Skip to the content of the web site.

NE 112 Linear algebra for nanotechnology engineers

Glossary and notation

A course glossary is available here, and a list of notations used in this course is availabe here. It contains many of the new terms introduced in this course. If you find a term missing, please contact the instructor.

Alternative lecture materials

Just in case you don't like my presentation, here are others.

We start with Prof. Jim Hefferon's course which appears in two parts on YouTube with Part 1 and Part 2. More information about the course is available on his website and he also has an online textbook.

You really should look at Stephen Chew's Learning How to Learn series and also good is 3-Blue-and-1-Brown's Linear Algebra series.

Lecture materials

The course book is available as a free Adobe portable document format (pdf):

An introduction to linear algebra for nanotechnology engineering with applications in Matlab

Note that this pdf uses bookmarks, so you are able to navigate to specific chapters, sections and subsections directly from the pdf viewer. Additionally, you can select an item in the table of contents and the pdf viewer will take you to that point in the on-line text.

The course is broken into twelve weeks, and unfortunately, some week breaks do interrupt a particular topic; however, if you are learning this material on your own, this really should not pose an issue. At the end of each week, an assignment is posted without solutions.

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
0 Course introduction YouTube (15 min) Slides
PPTX
1

Chapter 1

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
1.1 Multiplication tables YouTube (3 min) Slides
PPTX
1
1.2 Greek letters YouTube (3 min) Slides
PPTX
1
1.3 Sequences, sums and series YouTube (33 min) Slides
PPTX
1
1.4 Matlab (optional) 1
1.5 A brief introduction to the axiomatic method YouTube (10 min) Slides
PPTX
1

Section 1.6 Fields and complex numbers

1.6 Introduction to fields and complex numbers 1
 1.6.1 The field axioms YouTube (21 min) Slides
PPTX
1
 1.6.2 Introducing j YouTube (18 min) Slides
PPTX
1
 1.6.2a i versus j (optional)
- math versus engineering
YouTube (8 min) Slides
PPTX
1
 1.6.3 Complex numbers and their components YouTube (9 min) Slides
PPTX
1
 1.6.4 Geometric interpretation of complex numbers YouTube (9 min) Slides
PPTX
1
 1.6.5 The absolute value of a complex number YouTube (13 min) Slides
PPTX
1
 1.6.6 The angle or argument of a complex number and the polar representation YouTube (10 min) n/a 1
 1.6.7 Switching between rectangular and polar representations YouTube (7 min) Slides
PPTX
2

Sub-section 1.6.8 Complex arithmetic

 1.6.8 Introduction to complex arithmetic
  1.6.8.1 Addition of complex numbers YouTube (7 min) Slides
PPTX
2
  1.6.8.2 Additive inverse of complex numbers YouTube (5 min) Slides
PPTX
2
  1.6.8.3 Subtraction of complex numbers YouTube (8 min) Slides
PPTX
2
  1.6.8.4 Multiplication of complex numbers YouTube (19 min) Slides
PPTX
2
  1.6.8.5 The complex conjugate YouTube (14 min) Slides
PPTX
2
  1.6.8.6 The multiplicative inverse of complex numbers YouTube (18 min) Slides
PPTX
2
  1.6.8.7 Division of complex numbers YouTube (10 min) Slides
PPTX
2
  1.6.8.8 Integer powers of complex numbers YouTube (18 min) Slides
PPTX
2
  1.6.8.9 The square root of complex numbers YouTube (7 min) Slides
PPTX
2
  1.6.9 The complex numbers are a field YouTube (7 min) Slides
PPTX
2
 1.6.10 Three inequalities YouTube (18 min) Slides
PPTX
2
 1.6.11 The fundamental theorem of algebra YouTube (13 min) Slides
PPTX
2
 1.6.12 Roots of unity (optional) YouTube (11 min) Slides
PPTX
2
 1.6.13 Roots of polynomials with real coefficients YouTube (14 min) Slides
PPTX
2
 1.6.14 Geometric series YouTube (6 min) Slides
PPTX
3
 1.6.15 The exponential and trigonmetric functions (optional) YouTube (21 min) Slides
PPTX
3
 1.6.16 Fields in this course - 3
 1.6.17 An application to electrical engineering (optional) - 3
 1.6.18 Complex numbers in this course 3
 1.6.19 Application of complex numbers 3
 1.6.21 Summary of fields 3
1.7 Summary of introductory material 3

