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Absorbing Boundary Conditions for
Convex Object-Conformable Boundaries
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Abstract—Absorbing boundary conditions (ABC’s) are devel-
oped that can be applied on object-conformable outer boundaries.
The new ABC’s are based on the local enforcement of theNNN th or-
der Bayliss–Turkel boundary conditions where a scattering center
is defined for each outer boundary node. A demonstration of the
effectiveness of the new construction is provided by considering
representative numerical experiments using the finite-elements
method. Results show that the new ABC’s provide accuracy that
compares very favorably with the method of moments solution.

Index Terms—Absorbing boundary conditions, finite-elements
method.

I. INTRODUCTION

A BSORBING boundary conditions (ABC’s) are essential
elements for solving open-region radiation or scattering

problems because they allow limiting the computational do-
main to a finite size. Several ABC’s were developed for outer
boundaries that form canonical shapes. Most practical radiation
or scattering problems have geometrical shapes that do not
conform to a box, circle, or sphere. Hence, when using any
of these shapes as outer boundaries for mesh termination, the
white space around the scatterer might be unnecessarily large
resulting in costly simulation in terms of both memory and
run time.

To address this problem, ABC’s were developed that can be
applied to boundaries that conform, as close as practicable, to
the radiating geometry. Several attempts were made to apply
Bayliss–Turkel (BT) ABC’s to noncircular outer boundaries
(see [1] as a representative example of such efforts). In these
works, the BT operators wereprojected onto a noncircular
boundary while employing different approximations for mixed
partial derivatives. Another class of flexiblemode-annihilating
ABC’s were developed that were also applied to noncircular
outer boundaries [2] (see also [3] and references therein). In all
of the previous ABC constructions, the outer boundary had to
be positioned few wavelengths (at least two) from the nearest
surface of the structure to obtain practical levels of accuracy
[3].

In a total departure from the philosophy employed earlier,
Kreigsmanet al. [4] applied the BT operator directly on the
surface of the scatterer, while assuming that the origin of
waves is at the center of the osculating circle at each outer
boundary node. The result of the application of Kreigsman
et al. was not very satisfactory because it was only possible
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to apply second-order BT operators (higher order operators
employ radial derivatives and, thus, cannot be determineda
priori on the surface of the structure). However, the novelty of
using local scattering centers in the work of Kreigsmanet al.
led others to extend the concept of the local scattering center
to outer boundaries that are positioned at a distance from the
structure’s surface [3], [5], [6].

The comparative study of Lichtenberget al. [3] showed
that enforcing BT operators with local scattering centers
outperforms other ABC’s that use a single point of origin
for all boundary points. We will refer to the th order BT
operator applied with a local scattering center as BT.
However, despite its superior performance in comparison to
other operators, the BT does not give practical accuracy
when enforced close to the scatterer. In [3], for instance, good
accuracy level was possible only when the outer boundary
was pushed two wavelengths away from the structure. Third-
order or higher order BT operators were not implemented for
application on circular or noncircular outer boundaries because
of the complexity of their previous formulations.

In a recent work, BT operators were implemented in an
fashion resulting in an appreciably enhanced accuracy

[7]. The exactness of this recent implementation and the
relative superiority of BT in comparison to previous tech-
niques makes it only logical to extend the application of higher
order BT operators to noncircular outer boundaries using the
concept of local scattering centers. This paper develops these
operators that are implemented without any approximation
other than the descretization needed to transform derivatives.

Other mesh-truncation techniques that were developed for
noncircular outer boundaries in frequency domain include the
class of material-based terminations. This includes impedance
boundary conditions and perfectly matched layers [8]–[10].
However, these techniques witnessed analytical formulation
only and no numerical results have been made available to
test their effectiveness.

II. ABC’ S FOR CONVEX NONCIRCULAR BOUNDARIES

The development here will be demonstrated by solving
the problem of plane wave scattering from a perfect electric
conductor (PEC) in two-dimensional (2-D) space. The method
of solution employed here will be the finite-elements method
(FEM), however, the discussion applies equally to the finite-
difference method. The governing Helmholtz equation is given
by

(1)
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Fig. 1. Diagram for a scattering object showing an object-conformable mesh
termination boundary.

where is the wave number. Equation (1) is subject to
Dirichlet or Neumann (or both) boundary conditions on the
surface of the scattering object.

