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1 Abstract

The well known Chernoff bound says that sum of m independent binary
random variables with parameter p deviates from its expectation y = mp
with the standard deviation of at most o = y/m in general and o =/ for
small deviations. It is shown here that the sum deviates from its mean p
with standard deviation of at least /.

2 A Motivating Example

Consider a biased coin where one side comes up with probability p = 1/2 —e.
Your task is to find out which side (head or tail) is the less probable one.
One can prove that the best solution for this problem is to toss the coin
sufficiently many times and declare the side that appears less. How many
times do you need to toss the coin to be confident about your prediction?

To make it more formal, we say that one is d-confident about his predic-
tion if it is correct with probability at least 1 — §. Using Chernoff bound
you find that m = 3p/e?In(1/6) = O(%5In(1/4) trials are sufficient to be
0-confident. The result here shows that in fact any prediction algorithm, in
particular the above one requires at least m = p/2¢* In(1/46) = Q(% In(1/4))
samples.

3 Main

Let X1, X5, ..., X,, be identical independent (i.i.d) random variables. The
Chernoff bound gives exponentially decreasing bound on tail distributions of



the sum ) ", X;. In particular we have the following result for the upper
tail distribution.

Theorem 1 (Chernoff Bound). Let X, Xs, ..., X,, be i.i.d random variables
taking values 0 or 1, and Pr[X; = 1] =p. Then

1. for any t > 0 [General bound]

Pr

(ZXi—u) >t] < exp( -

2. for any 0 <t < mp [Bound for small deviation]

(Z X —p) > t] < exp(;—fj) (2)

Pr

Where = E[Y ", Xi] = mp.

(1) and (2) respectively imply standard deviations of \/m and ,/u for
upper tail distribution of sum of i.i.d binary random variables. There are
various generalizations of the Chernoff Bounds that can be found for example
in [1]. Next theorem shows that (2) is actually tight within a constant factor.

Theorem 2. Let Xy, X5, ..., X,, be i.i.d random variables taking values 0
or 1, and Pr|X; =1] = p.

° [fpgi, then for anyt > 0

- 1 —2t2
Pr (;Xi_ﬂ)>t] > 7 exp( p ) (3)
Oprﬁé, then for any 0 <t < m(1 — 2p)
Pr (Zm:x— ] ()
- i — M = P 7

Where p = E[> ", X;] = mp.



Proof. We use Slud’s Inequality [2]. Let X be sum of m Bernoulli trials

with success-probability p. If either p < % and kK > mp or p < % and

2
mp < k <m(1— p), then

k—mp

mp(1 — p)

where Z is a normal (0, 1) random variable [2]. Therefore if either p < 1/4
andt>0orp<1/2and 0 <t <m(l—2p)

PriX > k| > Pr(Z >

()

t

(gXi—M)>t ZPT[sz] (6)

Using standard lower bounds for upper tail of a normal random variables
(see [3] ) we get

Pr

PriZ> 2> %(1 Y pp— 1)
Thus,
Pr (gXi ) > t] > 11— \/1 —exp(mp(_ltz_p)))
> %(1—\/1—exp<;ff>> ®)
> en(n) )

Where the last inequality follows from the fact that 1 — \/x > I_Tx for all

[]
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