1.6.13 Polynomials with real coefficients
Outline

• In this topic, we will
 – Examine the properties of the roots of polynomials with real coefficients
 – Look at some examples
 – Emphasize that this is one of the most important results in this course
Polynomials with real coefficients

- A polynomial with real coefficients is any polynomial where all coefficients are real.
 - For example,
 \[z^5 + 4.2z^4 + 2.7z^3 + 9.3z^2 - 0.8z + 1.2 \]
 - Any such polynomial of degree \(n \) may be written as
 \[
 p(z) = \sum_{k=0}^{n} \alpha_k z^k \\
 = \alpha_n z^n + \alpha_{n-1} z^{n-1} + \cdots + \alpha_2 z^2 + \alpha_1 z + \alpha_0
 \]
 - Important: the coefficient of \(z^k \) is \(\alpha_k \)
Properties of the complex conjugate

- Let us review the properties of the complex conjugate:
 - For any complex z: $(z^*)^* = z$
 - For a real number α, $\alpha^* = \alpha$
 - For the sum of two complex numbers, $(z_1 + z_2)^* = z_1^* + z_2^*$
 - Consequently, $\left(\sum_{k=1}^{n} z_k\right)^* = \sum_{k=1}^{n} z_k^*$
 - For the product of two complex numbers, $(z_1z_2)^* = z_1^*z_2^*$
 - For a complex number raised to an integer exponent, $(z^n)^* = (z^*)^n$
Polynomials with real coefficients

- Suppose that r is a root of a complex polynomial with real coefficients:

 $$p(r) = \sum_{k=0}^{n} \alpha_k r^k = 0$$

- We have two possibilities: either r is real, or r is not real
 - Let us suppose that r is not real
Polynomials with real coefficients

• If r is not real, let us conjugate both sides of $p(r) = \sum_{k=0}^{n} \alpha_k r^k = 0$

\[
\left(\sum_{k=0}^{n} \alpha_k r^k \right)^* = 0^*
\]

\[
\sum_{k=0}^{n} \left(\alpha_k r^k \right)^* = 0
\]

\[
\sum_{k=0}^{n} \alpha_k^* (r^*)^k = 0
\]

But each $\alpha_k^* = \alpha_k$

\[
\sum_{k=0}^{n} \alpha_k (r^*)^k = 0
\]

• Is this not $p(r^*) = \sum_{k=0}^{n} \alpha_k (r^*)^k$?

– Consequently, if r is a root, the r^* is also a root
Polynomials with real coefficients

Theorem:

If \(p \) is a polynomial with real coefficients, and \(r \) is a root, then so is \(r^* \).

Proof: Assume \(p(r) = \sum_{k=0}^{n} \alpha_k r^k = 0 \).

\[
p(r^*) = \sum_{k=0}^{n} \alpha_k (r^*)^k = \sum_{k=0}^{n} \alpha_k (r^k)^* = \sum_{k=0}^{n} \alpha_k^* (r^k)^* = \left(\sum_{k=0}^{n} \alpha_k r^k \right)^* = 0^* = 0 \]

But each \(\alpha_k^* = \alpha_k \).
To reiterate:

- If p is a polynomial with real coefficients and r is a non-real complex root of p then r^* is also a root of p
- We will describe r and r^* as a complex-conjugate pair
- More generally, if p is a polynomial with real coefficients and r is a non-real complex root with multiplicity m, then r^* is also a root of p, also of multiplicity m
Polynomials with non-real coefficients

• Note that if the coefficients are not real, then the correct statement is

If r is a root of the polynomial p, then r^* is a root of the polynomial with the conjugate of the coefficients

• For example, $r = 2 - j$ is a root of $z^2 + (1 - 4j)z - 1 + 13j$
 - Therefore, $r^* = 2 + j$ is a root of $z^2 + (1 + 4j)z - 1 - 13j$
 - Evaluating the first polynomial at $r^* = 2 + j$ results in $8 + 10j \neq 0$
Examples

• To demonstrate,
 – We already know the roots of $z^2 + 1$ are j and $-j$
 – The roots of $z^2 + bz + c$ are

$$-\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2}$$

• If $b^2 - 4c \geq 0$, then both roots are real
• If $b^2 - 4c < 0$, then the roots are

$$-\frac{b}{2} \pm \frac{\sqrt{4c - b^2}}{2}j$$
Examples

- To demonstrate,
 - Consider the polynomial
 \[z^5 + 3z^4 + 7z^3 + 5z^2 + 2z + 1 \]
 - Its roots are:
 \[
 -0.035181403011327564 + 0.51437834108030281j \\
 -0.035181403011327564 - 0.51437834108030281j \\
 -1.0777404719073206 + 1.9229758521534597j \\
 -1.0777404719073206 - 1.9229758521534597j \\
 -0.77415625016270363
 \]
Examples

• To demonstrate,
 – Consider the polynomial

 \[z^5 + 4z^4 + 7z^3 + 12z^2 + 10z + 2 \]

• Its roots are:
 – \(-0.28217940701111523\)
 – \(-1\)
 – \(-2.5426012611094618\)
 – \(-0.087609665939711494 + 1.6673028066114304j\)
 – \(-0.087609665939711494 - 1.6673028066114304j\)
Summary

• In this topic, you now
 – Understand the significance of the roots of a polynomial with real coefficients
 • Their roots are either real or come in complex conjugate pairs
 – Have been exposed to the proof
 – Are aware of some examples of this result
 – Should be aware that this will be one of the most significant results in this course
References

None so far.
Colophon

These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc. Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see https://www.rbg.ca/ for more information.
These slides are provided for the NE 112 *Linear algebra for nanotechnology engineering* course taught at the University of Waterloo. The material in it reflects the authors’ best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.