Consider the scattering object shown in Fig. 1. Using FEM,
we mesh the region bounded by the PEC scatterer and the
object-conformable outer boundary, as shown in Fig. 1. The

th order BT operator specified at a circular boundary with
origin at is given by

(2)

We enforce (2) on the outer boundary at each node using the
osculating circle approximation. This requires determining the
curvature of the osculating circle at each node (the node and
two adjacent ones are sufficient to determine the curvature).
Effectively, we can represent the ABC at each node as

(3)

represents the curvature of the osculating circle at outer
boundary nodes. For the special case of zero curvature, as in
the case of planar terminal boundaries, (3) reduces to

(4)

When the outer boundary is planar and coinciding with the
Cartesian planes, (4) reduces to Higdon’s boundary condi-
tion when it is applied in the frequency domain (after the
transformation of to ) [11].

III. I MPLEMENTATION IN FINITE-ELEMENTS

AND FINITE-DIFFERENCE SIMULATIONS

Here, we will present a simple procedure that implements
the series of boundary conditions constructed above in an exact
fashion. To this end, the operator in (3) is discretized using
the following finite-difference approximation for the normal
derivative

(5)

where is the identity operator, is the space-shift opera-
tor, and is the normal separation between boundary layers.
Substituting (5) into (3) we have

(6)

The implementation of (6) requires that the outermost
boundary nodes that are involved in the definition of (5) lie on
mutually orthogonal curves (as shown in Fig. 1). For instance,
when using BT , five nodes lying on the normal to the
outer boundary are needed.

Let us denote the boundary nodes that lie on the outermost
boundary surface as , the nodes that are adjacent to the
outermost surface and are involved in the description of
as , and the remaining nodes as . Enforcing (6) at each
boundary node, we arrive at the algebraic boundary equation

(7)

The finite elements or finite-difference matrix can be sym-
bolically represented as

(8)

Finally, we substitute (7) in (8) to obtain the reduced system
matrix

(9)

This procedure is simple and, furthermore, for finite-
elements simulation, it has the added advantage of eliminating
the need to numerically evaluate the surface (boundary)
integral that is inherent in finite-elements formulation.

IV. NUMERICAL EXPERIMENT

Testing ABC’s can never be an absolute procedure; that is, it
is difficult to construct a numerical experiment that can test the
effectiveness of ABC’s in a uniform fashion. This is the case
because the field generated or scattered by an object can have
a variety of waves (traveling, evanescent,, etc.), and the
relative magnitude of these waves can also differ depending
on the shape, size, and composition of the object (see [12] for a
discussion on the testing of ABC’s). Therefore, while a single
example will not suffice, here we present several numerical
experiments that include objects of varying shapes and sizes
with the goal of providing a good feel of the behavior of the
ABC’s proposed.

Let us consider the problem of 2-D plane wave scattering
from the perfectly conducting cylinder shown in Fig. 2. This
object is composed of a rectangle with two semicircles, one
at each end. TM-polarization is considered with two differ-
ent angles of incidence (0and 90). The mesh-terminating
boundary is taken to conform to the structure. The spacing
between node layers, is . The outer boundary is taken
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Fig. 2. Scattering object used in the first numerical experiment.

Fig. 3. Scattered electric field along� in Fig. 2 as obtained for 0� incidence,
TM-polarization, using the MoM solution and the FEM solution using BT2

local

(BT2) and BT4
local

(BT4).

to be as conformable as possible with uniform separation from
the conductor of .

