
Solving Elliptic Curve Discrete Logarithm Problem Using
Parallelized Pollard’s Rho and Lambda Methods

Puneet Gill

May 18, 2019

1

Contents

1 Introduction 4

2 Elliptic Curve Discrete Logarithm Problem (ECDLP) 4

3 Algorithms for solving ECDLP 5

3.1 Shank’s Algorithm . 5

4 Pollard’s rho-method 7

4.1 Direct parallelization . 7

4.2 New parallelization method . 7

4.3 Analysis . 8

5 Pollard’s Lamda Method (Catching Kangaroos) 10

5.1 Parallelization . 10

5.2 Analysis . 12

6 Implementation of the algorithms 13

7 Conclusion 14

A Appendix 15

A.1 Runtime for Brute force Algorithm . 15

A.2 Probability of success for wild kangaroo . 15

A.3 Number of jumps to cover a distance . 15

A.4 Minimized parameters for Lambda method’s runtime 15

A.5 Minimize α for total number of jumps . 16

A.6 Comparision of parallelized rho-method and lambda method 16

2

List of Figures

1 Parallelized Collision Search . 8

3

1 Introduction

In public key cryptography, a principal goal is to allow two parties to exchange confidential in-
formation, even if they have not met before and the communication channel is monitored by an
adversary. RSA and elliptic curve public encryption schemes are widely used for any two parties to
securely communicate providing confidentiality, data integrity, authentication and non-repudiation.
The security of these encryption schemes lies in the difficulty of solving the factorization problem
for RSA and discrete logartithm problem for Elliptic curves. Elliptic curve encryption scheme
is preferred over RSA when building cryptosystems because the fastest algorithm to solve the
factorization problem is sub-exponential, where as the one to solve discrete logarithms is fully-
exponential. This means that to achieve the same level of security as an elliptic curve based
encryption scheme, RSA encryption scheme requires its public and private keys to be significantly
longer than in the case with elliptic curves. In the Parallel Collision Search with Cryptanalytic
Applications paper, Paul C. Van Oorschot and Michael J. Weiner present a new technique of par-
allelizing methods that aim to find collisions in pseudo-random walks, which can be implemented
to solve the discrete logarithm problem.

There are many applications of collision search algorithms in cryptanalysis. These may involve
searching the space of keys, plaintext or ciphertext. For public key cryptosystems, they may be
aimed at solving difficult mathematical problems such as computing factorization and discrete
logarithms. In the paper, Oorschot and Weiner present an efficient method to parallelize Pollard’s
rho and lambda methods for computing discrete logarithms in cyclic groups. This analysis can
also be extended to efficiently computing the elliptic curve discrete logarithm problem over a finite
field Zp.

2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

In the discrete logarithm problem in the finite field F∗p based cryptosystem, Alice publishes two
numbers g and h, and her secret is the exponent x that solves the congruence:

h ≡ gx (mod p)

Solving the discrete logartithm problem thus requires an adversary, Eve, to find an x such that

h ≡ g · g · g · · · g︸ ︷︷ ︸
x multiplications

(mod p)

Something similar can be done with the group of points E(Zp) of an elliptic curve E : Y 2 =
X3 + aX + b defined over a finite field of Zp as well. Alice can chose to publish two points P and

4

Q ∈ E(Zp) and her secret is and integer k such that

Q = P + P + · · ·+ P︸ ︷︷ ︸
k additions

= kP

There are properties that the generator, P , for elliptic curve should satisfy, these are:

• P is the generator of E(Zp), P ∈ E(Zp) and P 6=∞

• nP =∞

• E(Zp) = {∞, P, 2P, 3P, ..., (n− 1)P}. n is the #E(Zp)

• For any integer k, kP = (k mod n)P

In ECDLP, the goal of an adversary is to find how many times P needs to be added to itself to
get to Q. By analogy to the discrete logarithm problem, k can be denoted as k = logP Q and is
called the elliptic discrete logarithm of Q with respect to P .

3 Algorithms for solving ECDLP

The goal in collision search is to find two distinct inputs a and b to a function f for which
f(a) = f(b). ECDLP can be reduced to such a problem.

There are several algorithms that can be used when solving for the discrete logarithm of an elliptic
curve. The naive brute force method involves computing points P, 2P, 3P, ... until a point kP is
found that equals Q. This method does O(n) elliptic point additions and each point addition takes
O((log2 n)2). Hence, the method is fully exponential because input size is log2 n, as shown in A.1.

