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Positional determination for UAV Precision Landing
Neil Fernandes, Josh Cai, Stephen Wang, Samuel Sun, Lucas Arzoumanian. Members, Project KITE.

Abstract—Altitude and orientation state tracking is imperative
to safe, controlled, and repeatable landings of all unmanned
aerial vehicles (UAVs). This paper presents an analytical and
empirical analysis of state estimation based on the Extended
Kalman Filter (EKF) fusion method using data collected from the
following sensors: a camera, a barometer, a time-of-flight (ToF),
and 2 different inertial measurement units (IMUs). The ground-
truth of the drone’s state is determined via motion capture
while performing several test cases of the UAV being present
in various scenarios. The main goal of this work is to develop a
good EKF configuration that can integrate noisy measurements
from the modalities the sensor provide, and to determine what
combination of sensors produce the most reliable state estimation.

Index Terms—Unmanned Aerial Vehicles, Pose Estimation,
Precision Landing, Pattern Recognition

I. Introduction

PROJECT Kite. is envisioned by a group of 5 fourth
year Mechatronics Engineering students who designed

and built a Vertical Take Off and Landing (VTOL) UAV using
Cheap Off The Shelf (COTS) parts and a custom chassis. This
UAV acts as an autonomous inspection system for insulators
present on high power transmission lines. The drone possess
several COTS parts that creates the sensor suite which helps
the UAV estimate its altitude from the ground. These include
Inertial Measurement Units (IMUs), a Barometer, and a Time-
of-Flight (ToF) sensor. The drone also has a Raspberry Pi
Camera Module installed for visual odometry. Currently, the
UAV uses the IMU, Barometer and ToF for altitude holding
while the drone is in flight. The Raspberry Pi camera is solely
used for precision landing. This is done via a pose estimation
using an ArUco marker and functions from OpenCV [1].
Figure 1 shows how the standard orthogonal axes would be
drawn from the camera’s perspective. This estimation from
the camera alone is good, but easily susceptible to various
forms of obstructions at the same time. This leads to gaps in
the continuous stream of measurements, which could decrease
landing accuracy. This project attempts to improve the detec-
tion accuracy and reliability by fusing other onboard sensors
that use different modalities.

Fig. 1. Screenshot of ArUco location estimation visualization.

A. Related Works

UAVs have been applied in various fields in recent years,
such as military strikes, emergency rescue, and geological
exploration, mainly due to their low cost and convenient
operation as an autonomous system. A successful utilization
of unmanned aerial VTOL vehicles in missions that require
a high degree of autonomy necessitates accurate and fast
updated measurements from the onboard sensors used for
both navigation and localization [2]. This also extends to the
landing section of the VTOL which is a very important step
in protecting the drone as well as the environment external
to the UAV [3]. For our implementation of the VTOL glider
aircraft, the system would return to a dedicated docking system
designed to protect and charge the VTOL aircraft if the system
is currently low on battery, or is currently in a high risk
environment (examples include being in a dust or rain storm).
One challenge that the system faces is a robust and cheap
(both computationally and financially) method to make the
UAV system land in a precise manner. This also has to be
done in a way that the small form factor of the drone’s base
is not compromised.

In the area of precision landing for UAV technologies, there
exist several approaches relying on helipads with either an H or
T on them that use pre-trained neural networks to identify the
letter and then, using the known geometry of either the letter
or the surrounding circle, estimate the 6-DOF pose relative to
the landing pattern [4] [5]. A shortcoming of these kinds of
methods is losing information on the landing pattern during
the approach. Based on the size of the landing pattern and
the field-of-view (FOV) of the camera, the quad-rotor will
no longer be able to see the landing pattern and be unable
to estimate its pose. Cotta et. Al. considered using a vision-
based photogrammetric position and attitude sensor (SVGS) to
support the precise automated landing of a UAV from an initial
altitude above 100 m to ground, guided by an array of landing
beacons [6]. SVGS information is fused with other on-board
sensors at the flight control unit to estimate the UAV’s position
and attitude during landing relative to a ground coordinate
system defined by the landing beacons [6]. However, this
method relies on two different ground stations and several
RF readers which meant that the team had to invest more
time and resources into the base system, further increasing
the already large form factor of the base. The method also
relies on several smartphones placed externally, surrounding
the base. This poses an environmental risk wherein the base
(placed in a remote location with minimal supervision) would
cause damage to the SVGS, thereby destroying the overall
system at hand.

