
quency
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Power & Energy Consumption

■ Power consumption of a gate conveys how much heat it dis-
sipates and how much energy is consumed per cycle

❍ Power consumption influence many critical decisions in the
design of an IC (e.g., packaging, cooling, long term reliability,
etc.)

❍ Ppeak = ipeakVsupply

❍

■ Power consumption has dynamic as well as static compo-
nents

❍ Dynamic part is associated with charging and discharging of
capacitance and is proportional to frequency

❍ Static part is owing to sub-threshold leakage
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CMOS Inverter: Static Behavior

■ A transistor has on resistance, R on, when conducting, other
wise almost infinite resistance

❍ In steady state, either PMOS or NMOS provides a low imped-
ance path from output to VDD or GND

❍ Infinite input impedance for the inverter
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Voltage Transfer Characteristics

■ Voltage transfer characteristics for an inverter can be de-
duced from the load lines

❍ Current characteristics of PMOS and NMOS should be super-
imposed on each other

❍ I-V characteristics of PMOS should be transformed
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Voltage Transfer Characteristics

■ Exercise

❍ Simulate a voltage transfer characteristics of an inverter
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CMOS Inverter: An Amplifier

❍ In VTC of inverter, VOL and VOH were defined where

❍ At this point, small signal gain, g, of the amplifier (inverter) is
equal to -1
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❍ Gain, g, is  when Vin =
VIH and VIL

❍ At Vin =VIH, PMOS and NMOS transistors can be assumed to
be in saturation and linear regions, respectively

❍ gmn = knVout and gmp = kp(VDD -VIH - |VTp|)

❍ , ignoring the channel length modulation

❍  and

■ Putting these formulas in equation

❍

■ Also, the static current through PMOS and NMOS should be
the same

❍

■ With these two equations, equations for V out  and V IH can be
found
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■ Similarly, equations can be derived for V in  = VIL

■ In the same fashion we can find out an analytical expression
for the inverter threshold (V M)

❍ VM is the point where Vout = Vin; in this region both transistors
are in saturation

❍ Equating their currents

❍

❍ Or

❍  where

■ If threshold voltages are equal and k p = kn, then V M = VDD/2

❍ Under these conditions, both PMOS and NMOS have equal
strength and the inverter is balanced
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CMOS Inverter: Dynamic Behavior

■ Dynamic behavior (delay) of an inverter is determined by the
time it takes to (dis)charge output capacitance

❍ We are interested in determining transient response of Vout
assuming Vin is driven by an ideal voltage source
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■ Several capacitances contribute to overall capacitance

❍ Cgd12: M1, M2 in steady state are either in cut-off or in satura-
tion; overlap capacitance of M1, M2 contributes to this capaci-
tance; the gate capacitance is either between gate and bulk
(cut-off) or gate and source (saturation)

❍ Cdb1 and C db2: Capacitance between drain and bulk is due to
reverse biased pn-junction. This is a non-linear capacitance
which is approximated as linear

❍ Cw : This is the capacitance due to interconnect

❍ Cg3 and Cg4 : We assume that the gate capacitance of loading
gates is between Vout and VDD (GND). Overlap and gate
capacitances are clustered into a single component
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Propagation Delay

■ The propagation delay can be computed by integrating the
capacitor (dis)charge current

❍

■ Propagation delay is defined as time between input reaching
50% to output reaching 50% of full value

❍

❍

❍ This equation holds for both tplh and tphl transitions

❍ Assuming that the input transition (VDD -> 0) is abrupt then
only PMOS contributes to the current

❍ The PMOS is in saturation so long Vout < |VTp| and after that it
is in linear mode, therefore currents in respective regions
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❍

❍ and

❍

❍

❍ The average current, Iav, can be computed as

❍

❍

❍

❍ A simpler equation is arrived at if we assume that PMOS
remains in saturation from Vout =0 to VDD/2; In this case

❍
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❍
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❍ Similarly for tphl

❍

❍

❍ therefore,

❍

❍

■ Design Challenges, how to reduce t p?