Other algorithms that solve the ECDLP in a considerably faster run-time are discussed in the
proceeding sections. Shank’s algorithm, Pollard’s-rho method and Pollard’s lambda method are
discussed in this report. After the serialized version of the algorithms, parallelized versions are
discussed, followed by their analysis.

3.1 Shank’s Algorithm

Shank’s algorithm is the generic algorithm for solving ECDLP, which is significantly faster than
the brute force method. Despite the speed up, it is still fully exponential.

Given two points P,Q ∈ E(Zp) where Q = kP for some positive integer k, Shank’s algorithm
computes the discrete logarithm k = logP Q. It is similar to a meet-in-the-middle attack as it tries

5

to find k by storing (rP, r) in a sorted table and searching the table for all values of q. It stops

when a match satisfying the condition Q− qM ?
= rP is found, where M = d

√
neP,Q = kP . The

pseudocode of the algorithm is shown in Algorithm 1. It can be observed that the run-time of the
algorithm is O(

√
n). There are two loops in ComputeDiscreteLogarithm and each runs at most

O(
√
n) times and call to RepeatedDoubleAndAdd takes O((log n)3) operations. This makes the

total run-time to be 2
√
n + (log n)3. In terms of the storage, Shank’s algorithm requires O(

√
n)

storage. This may not be feasible if n is large. For 128-bit security (n ≈ 2256), Shank’s algorithm
would require 2128 = 4.25× 1028 GBytes of storage, which is infeasible.

Algorithm 1 Shank’s algorithm

1: procedure Compute Discrete Logarithm(P,Q)
2: m← d

√
ne

3: q ← k/m and r ← k mod m . k = qm+ r multiplying by P gives rP = Q− q(mP)
4: for Each r ∈ [0,m− 1] do
5: Compute rP and store (rP, r) in a table sorted by first entry

6:

7: M ← RepeatedDoubleAndAdd(m,P)
8:

9: for Each q ∈ [0,m− 1] do
10: R← Q− qM
11: if R matches any (rP, r) ∈ sorted table then
12: k ← qm+ r
13: return k
14:

15: procedure Repeated Double And Add(x, P)
16: xbinary ← toBinary(x) . converts x to binary array
17: A← P
18: if xbinary[0] = 0 then
19: B ←∞ . 0P =∞
20: else
21: B ← P
22: for Each xb ∈ xbinary from 1, 2, ... do
23: A← A+ A
24: if xb = 1 then
25: B ← B + A

26: return B

Parallelization of Shank’s algorithm results in the speed up in writing and reading from the table
but does not help reduce the memory problem. Due to this, parallelization of Shank’s algorithm
remains impractical. [2]

6

4 Pollard’s rho-method

In 1978, Pollard came up with a Monte-Carlo method to solve discrete logarithm problem. Since
then it has been modified to solve the Elliptic Curve discrete logarithm problem. Pollard’s rho-
method is an improvement over Shank’s algorithm as it has the same expected run-time of O(

√
n)

but uses negligible storage. As Pollard’s rho-method is the fastest known method for solving
ECDLP, the security of the elliptic curve cryptosystems depends on the efficiency of this algorithm.

To use the rho-method, a function f is selected such that it has the same domain and range (i.e.
f : S → S) and is a random function. Pollard’s rho-method involves selecting a starting value x0
and computing the next values as xi = f(xi−1) for i = 1, 2, Since f has the same domain and
range and S is finite, we would expect the values to repeat at some point. To detect a collision,
the method involves storing only the points that satisfy a distinguished property, such as a fixed
number of leading zero bits. A collision is detected when a distinguished point is encountered
twice. This requires storage of very few points if the distinguished property is selected carefully.

4.1 Direct parallelization

The efficiency of collision search is dependent on increasing the probability of finding one. The
direct parallelization of Pollard’s rho-method involves multiple processors independently producing
a sequence of points to find a collision. Since each processor works independently from the others,
it does not alter the probability of other processors finding a collision. In addition, the probability
that the next point on the sequence will result in a collision is dependent on the number of the
points computed so far. As the number of points computed previously increase, the probability
of the next point on the sequence resulting in a collision increases as well. As a result, none of
the parallel processors reaches the success probability as high as it would in the case with a single
processor. This is because multiple processors do not increase the number of points computed
per unit time. In parallelization, each processor runs on a set with n/m elements, resulting in
the expected number of steps taken by each processor before a collision is detected is

√
πn/2m.