Researchers have also turned towards using markers to
estimate the altitude and pose of the UAV in space. This is
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done by calculating the relative height of the UAV with respect
to the marker, either on a static or dynamic object. Marut
et. Al. utilized ArUco markers to extract pose estimations in
order to determine the height of a UAV during the touchdown
with high accuracy [7]. De Corso et. Al. took this idea one
step ahead and implemented a multi-camera setup to estimate
and fuse multiple pose extractions from a board containing
multiple ArUco tags [8]. However, these experiments were
done indoors and the estimations can be poorly done if the
cameras used cannot see the ArUco tag (an example being in a
dimly lit area). The methodologies were also not cost efficient
and used expensive hardware (Intel Core-i7 processor with an
NVIDIA MX Graphics Card) to compute the data streams,
something the project did not have the luxury of.

There have been implementations where a GPS-based nav-
igation and landing system has been used to provide a UAV
with pose estimation of where the vehicle is with respect
to the goal pose [9]. There is also literature suggesting the
usage of laser scanners [10] [11], monocular and stereo
cameras [12] [13] and RGB-D sensors [14]. However, all these
approaches rely on a single exteroceptive sensing modality
that is only functional under certain environmental conditions.
For example, laser-based approaches require structured envi-
ronments and cannot handle variations in terrain and vision-
based approaches demand sufficient lighting and features. This
makes them prone to failure in large-scale environments, in
which the environment can change significantly. It is clear
that in such scenarios, multiple measurements from these
exteroceptive sensors may be available, and the fusion of all
these measurements yields increased estimator accuracy and
robustness.

Our implementation takes this methodology to fuse the data
coming from the IMU, Barometer, and Time-of-Flight (ToF)
sensors along with the visual odometry coming in from an off-
the-shelf USB Webcam. This was done by virtue of using an
Extended Kalman Filter (EKF). The core aim of this work is to
develop a modular approach for integrating noisy data from
diverse sensors, providing smooth and consistent positional
estimates to aid precision landing of the VTOL on a designated
pad present on the dock.

In the next section, an introduction of the system, followed
by the sensor characterizations and methodology of sensor
fusion will be discussed. In Section III, the results and a brief
discussions on the findings will be provided, followed by the
Conclusion in Section IV and Future Work in Section V.

II. Materials & Algorithmic Formulation

We chose to define an EKF was created to capture the
different states of the UAV. This section contains a detailed
breakdown of the state transition and sensor model, along with
the description of the experimental setup and test procedures.

A. Experimental Setup

To simplify the data collection process, a minimal test jig
comprising the selected sensor suite and an Arduino Nano
was constructed. The versatile microcontroller was used in
the setup because the sensors in the suite use both I2C and

UART, so it was very convenient to perform data acquisition
on the microcontroller and log its serial output with a laptop,
where they can be synced with the data from camera inference.
The sensors used on the experimental setup included the
NexiGo USB Webcam for the video feed used to extract visual
odometry [15], AltIMU-10 v6 to provide IMU and Barometer
data [16] and the TFMini-S to provide altitude data[17]. To
ease the process of testing our implementation of the sensor
fusion, a test bench was created wherein all the sensors were
connected by means of a breadboard. All the sensors except
the camera, were connected and powered via an Arduino Nano
[18] which was connected to a computer solely used to collect
the data. The USB WebCam was used instead of the Raspberry
Pi Camera Module to help in easing the process of data
acqusition. The usage of the Pi Camera would have meant that
the test bench would have had to compromise an SPI connector
which was not available at the time of the experiments. With
that being said, the USB camera was easily connected to the
same computer as the different sensors for the same reason.
Figure 2 shows the complete setup described above.

Fig. 2. Experimental Testbench

Figure 3 shows the experimental setup that was done in the
Neuromechanics and Assistive Robotics Lab (Arami Lab)

Fig. 3. Experimental Setup in the Arami Lab
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B. EKF States

The states of the EKF were chosen to represent all six
degrees of freedom and the corresponding first and second
derivatives, resulting in displacement, velocity, and accelera-
tion for both position and angle. This approach tallies up to
18 states:

p =
[
x y z ẋ ẏ ż ẍ ÿ z̈

]T
ϕ =
[
α β γ α̇ β̇ γ̇ α̈ β̈ γ̈

]T
x̂ =
p
ϕ

 (1)

C. Process Model

The process model for a rigid body is given by (2) and
was derived using basic kinematics equations. It is assumed
that the UAV can be represented as a rigid body, and that the
motion during landing is gentle enough such that centripetal
acceleration induced by rapid rotation does not affect the
accelerometer measurements.