In Figs. 3 and 4 we present results showing the scattered
electric field at the contour (see Fig. 2) for two separations;

and . A total of 240 nodes span the
contour, starting at the upper right-hand corner as shown in
Fig. 2. Comparison is made with the FEM solutions employing
BT and BT and the method of moments (MoM)
solution. The first observation we make is that BT results
in a very satisfactory agreement with the MoM solution.
This agreement is especially satisfactory for the case of 90
incidence which is more challenging since scattered waves
are generated on the conductor’s top and bottom surfaces
that engage the outer boundary at angles of incidence close
to grazing incidence. The second observation concerns the
relative convergence of BT and BT . We notice from
Fig. 4 that the convergence of the solution using BT
as the distance from the outer boundary to the conductor
increases is much slower than the case when using BT.
This observation confirms earlier results which showed that the
BT and BT operators need to be enforced at a relatively

Fig. 4. Scattered electric field along� in Fig. 2 as obtained for 90�

incidence, TM-polarization, using the MoM solution and the FEM solution
using BT2

local
(BT2) and BT4

local
(BT4).

Fig. 5. Computational domain used for the problem of scattering by a
perfectly conducting square cylinder.

large distance from the conductor to obtain practical levels of
accuracy (see [3] as an example).

As a second experiment, we consider the problem of scatter-
ing by a perfectly conducting square cylinder.
The most suitable outer boundary for this geometry is a square
as shown in Fig. 5. The outer boundary is positioned such
that the separation between it and the conductor is . The
spacing between node layers is as before.

Fig. 6(a) and (b) shows the magnitude and phase of the
electric field on the observation contour (see Fig. 5) as
calculated using the FEM solution. A total of 164 nodes span
the observation contour. The numbering of the nodes starts at
the lower left-hand corner and proceeds clockwise. So node
number 20 corresponds to the middle point on the left-hand
side, and node number 105 corresponds to the middle point
on the right-hand side. Results are only shown for field values
on the upper half of the contour due to the symmetry of the
problem. For comparison, the MoM solution is also provided
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(a)

(b)

Fig. 6. Scattered electric field, TE-polarization, along� in Fig. 5 obtained
using the MoM solution, and the FEM solution using BT2

local
(BT2) and

BT4

local
(BT4). (a) Magnitude. (b) Phase.

for this problem. The FEM solutions were obtained using
BT and BT . The agreement between BT and MoM
solutions is very satisfactory, especially in the observation
region closest to the corner of the conducting box. In fact,
it is observed from Fig. 6(a) that the maximum error in the
field magnitude is kept below 1.2% over the entire observation
contour when BT is used. (Notice that the conducting box
was modeled as having precisely 90corners.)

As a third and final example, we consider the problem of
TE-polarization scattering from a perfectly conducting ellipse
having a major axis of and a minor axis of (axial ratio
of 0.1). An object-conformable boundary was constructed,
as shown in Fig. 7, such that the separation between the
conductor and outer boundary is . For this problem, we
obtain the FEM solution while employing BT on the outer
boundary . We also obtain the solution while enforcing the
classical second-order BT operator, BT, at a circular outer
boundary, which is distanced from the nearest conductor
surface, as shown in Fig. 7. The solutions, in terms of the radar
cross section (RCS), are shown in Fig. 8. In Fig. 8, “BT4-

Fig. 7. Geometry for perfectly conducting ellipse and outer boundaries.

Fig. 8. RCS for the problem of TE-polarization scattering from the ellipse
shown in Fig. 7.

small” refers to the solution obtained while using BT
over the contour and “BT2-large” refers to the solution
obtained while using BT over the larger circular contour.
The agreement between the two solutions is very strong, thus
testifying to the strength and efficiency of BT .

V. CONCLUSION

This paper presented the development of a new class of
ABC’s that can be applied on noncircular convex mesh-
termination boundaries. The new ABC’s are based on the exact
application of BT operators using local scattering centers. Also
presented, the implementation of these ABC’s in a finite-
elements and finite-difference simulation methods. Several
representative examples were given, which showed that the
new ABC’s give very satisfactory solutions.

Finally, we note that this work demonstrated the application
to scattering problems in 2-D space and in the frequency
domain. However, these ABC’s and their implementation are
directly applicable to scattering problems in three-dimensional
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space and to time-domain problems. These extensions are
discussed in greater detail in future works.
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