This is an inefficient use of paralleleization as direct parallelization for Pollard’s rho-method only
provides a speed up of a factor of

√
m compared to the single processor version.

4.2 New parallelization method

To perform a parallel collision search, each processor does the following. It selects an arbitrary
starting point x0 ∈ S and produces a trail of points defined by xi+1 = f(xi), i = 0, 1, 2, ... until
a distinguished point xd is observed. The distinguished point xd is added to a common list for
all processors. Once a processor adds a distinguished point, it starts to produce a new trail from
a new starting point. This is done to avoid a processor from falling into a loop. A collision is
detected when a processor finds a distinguished point that already exists in the common list.

7

In the parallelized rho-method, each processor does a pseudo-random walk and stops when a
collision is detected, as shown in figure 1. After a collision occurs, the colliding trails coincide.
This can be observed in figure 1 where trail 3 collides with trail 4 at x3 and x′2 and the collision
is detected at x5 and x′4. In this method, if the first point on a trail collides with another trail,
it is rejected, since the trail does not result in a collision in f . It is also possible that a processor
may fall into a loop that does not contain any distinguished points and stops contributing to the
collision search. It is avoided by setting a limit on the length a trail can grow to, which is described
below.

For finding the discrete logarithm of elliptic curves using rho-method, an iterating function is
defined and E(Zp) is divided into 3 sets , S1, S2, S3 roughly of same sizes based on some easily
testable property. In the implementation, hashing is used to divide E(Zp) into three equally sized
disjoint sets.

This method is designed for the case when the discrete logarithm can be any value less than order,
n. Given Q = kP where P,Q,Ri, Ri+1 ∈ E(Zp), k is a positive integer, the iterating function is
defined as:

Ri+1 = f(Ri) =

Q+Ri, Ri ∈ S1

2Ri, Ri ∈ S2

P +Ri, Ri ∈ S3

Algorithm 2 shows the steps taken by each processor independently to solve ECDLP using pollard’s
rho-method. After the algorithm detects a collision, the discrete logarithm k can be computed as
a−c
d−b (modn) provided b 6≡ d (modn). This can be avoided because the probability of b ≡ d (modn)
is low when n is sufficiently large.

4.3 Analysis

Let θ be the proportion of the points that satisfy the distinguishing property. The length of the
trails are geometrically distributed with mean 1/θ. A trail is discarded if its length is 20 times
longer than the average, 20/θ.

Figure 1: Parallelized Collision Search

8

Algorithm 2 Pollard’s rho-method

1: procedure Compute Discrete Logarithm(P,Q)
2: Select a, b ∈R [0, n) . n is the order of E(Zp)
3: Compute R = aP + bQ
4: while R not found in common list of distinguished points do
5: if R is a distinguished point then
6: Store (R, a, b) to a common list of distinguished points

7: R, a, b = ComputeNext(P,Q,R, a, b)

8:

9: Let the match of R be R∗ and get the corresponding c, d from list . R∗ = cP + dQ
10: return a−c

d−b modn . Provided b 6≡ d (modn)

11:

12: procedure Compute Next(P,Q,Ri, ai, bi)
13: if Ri ∈ S1 then
14: return Q+Ri, ai, bi + 1
15: else if Ri ∈ S2 then
16: return 2Ri, 2ai, 2bi . 2ai, 2bi are modn
17: else if Ri ∈ S3 then
18: return P +Ri, ai + 1, bi

By the birthday paradox, the expected number of steps taken on a pseudo-random walk before
a collision occurs is

√
πn/2, where n = |S|. Assuming there are m processors in the parallelized

version of the rho-method, the expected number of steps taken by each processor before a collision
occurs is

√
πn/2/m. After a collision occurs, the expected number of points computed before the

collision is detected is 1/θ. 1 Therefore, the expected runtime for collision detection is:

Tρ =

√
πn
2

m
+

1

θ
.

Other than the collision detection, the second goal is to locate the collision. To solve for the location
of the collision efficiently, one needs to know the starting point of each trail and its length. Once
the starting points of the trails are known, the next step is to move along the longer trail until its
length matches the second trail. Finally move along both trails until they reach the same point. If
the value of the common point is such that f(a) = f(b), a 6= b then the points a, b is the location
of the collision. The expected runtime for finding the collision is 1.5/θ, as shown in the appendix
of [1]. This makes the total expected runtime for detecting and finding a collision to be:

Tρ′ =

√
πn
2

m
+

2.5

θ
.