F =


I3×3 T I3×3 0.5T 2I3×3

03×3 I3×3 T I3×3

03×3 03×3 I3×3


x̂k+1 =

 F 09×9

09×9 F

 x̂k (2)

D. Sensor Model

The sensor model describes how the EKF state space to the
measurement space. In other words, how measurements can
be reconstructed from the internal states. This section breaks
down such sensor model, which is nonlinear for this project,
for each sensor. The nonlinear nature of the sensors and the
rotation from the inertial frame to the accelerating body frame
makes it necessary to use an EKF rather than a linear KF. The
complete sensor measurement vector ẑ consists of a 17 × 1
column matrix and is broken up for readability reasons. Its
corresponding Jacobian that linearizes around the estimated
mean of the states is also derived.

The measurements relating to the camera can be seen in (3).
Here x, y and z related to the state of the UAV.

[camera3×1] =


camerax

cameray

cameraz

 =

cγ −sγ 0
sγ cγ 0
0 0 1


T 

x

y

z

 (3)

The measurements from the ToF and Barometer sensors can
be seen in (4) and (5).

ToFz =
z

cosα × cosβ
(4)

Barometerp = Pbecz (5)

In both equations, z corresponds to the state and not the
measurement. In (5), the constant c is given by

c =
−gM
RT

where,
T = 293.15 K

R = 8.3144598
J

mol.K

M = 0.028964425
Kg
mol

g = 9.80665
m
s2

As mentioned earlier, there are two IMUs aboard the
experimental setup. (6) shows the mapping between the IMU
measurement and states from the IMUs.

[IMU16×1] =



IMU1ẍ

IMU1ÿ

IMU1z̈

IMU1α̇
IMU1β̇
IMU1γ̇


(6)

Splitting (6) into 3 × 1 rows (first three and last three) for
readability, the corresponding models for each of them can be
seen in (7) and (8)

cγ −sγ 0
sγ cγ 0
0 0 1




cβ 0 sβ

0 1 0
−sβ 0 cβ



1 0 0
0 cα −sα

0 sα cα




T 
ẍ

ÿ

z̈ + g

 +

CC

CC

CC

 (7)



cγ −sγ 0
sγ cγ 0
0 0 1




cβ 0 sβ

0 1 0
−sβ 0 cβ



1 0 0
0 cα −sα

0 sα cα




T 
α̈

β̈

γ̈

 +

CC

CC

CC

 (8)

where CC pertains to the Calibration Constant determined
for the sensors. This constant is calculated by measuring the
mean value of the sensors when the system is at rest, which
accounts for any steady-state error in the sensor measurements.

For the second IMU, the sensor modelling is the exact same
thing as the first IMU (with the same constants and states).
This would result in obtaining [IMU26×1]

Putting equations (3)-(8) together, we get the complete
sensor measurement vector as shown in (9), mapping the UAV
states to the individual sensor measurements.

ẑ =



camera3×1

ToF1×1

Barometer1×1

IMU16×1

IMU26×1


(9)
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E. Covariances Matrices

The covariance matrices Q and R were chosen with a
mix of calculations and trial-and-error. Initial values are set
before running the EKF and adjusting accordingly. Using basic
kinematics equations, displacement and velocity variances
can be calculated as functions of time step and acceleration
variance, the latter of which can be set to any initial value.

var(ẋ) = var(ẍ)T

var(x) = var(ẋ)T + var(ẍ)0.5T 2

The final Q matrix is then an 18×18 identity matrix with diago-
nal elements corresponding to the above equations, depending
on if the state is a displacement, velocity, or acceleration. The
covariance values in R (17×17) were initially chosen based
on the variability and accuracy of each sensor. Accelerometer
and gyroscope measurements are far noisier and more prone
to error than any other, whereas the camera height and ToF
are consistent and accurate. As such, after initial guess and
some tuning, the final R values along the diagonal are:[

10[11] 0.1[11] 1 50[111] 20[111] 50[111] 20[111]
]

(10)

F. Sensor Characterization

Two scenarios from the data collected against the Vicon
system are selected as examples to show how the sensors
themselves perform. The EKF output will be compared to its
input in the next section. Figure 4 shows the height estimation
output from the camera, ToF range sensor, barometer, and the
Vicon ground truth. The barometer measurement was quite
different from the other sensors, and will therefore be weighed
less in the subsequent steps.