Chapter 2: Vectors and Vector spaces

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links

Section 2.1 Real n-dimensional vectors

2.1 Real n-dimensional vectors 3
 2.1.1 Definition of real n-dimensional vectors YouTube (9 min) Slides
PPTX
3
 2.1.2 The zero vector YouTube (3 min) Slides
PPTX
3
 2.1.3 Geometric interpretaion of real 2- and 3-dimensional vectors YouTube (6 min) Slides
PPTX
3
 2.1.4 Geometric interpretaion of real higher-dimensional vectors YouTube (6 min) Slides
PPTX
3
 2.1.5 Equality of vectors YouTube (6 min) Slides
PPTX
3
 2.1.7 Two-dimensional vectors versus complex numbers YouTube (8 min) Slides
PPTX
3
2.2 Complex n-dimesnional vectors YouTube (4 min) Slides
PPTX
3

Section 2.3 Vector operations

2.3 Vector operators YouTube (3 min) Slides
PPTX
3
 2.3.1 Scalar multiplication YouTube (10 min) Slides
PPTX
3
 2.3.2 Vector addition YouTube (9 min) Slides
PPTX
3
 2.3.3 Properties and axioms of vector spaces YouTube (40 min) Slides
PPTX
4
 2.3.4 Linear combinations of vectors YouTube (7 min) Slides
PPTX
4
2.4 Other vector spaces YouTube (23 min) Slides
PPTX
4

Chapter 3: Subspaces

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
3.1 A review of sets YouTube (15 min) Slides
PPTX
4
3.2 When is a subset also a subspace YouTube (31 min) Slides
PPTX
4
3.3 Examples of subspaces YouTube (20 min) Slides
PPTX
4

Chapter 4: Normed vector spaces

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
4 Introduction to normed vector spaces YouTube (2 min) Slides
PPTX
4
4.1 The 2-norm for finite-dimensional vectors YouTube (12 min) Slides
PPTX
4
4.2 Other norms for finite-dimensional vectors YouTube (8 min) Slides
PPTX
4
4.3 Unit vectors and normalization YouTube (7 min) Slides
PPTX
4
4.4 Norms in other vector spaces YouTube (9 min) Slides
PPTX
4

Chapter 5: Inner product spaces

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
5 Introduction to inner product spaces YouTube (4 min) Slides
PPTX
4
5.1 The inner product for finite-dimensional vectors YouTube (13 min) Slides
PPTX
4
5.2 The norm induced by the inner product YouTube (3 min) Slides
PPTX
4
5.3 Inner products on other vector spaces YouTube (8 min) Slides
PPTX
5
5.4 Orthogonality YouTube (11 min) Slides
PPTX
5
5.5 Orthogonality in other vector spaces (optional) 5
5.6 The Pythagorean theorem YouTube (11 min) Slides
PPTX
5
5.7 Projections and best approximations YouTube (45 min) Slides
PPTX
5
5.8 The Cauchy-Bunyakovsky-Schwarz inequality YouTube (13 min) Slides
PPTX
5
5.9 The angle between two vectors YouTube (10 min) Slides
PPTX
5
5.10 The Gram-Schmidt algorithm YouTube (28 min) Slides
PPTX
5

Chapter 6: Solutions to systems of linear equations, linear independence and bases

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
6.1 Equations, linear equations and systems of equations YouTube (21 min) Slides
PPTX
5
6.2 Finding solutions to systems of linear equations YouTube (24 min) Slides
PPTX
5
6.3 Linear combinations of vectors YouTube (21 min) Slides
PPTX
5
6.4 A systematic approach to solving a system of linear equations YouTube (3 min) Slides
PPTX
6
6.4.1 Matrices YouTube (10 min) Slides
PPTX
6
6.4.2 Classification of matrices YouTube (6 min) Slides
PPTX
6
6.4.3 Augmented matrices YouTube (8 min) Slides
PPTX
6
6.4.4 Zero rows, leading zeros and leading non-zero entries YouTube (6 min) Slides
PPTX
6
6.4.5 Row-echelon form YouTube (12 min) Slides
PPTX
6
6.4.6 Solutions to systems of linear equations with backward substitution YouTube (53 min) Slides
PPTX
6
6.4.7 Row operations YouTube (32 min) Slides
PPTX
7
6.4.8 Gaussian elimination with partial pivoting YouTube (67 min) Slides
PPTX
7
6.4.9 Solutions to homogeneous systems of linear equations YouTube (29 min) Slides
PPTX
7
6.5 Linear dependence and independence of vectors YouTube (36 min) Slides
PPTX
7
6.6 Spans and subspaces YouTube (20 min) Slides
PPTX
8
6.7 Bases and dimension YouTube (26 min) Slides
PPTX
8
6.8 Vectors as coefficients of a basis (optional) YouTube - Slides
PPTX
8