1As described in the paper, there is an apparent paradox here because trails average 1/θ in length, but the
expected distance from a point of collision to the end of the trail is also 1/θ. Longer trails are more likely to be
involved in a collision, which resolves the paradox.

9

5 Pollard’s Lamda Method (Catching Kangaroos)

It is not always the case that the discrete logarithm k in Q = kP can be any value less than
the order, n. In practical implementations, k is limited to a restricted range of values for faster
computation. The Pollard’s rho-method solves discrete logarithms without restrictions but the
lambda method is faster when k is restricted.

For a value of k ∈ [0, b) for some b < n. The problem of finding k given Q = kP can be solved
using Pollard’s lambda method. The lamda, or the catching kangaroos method, running on a single
processor without distinguished points works as follows. In the lambda method, a number line
can be thought of, as labelled by P, 2P, 3P, ... and two kangaroos, a tame and a wild jump along
this number line until the wild kangaroo catches the tame. To achieve this, an iterating function
detemining the next location of the kangaroos is defined as Ri+1 = Ri + a(Ri)P , where a(Ri) is a
function that outputs the next jump size for the kangaroo and the kangaroo moves forward by this
value. The function a(Ri) randomly selects values from a set A and only depends on the current
location Ri. In the paper, A is a set containing powers of 2 starting with 20 up to a limit with the
largest value in the set being such that the mean of the values in the set is a certain (optimized)
value α.

To start the collision detection algorithm, a tame kangaroo starts at R0 = bP and makes αβ jumps
for an optimised value of β, keeping track of the distance travelled and the final resting spot of
the tame kangaroo. Now a wild kangaroo begins at a starting point R

′
0 = Q and is allowed to

jump with the same iterating function, keeping track of the distance travelled by it and checking
whether it ever lands on the final resting spot of the tame kangaroo. Since both kangaroos use
the same iterating function, if the wild kangaroo ever lands on any of the same spots as the
tame, it will follow the same path thereafter and will eventually reach the final resting spot of the
tame kangaroo. The discrete logarithm can then be calculated from the difference of the distance
travelled by the two kangaroos.

The tame kangaroo starts from R0 = bP and make αβ jumps, therefore the expected total distance
travelled by it will be α2β + b from 0P =∞ (expected value of all entries in A is defined as α). If
the wild kangaroo travels this far, then the wild kangaroo has passed the final resting spot of the
tame kangaroo and has failed. If the wild kangaroo fails, another wild kangaroo is set off from a
starting poisiton of R

′
0 = Q+zP , for a small known value of z. Algorithm 3 shows the pseudocode

for the implementation of the lambda method.

5.1 Parallelization

Direct parallelization of the lambda method suffers from the same problem as the rho-method.
Running m processors independently in parallel only provide the speed up of

√
m. A new method

for parallelization is discussed in the paper that provides a linear speed up and works as follows.
It starts with m/2 tame kangaroos launched from starting points (b/2 + iv)P , where 0 ≤ i < m

10

Algorithm 3 Pollard’s Lambda-method

1: procedure Compute Discrete Logarithm(P,Q)
2: Generate powers of 2 till 2d such that the mean of the powers is α
3: kangaroo tame = bP
4: total distance tame = b
5:

6: for jump ∈ [0, αβ) do
7: kangaroo tame, jump size = getNextJump(kangaroo tame)
8: total distance tame + = jump size
9: Store (kangaroo tame, total distance tame) in a sorted table

10: kangaroo wild = Q
11: total distance wild = 0
12:

13: jump counter = 0
14: tame distancejump = 0 . tame distance till the ith jump
15: while True do
16: if kangaroo wild = kangaroo tame then
17: break
18: if total distance wild > total distance tame then
19: Set value of kangaroo wild = Q+ zP for a small value of z
20: total distance wild = 0
21: jump counter = 0

22: kangaroo wild, jump size = getNextJump(kangaroo wild)
23: total distance wild + = jump size
24: jump counter+ = 1
25: Get corresponding tame distancejump from the table

26: return b+ tame distancejump − total distance wild− z (mod n)

27:

28: procedure Get Next Jump(position)
29: hash = Get hash value of position
30: jump size = 2hash(mod n)+1

31: return position + jump size*P, jump size

11

and a small constant v (not a power of 2). Simultaneously, m/2 wild kangaroos are launched with
starting points Q + (b + iv)P . Whenever a kangaroo lands on a distinguished point, the point
with a flag indicating the kangaroo type (tame or wild) and the distance travelled are stored in
a list common to all the processors. If the kangaroo lands on a distinguished point that exists
in the list and the kangaroos are of the same type, then one of kangaroos is moved forward by
a small random value. This is done to avoid the two from following the same path. Collision is
detected when the two colliding kangaroos are of different types. The discrete logarithm can then
be computed by subtracting the distance travelled by the colliding kangaroos.