Fig. 4. Data collected from 4 height-measuring sensors.

Without the barometer, Figure 5 shows the remaining
height-measuring sensors. A constant offset is applied to the
camera measurement to create these plots. Figure 5 demon-
strates that as far as height is concerned, there are enough
sensors to reconstruct the true height of the jig.

G. Experiment Procedure

A more accurate, independent measurement system for the
test jig is crucial for evaluating the performance of the algo-
rithm. For this very reason, in collaboration with the Arami
Lab, a set of five test movements were recorded while utilizing
the Vicon Motion Capture system available at the lab. These
test movements ranged from a simple vertical up and down

Fig. 5. Data collected from 3 height-measuring sensors.

movement to more extreme movements mimicking an unstable
hover performed by the UAV, to an angled landing scenario.
One of the test movements also included a rapid movement
of the test bench going up and down to mimic the UAV
rapidly rising and falling near the landing pad. Out of these
movements, the two best measurements from the experiment
was taken and used to analyze the performance of the proposed
strategy as seen in Section III. To obtain the ground truth of
the motion of the jig, i.e., the breadboard setup described in
Section II-A, reflective markers were taped to various points
of the jig so that the motion capture system can calculate and
record the positions of those markers while sensor data from
the system is collected. Once attached, the team, together with
a PhD student, recorded both pose estimation (from the sensor
fusion methodology described) and the motion capture system
almost simultaneously.

Once recorded, the data from the motion capture system
was post-processed to fill in any gaps that may have occurred
during the recording step. This was done so that we could
analyze a single coherent stream of ground truth that does not
contain any missing data points. This step is also vital so that
a more robust comparison can be done with how the motion
was predicted with our proposed method, and how the test
bench really moved at a specific time instance. Note that the
time was not synchronized between the Vicon system and the
computer that captured serial output from the Arduino nano;
the offset in time was obtained on a case-by-case basis. The
team did not have enough time to extract angle ground truth
data from the motion capture system.

All test case scenarios and their captured videos can be seen
in -https://bit.ly/4aBJbDx

III. Results & Discussion

In this section, we present the results obtained from our im-
plementation of the Extended Kalman Filter. The performance
of the algorithm is evaluated through three distinct test scenar-
ios, where the test jig simulated aircraft landing in different
motions. For each scenario, the data is processed with different
permutations of sensor measurements to simulate external con-
ditions that would make certain sensors unusable/unreliable.
For example, one such permutation disregards camera and
ToF measurements to simulate low-light environments. All
permutations are shown in Table I.
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Condition Camera Barometer ToF
Low Light X X

Sloped Surface X
High Winds X

Normal

TABLE I
All sensor permutations

A. Scenario 1: Smooth Vertical Landing

This scenario shows a smooth up and down motion with
minimal rotation, mimicking a landing sequence with a fixed
heading, shown in Figure 6, Figure 7, Figure 8, and Figure 9.
These plots show that the system performance is heavily
dependant on certain sensors. When all sensors are used,
height and angular estimates are passable while the X and
Y positions are questionable at best. Those estimates are
too inaccurate and too variable to be reliable. In the height
estimate, there are obvious dips in the 15 - 20 second range.
This is completely due to bad readings from the ToF, which
can be proven by looking at the plots for when the ToF
is removed: the dips are no longer present. Although brief,
these dips can be catastrophic for the system when landing.
This shows that the ToF should be filtered for outliers before
passing through the EKF.

For other sensors, removing the barometer has little to no
effect on the height estimate due to the relative variances
between all the sensors that measure height. On the other hand,
removing the camera completely ruins the X and Y positional
estimates - the IMUs are not sufficient for estimating position.

Fig. 6. Scenario 1: All sensors used for state estimation used

Aside from comparing against the ground truth, Figure 10
compares the EKF output with its inputs. Only the z state is
shown as an example because multiple sensors could directly
measure it.