❍ Increase kp and kn

❍ Reduce CL

❍ Increase VDD

❍ .....
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Second Order Performance Issues

■ Previously, we assumed that input transition is abrupt and
only one transistor is on during (dis)charging process

❍ Signals have finite rise/fall times and for a brief period both
PMOS and NMOS are on

❍ tplh increases as input fall time is increased

❍ Smaller rise/fall times are also desirable for low power con-
sumption

■ We assumed that the maximum (dis)charge current is satu-
ration current of transistors (proportional to V 2

DD)

❍ In small geometries, owing to velocity saturation, Iav is propor-
tional to VDD

❍ Therefore, if VDD >> VT t p
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■ In the timing analysis, we have so far ignored the source
and drain resistance of (dis)charging device

❍ The source resistance affects the performance
(i): Effective VGS is reduced (i.e., lowering the saturation cur-
rent)
(ii): The source is no longer grounded, VT of the transistor is
increased due to body effect

❍

❍

❍ where VS = Rs.In,sat,R

I n sat R, ,
kn

2
------ VDD VS– VSV

Tn
–〈 〉2
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Power Consumption and Power-Delay
Product

■ Static power consumption

❍ Ideally, there should be no static power consumption since
both transistors are never on simultaneously

❍ A small component is contributed by reverse biased diode
leakage current

Sub-threshold

V
DD

outV = VDD

current

Drain leakage
current
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❍ As mentioned before, at VGS = 0, the transistor current is not
absolutely 0 but a small component (sub-threshold current)

❍ As we scale the technology, VT is also scaled resulting in
exponentially higher sub-threshold current

❍ Pstat = Ileakage VDD

■ Majority of power is consumed during switching; two com-
ponents

■ 1. Charging of load capacitance, C L
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❍ Energy, EVDD taken from supply during the transition and EC
is stored on the capacitor at the end of transition

❍

❍

❍

❍

❍

❍

❍ Energy stored on the capacitor is only half of what is drawn
from the supply, rest of it dissipated in the PMOS transistor

❍ Energy dissipation is independent of transistor dimensions

❍ During the discharge phase, charge is removed from the
capacitor and its energy is dissipated in the NMOS transistor

❍ Hence, in each switching cycle fixed energy CLVDD
2 is taken

from the supply, to compute the power, we must multiply
energy by frequency, Pdyn = CLVDD

2f
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■ 2. Direct-Path Currents

❍ Owing to finite rise and fall times, both transistors are on for a
brief period of time during transitions

❍ If we assume that the current spikes can be approximated as
triangular waveform and VDD >>|VT|; then energy consumed
per period

❍

Vin

Ishort
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time

time

VDD T
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I peaktr
2
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I peakt f

2
-----------------+ VDDI peak
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Total Power Dissipation of an Inverter

■ Total power is the sum of three components

❍

■ Energy per operation or Power-Delay Product

❍ Power-Delay Product (PDP) is a quality measure for a logic
gate and is defined as amount of energy consumed in each
cycle

■ Exercise

❍ Optimize a CMOS inverter for minimum PDP. Also optimize
the inverter for minimum power and minimum delay.

Ptot Pdyn Pdp Pstat+ + CLVDD
2

f VDDI peak

tr t f+

2
-------------- 

  f VDDI leak+ += =
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Technology Scaling &CMOS

■ Ever since ICs were invented, dimensions are scaled to

❍ Integrated more transistors in the same area

❍ Allow higher operational speed

■ Scaling has profound impact on many aspects of ICs

■ Constant Voltage Scaling

❍ All device dimesions are scaled by a factor S

❍ Voltage (i.e., VDD) after the scaling is same as before

❍ This method of scaling is followed till 0.8 micron

❍ However for lower geometries, higher electric field resulted in
poor device reliability
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■ Therefore, for advanced technologies today Constant Field
Scaling is followed

❍ All dimensions including power supply is scaled by a factor S

Parameter Relation CVS CFS

W,L, tox 1/S 1/S

VDD, VT 1 1/S

Area WL 1/S2 1/S2

Cox tox S S

CL CoxWL 1/S 1/S

kn, kp CoxW/L S S

Iav kn,pV2 S 1/S

Jav Iav/Area S3 S

tp (intrinsic) CLV/Iav 1/S2 1/S

Pav CLV
2/tp S 1/S2

PDP CLV
2 1/S 1/S3