5.2 Analysis

The tame kangaroo in the lambda method takes a total of αβ jumps before reaching its final resting
spot. After the wild kangaroo passes the point bP , it takes about αβ (tame kangaroo makes αβ
jumps from bP) jumps before reaching the tame kangaroo. With each jump, the wild kangaroo
has a probability of 1/α of landing on one of the same spots that the tame kangaroo once landed
on (collision). The probability of success is about 1− e−β, as shown in A.2. The expected number
of jumps that the wild kangaroo takes is b/2α + αβ, since the expected starting point for it is
bP/2. Before succeeding, the wild kangaroo is expected to fail 1/(1 − e−β) − 1 times, giving the
total runtime to be αβ − b/(2α) + (b/α + αβ)/(1 − e−β) operations. It can be observed that the
runtime is a function of α and β, and can be minimized when α =

√
(b(1− e−β)/(2β(2− e−β)) as

shown in A.4. Authors in the paper advice values of β ≈ 1.39 and α ≈ 0.51
√
b for minimizing the

runtime, which are derived using numerical techniques.

In the parallel version of the lambda method, the tame and wild kangaroos are somewhere between
0 and b/2 distance apart from each other, because of their starting points. This makes the expected
distance of separation to be b/4. This means that the trailing kangaroo takes b/(4α) jumps to
cover this distance, from the relationship shown in A.3. After getting past the starting point of
the leading kangaroo, the m/2 trailing kangaroos may land on the same spot as one of the leading
kangaroos did. In the paper, the expected number of jumps taken by each trailing kangaroo before
one one of them collides with one of the spots of the leading kangaroo is calculated to be 4α/m2.
This results in the total number of jumps taken by the trailing kangaroos to be b/(4α) + 4α/m2.
These jumps are a function of α and can be minimized to, as shown in A.5. If the proportion of the
distinguished points is θ, then the number of jumps before a distinguished point is encountered
after a collision is 1/θ. This results in the total runtime of the parallelized version of lambda
method to be:

Tλ =
2
√
b

m
+

1

θ

Compared to the parallelized rho-method, the parallelized lambda method is 1.6 times slower when
b ≈ n and only gets faster when b < 0.39n, as shown in A.6.

12

6 Implementation of the algorithms

As a part of this project, the non-parallelized versions of the three algorithms were implemented
and the discrete logarithms for a test elliptic curve were computed. Although this does not tackle
a real life ECDLP, it helped in understanding the algorithms better and the challenges involved
in implementating them. These algorithms were run on a laptop and the following results were
obtained:

p = 1035418103, 30-bit prime
n = 1035437671 (prime)
E/Zp : Y 2 = X3 + 45181635X + 124806060
where a = 45181635, b = 124806060 are found such that 4a3+27b2 6= 0 and the generator of E(Zp),
P = (299835419, 368012477)

Table 1: Description of implementation results

Algorithm P Q k Time
elapsed

(ms)

Memory
used (bits)

shank’s (299835419,
368012477)

(830731058,
402455075)

884158742 13398 2409132

rho (299835419,
368012477)

(830731058,
402455075)

884158742 145706 negligible

lambda (299835419,
368012477)

(1029827107,
152393852)

108302623 9823 negligible

The memory used in Shank’s algorithm is calculated using the following formula, which can be
directly derived from the objects stored in the list in the Algorithm 1, which is :

32178× (log2 32178 + 2× log2 1035418103) = 2409132 bits

From the Table 1, it can be seen that the lambda method is the fastest. This is because the k value
is chosen from a restricted range of [0, 403813060], where b = 0.39p while using a negligible amount
of storage. If the k value is chosen without bounds then Shank’s algorithm is ≈ 10 times faster
than the rho-method but also uses 2409132 bits ≈ 301 kbytes of storage. This is not significant
compared to the memory available in modern computers. Shank’s algorithm requires storage, which
is a function of the number of bits of the prime. As the bit length of prime number increases,
the algorithm requires a significant amount of storage. Although rho-method was slowest, it is
still promising because it does not require significant storage and works for any k value without
restrictions.