Chapter 8: Linear maps and linear operators

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
8 Introduction to linear maps and linear operators YouTube (11 min) Slides
PPTX
8
8.1 The superposition principle YouTube (8 min) Slides
PPTX
8
8.2 Definition of linear maps and linear operators YouTube (35 min) Slides
PPTX
8
8.4 Special linear maps and linear operators YouTube (10 min) Slides
PPTX
8
8.5 The range of a linear map YouTube (17 min) Slides
PPTX
8
8.6 The null space of a linear map YouTube (32 min) Slides
PPTX
8
8.8 The vector space of linear maps YouTube (35 min) Slides
PPTX
8
8.9 The composition of linear maps YouTube (27 min) Slides
PPTX
9
8.10 Linear operators YouTube (22 min) Slides
PPTX
9
8.11 Row operations YouTube (17 min) Slides
PPTX
9

Chapter 9: Linear operators on finite-dimensional vector spaces

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
9 Introduction to linear operators on finite-dimensional vector spaces YouTube (4 min) Slides
PPTX
9
9.1 The determinant YouTube (38 min) Slides
PPTX
9
9.2 The trace YouTube (8 min) Slides
PPTX
9
9.3 The inverse YouTube (28 min) Slides
PPTX
9
9.4 Matrices of orthonormal vectors and their inverses YouTube (22 min) Slides
PPTX
9

Chapter 10: Matrix decompositions

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
10 Introduction to matrix decompositions YouTube (14 min) Slides
PPTX
10
10.1 PLU decompositions YouTube (37 min) Slides
PPTX
10

Chapter 11: The adjoint of linear maps

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
11 Introduction to the adjoint of a linear map YouTube (3 min) Slides
PPTX
10
11.1 The properties of the adjoint YouTube (18 min) Slides
PPTX
10
11.2 The adjoint of a linear map on real finite-dimensional vector spaces (real matrices) YouTube (23 min) Slides
PPTX
10
11.3 The adjoint of a linear map on complex finite-dimensional vector spaces (complex matrices) YouTube (10 min) Slides
PPTX
10
11.4 An alternative interpretation of the inner product YouTube (5 min) Slides
PPTX
10
11.5 Self-adjoint and skew-adjoint linear operators YouTube (5 min) Slides
PPTX
10
11.7 Normal operators YouTube (17 min) Slides
PPTX
10
11.8 Isometric operators YouTube (24 min) Slides
PPTX
10
11.9 Linear regression and least squares YouTube (25 min) Slides
PPTX
10

Chapter 12: Eigenvalues and eigenvectors

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
12.1 Invariant subspaces, eigenvalues and eigenvectors YouTube (50 min) Slides
PPTX
11
12.2 Eigenvalues and eigenvectors of operators on signals YouTube (26 min) Slides
PPTX
11
12.3 Eigenvalue decomposition or diagonalization YouTube (26 min) Slides
PPTX
11
12.4 Positive semi-definite matrices and finding the maximum eigenvalue YouTube (27 min) Slides
PPTX
11
12.5 Powers of matrices YouTube (17 min) Slides
PPTX
11
12.6 Algorithms for finding the eigenvalues of a matrix (optional) YouTube (18 min) Slides
PPTX
11
12.7 Solving systems of homogeneous linear ordinary differential equations (optional) YouTube (26 min) Slides
PPTX
11
12.8 Principal component analysis (optional) YouTube (21 min) Slides
PPTX
11

Chapter 7: A digression to real 3-dimensional space

Topic Video Time PDFs Week Questions, sample code,
Wikipedia, and other links
7 Introduction to this digression to real 3-dimensional space YouTube (4 min) Slides
PPTX
12
7.1 The vector representation of a line YouTube (9 min) Slides
PPTX
7.2 Finding the line through two points YouTube (4 min) Slides
PPTX
12
7.3 The vector representation of a plane YouTube (11 min) Slides
PPTX
12
7.4 The equation of a plane YouTube (14 min) Slides
PPTX
12
7.5 The cross product YouTube (26 min) Slides
PPTX
12
7.6 The equatios of a line: the intersection of two planes YouTube (15 min) Slides
PPTX
12
7.7 The plane containing three points YouTube (6 min) Slides
PPTX
12

In-person mid-term examination formula sheet

A course summary is available here:

This is not guaranteed to cover everything that may be covered on the final, but this summarizes many of the definitions, algorithms and theorems in the course.

Here are two files that describe finding the properties of linear mappings, including the images, range, null space, and pre-images:

Previous final examinations:

A practice mid-term from last year and solutions are available here:

Previous mid-terms:

A primer on vectors

The document A primer on vectors is an introduction to vectors for those students whose school boards do not teach vectors in secondary school. It introduces vectors to the extent necessary to get up to speed in this course.

1. Introduction to vectors

2. Introduction to two-dimensional vectors

For your additional reading