Fig. 7. Scenario 1: All sensors except for Barometer being used for state
estimation

Fig. 8. Scenario 1: All sensors except for ToF and Camera being used for
state estimation

In the EKF implementation that produced the aforemen-
tioned plots, the sensor data is duplicated, where applicable,
so that they all refresh at the rate of the fastest sensor.
Then a hypothesis was brought up in a discussion: could the
duplicated data have an effect on the output? Using a multi-
rate implementation provided by MATLAB ™Simulink, the
prediction step of the EKF runs every 0.01 seconds, while
each sensor runs at a integer multiple of the prediction period
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Fig. 9. Scenario 1: All sensors except for ToF being used for state estimation

Fig. 10. The sensors that directly measure height is plotted against EKF
output

independently. This approach produced Figure 11, showing
only the three position states. Apparently, no improvement was
made using this approach.

B. Scenario 2: Unstable Landing

This scenario mimicked an unstable landing procedure
while the drone approached the landing pad, shown in Fig-
ure 12, Figure 13, Figure 14, and Figure 15. This includes
several up and down motions along with approximately 90deg
yaw turns. The overall system performance remains fairly
consistent with the previous test scenario. When all sensors are
available, height estimation works very well - good tracking
and minimal noise. However, the X and Y position estimates
fluctuate -0.2 and 0.2m. The mean estimate seems to be close
to 0 but the variation is far too high to be considered reliable.
The yaw estimate captures the overall movement of the system
but without a ground truth, it is difficult to ascertain how well

Fig. 11. EKF output when the prediction and update steps run at different
rates

it tracks. Given that the EKF estimates a maximum yaw of
just over 60deg when the system should have moved 90deg,
it is likely that the estimate undershoots. The pitch and roll
estimates seem to reasonably estimate a value around 0deg.

When certain sensors are taken away, the system either
exhibits nearly no change or becomes completely unreliable.
Without a barometer, the system is nearly identical. With
multiple reliable sensors also measuring the height of the
system (camera and ToF), it makes sense that the less reliable
barometer would have very little effect on the estimated
height. Removing the ToF has a much larger effect, seen in
Figure 15 where the estimated value flattens out between 1
and 6 seconds. Chances are, the camera was either unable to
get a measurement or got bad measurements during that time
and the barometer alone could not adjust for that error. Once
both the ToF and camera are taken out, the height estimate
relies solely on the barometer, leading to wildly fluctuating
and offset estimates (in the 10 - 20m range). The X and Y
position end up relying on only the IMUs, also leading to
very bad estimates. Angle estimates are barely impacted.

All this data seems to suggest that the ToF and camera are
imperative to a decent estimation - the ToF specifically for
height and the camera for X and Y. This also means that extra
precautions should be taken to ensure that these sensors are
always operational.

IV. Conclusion

The biggest takeaway is that this attitude reference system
still needs work before it can be used practically. Assuming
that all sensors are being used, the height estimate is generally
very satisfactory. However, XY positional error can go as high
as 30 or 40cm. Angle estimates are difficult to properly judge
given the lack of ground truth despite looking reasonable.
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Fig. 12. Scenario 2: All sensors used for state estimation used

Fig. 13. Scenario 2: All sensors except for Barometer used for state
estimation

In the event that the camera and ToF are unusable, the
entire system becomes unusable. The IMU is insufficient and
unreliable for good positional estimates. The barometer is also
unreliable for the small variations in position present during a
landing.

V. Recommendations

The biggest required improvement is in the XY positional
estimate. There are several possible solutions worth looking

Fig. 14. Scenario 2: All sensors except for ToF and Camera used for state
estimation

Fig. 15. Scenario 2: All sensors except for ToF used for state estimation
used

into, specifically some pre-processing. Both the accelerom-
eter and camera xy measurements are exceedingly noisy and
should be low-passed before use in the EKF. In a similar vein,
the ToF data should also be stripped of outliers before use.
Despite good height estimations, the system is very sensitive
to bad readings from the ToF (albeit rare).

More time should also be spent in parsing the Vicon data
to extract angle ground truth. There are almost certainly better
and more robust methods of sensor calibration that should be
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explored. A GPS can be considered for additional position
estimates. Finally, the process model should be reevaluated as
it is a simplified model and does not account for interactions
between linear and angular acceleration that arise due to
centripetal forces.
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