13

7 Conclusion

The security of public key cryptosystems rely on the difficulty of the underlying mathematical
problem. In case of elliptic curves, it is the discrete logarithm problem. Since no known subexpo-
nential attack exists for ECDLP, the parallelized rho and the lambda methods introduced in the
paper are the most efficient known attacks for finding the discrete logarithms. Direct paralleliza-
tion only provides the

√
m speed up. However, the new methods use the processors efficiently,

giving a linear speed up. The new rho-method is a general method that greatly extends the reach
of practical attacks on not only solving discrete logarithm problem but also finding collisions in
hash functions as well as double and triple DES block ciphers.

14

A Appendix

A.1 Runtime for Brute force Algorithm

Let the point P be k-bits long and the brute force method is O(n).

k = log2 n

n = 2k

Therefore, in terms of the input size k, the runtime of the brute force method is O(2k), which is
exponential.

A.2 Probability of success for wild kangaroo

The probability at each that the wild kangaroo will land on one of the same spots as the tame
kangaroo once landed on is 1/α and wild kangaroo makes αβ jumps after reaching bP . We are
interested in the probability of success of collision which is the probability of the wild kangaroo
landing on one of the spots after αβ jumps. This is given by

P (success) = 1− P (failure)

P (failure) = (1− (
1

α
)αβ) ≈ 1− e−β

In this, failure is if the wild kangaroo fails to land on any of the spots as the tame kangaroo after
making αβ jumps.

A.3 Number of jumps to cover a distance

If the expected jump size from a set of jump values is α and the distance that needs to be covered
is b then, the number of jumps is given by the following equation:

mean jump size× number of jumps = distance covered

Hence, the number of jumps needed to cover distance b is b/α

A.4 Minimized parameters for Lambda method’s runtime

The runtime for lambda method is a function of α and β and can be written as

f(α) = αβ − b/(2α) + (b/α + αβ)/(1− e−β)

15

f ′(α) = β + b/(2α2) + (β − b/α2)/(1− e−β)

Runtime is minimized when f ′(α) = 0 and isolating for α gives

β + b/(2α2) + (β − b/α2)/(1− e−β) = 0

α =
√

(b(1− e−β)/(2β(2− e−β))

A.5 Minimize α for total number of jumps

The expected number of jumps by trailing kangaroo is a function of α and can be written as

f(α) =
b

4α
+

4α

m2

f ′(α) =
−4b

(4α)2
+

4

m2
=
−4bm2 + 64α2

(4αm)2

This is minimized when f ′(α) = 0 and isolating for α gives

−4bm2 + 64α2

(4αm)2
= 0

α =

√
4bm2

64
=
m
√
b

4

When α = (m/4)
√
b, the expected number of jumps is

f(
m
√
b

4
) =

b

4(m
√
b

4
)

+
4(m

√
b

4
)

m2
=

2
√
b

m

A.6 Comparision of parallelized rho-method and lambda method

When b ≈ n, the runtimes for the parallelized rho and lambda methods for collision detection are:

Tρ =

√
πn
2

m
+

1

θ

Tλ =
2
√
n

m
+

1

θ

Tλ
Tρ

=
2
√
n

m
+ 1

θ√
πn
2

m
+ 1

θ

≈
2
√
n

m√
πn
2

m

16

Tλ
Tρ

= 2

√
2

π
= 1.5958

Assuming the time taken after a collision occurs and a collision detected 1/θ is same for both
methods, thus can be removed from the comparison.

Finding b < n, such that lambda method is faster than the rho method is:

Tλ < Tρ

2
√
b

m
+

1

θ
<

√
πn
2

m
+

1

θ

2
√
b <

√
πn

2

b <
πn

8

b < 0.3927n

17

References

[1] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. 1996.

[2] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Application to
Hash Functions and Discrete Logarithms. pp. 6, 1994.

18

	Introduction
	Elliptic Curve Discrete Logarithm Problem (ECDLP)
	Algorithms for solving ECDLP
	Shank's Algorithm

	Pollard's rho-method
	Direct parallelization
	New parallelization method
	Analysis

	Pollard's Lamda Method (Catching Kangaroos)
	Parallelization
	Analysis

	Implementation of the algorithms
	Conclusion
	Appendix
	Runtime for Brute force Algorithm
	Probability of success for wild kangaroo
	Number of jumps to cover a distance
	Minimized parameters for Lambda method's runtime
	Minimize for total number of jumps
	Comparision of parallelized rho-method and lambda method

