The Asymptotic Uniformity of the Output of
Convolutional Codes Under Markov Inputs

Patrick Mitran,Member, |EEE

Abstract— In this letter, we prove a published conjecture on the asymptotic distribution ofM/ consecutive outputs may be a
asymptotic uniformity of the outputs of a convolutional encoder good indicator of channel input matching. In [9], given the
under biased inputs. These results are interesting in light of feedforward and feedback polynomial®(D) and F(D) in

recent research on joint source-channel coding as well as sowc minimal form (i thev do not share an mmon factors). it
coding using turbo codes in which the constituent encoders are al form (i.e., they do not share any co on factors),

convolutional codes. In particular, it is well-known that in many ~Was conjectured that asymptotically for any bias: P[U), =
situations a good code should result in a uniform distribution on 1] < 1 on a sequence of i.i.d. input bits, the distribution &ah

blocks of consecutive encoded symbols. The results presentegté  consecutive output bits is asymptotically uniform whéreis
provide insights into the choice of encoders in such scenarios. ha degree off'(D). This result was then verified based on
Index Terms— Convolutional codes, nonuniform sources, joint extensive simulations for degrees upi6 = 4.
source-channel coding. In this letter, we prove the stronger theorem below which
confirms the conjecture in [9] as a special case.
Theorem 1: Suppose a homogeneous Markov soutGe
with distribution 0 < Py, v, [ury1lux] < 1 is input into
Much recent research in coding theory has been in the aggaecursive convolutional encoder with feedback polyndmia
of joint source-channel coding as well as distributed seurg’(D) and feed-forward polynomialz(D). If G(D)/F(D)
coding and data compression using methods that are m@sein its minimal form whereM is the degree ofF(D),
traditionally associated with channel coding. For example then the M-order distribution of A/ consecutive outputs
[9], non-systematic turbo codes are studied in the contéxt @,,,..., X, /1) iS asymptotically uniform forall such
joint source-channel coding over additive white Gaussi@sen input processes as — oo while this is not the case for the
(AWGN) channels and Raleigh fading channels while in [8]A7+1)-order distribution. Specifically, iP" is the distribution
non-systematic LDPC codes are investigated in the conteft (X,,,..., X,,,a/_1) then P* converges to the uniform
of AWGN channels. More recently, in [1] error probabilitydistribution asn — co. O
bounds are derived for codes in the presence of biased inputth related work, Leeper [6] has shown that it is always
and it was found that a good code should map informatigibssible to whiten all the first and second order statistics o
sequences with high Hamming distances to codewords wih arbitrary binary source at the cost of an arbitrarily small
low Hamming distances. In [4] and [5], parallel concatedateerror ratee in the reconstruction of the source. In particular, a
turbo codes are employed to compress i.i.d. binary sourdssund on the order of the feedback polynomial was derived for
and are applied to the Slepian-Wolf distributed source @diwhich it could be guaranteed that an encoder exists for which
problem respectively. In [2], serial turbo codes were agapli all outputs are first and second order uniform within a given
to the Slepian-Wolf problem. density imbalance’. By contrast, here, we derive the exact
This work is motivated by an observation in [9]. In parorder of theasymptotic uniformity for consecutive outputs as
ticular, it was noted there that one of the limiting factora function of the feedback and feedforward polynomials for
in approaching the Shannon limit in joint source-channébth i.i.d. and Markov inputs.
coding (and likewise for data compression applicationg)iwi
concatenated convolutional codes is the mismatch between Il. DEFINITIONS AND PROOF
the empirical distribution at the input to the channel and
the capacity achieving input distribution. In particuldior
AWGN and Raleigh channels, the capacity achieving inp‘g
distribution is the uniform distribution and a good joinusoe-
channel coding scheme should result in a nearly unifor
output distribution (and hence the non-systematic nattif&]o

I. INTRODUCTION

We consider the traditional structure of a convolutional
pcoder overf = GF(2) as illustrated in Fig. 1. IfH(D)
enotes theD-transform of a one-sided binary sequenice-
ﬁ?,hl,hz, .., i.e, H(D) = hg+ hiD + hyD? +---, then it
Is well-known that the state sequencg k =0,1,2,..., and

[9]). Indeed, for traditional channel coding it has beenvamo output seql{enieg;lk 2: 0, 1{)27&% .,falrle r_elatedl t?_ the input
that for any fixed positive integér > 0, the k-order empirical sequences,,;n =1, 1, ..., by the Tollowing refations
distribution (see eq. (3) of [7]) of any sequence of good R(D)=U(D)/F(D) (1)
channel codes in the information theoretic sense convdiges X(D) = U(D)G(D)/F(D), @)

divergence) to the capacity achieving input distributi@h [

If the input sequence to a convolutional encoder is biasedhere F(D) and G(D) are the D-transforms of the
no finite length output has a uniform distribution. Howevefy, f1,...,f; and go,91,...,9m Sequences respectively
if the encoding block lengths are moderately large, then tiith the convention thaf, = 1).



T
W(m)’T = [ W(Lm)’T Wém)’T ng),T . (7)

In the above,V; is the effect of the transient behavior of
the impulse respons@d/s is the effect due to full repetitions of
the fundamental sequenceand V3 is the effect of a partially
complete sequence
~ In the limit thatk — oo, each entry inU := Y°'~ U |
is the modulo sum of infinitely many i.i.d. biased binary
random variables. This latter is known to converge to a
uniform binary random variable [3]. Furthermore, sinceteac

(L) e L)
If F(D) =1 then clearly not even the 1st order distributionentw ofU,.;,,, is independent of every other entrytﬂfurﬂ,

is in general asymptotically uniform since then by (2), then theNe.ntr.igs in the vectciU_ are ino!ependent, i.e., as
is only a finite sum of biased inputs,. Therefore we only k— o0, U '(Sm')"'d' a_nd_ asymptotically uniform. .
consider feedback polynomial&(D) # 1. As the W™ matrix is assumed to have ramk, it follows

In this case, the impulse respon&&D) := G(D)/F (D) tEat the right s_ide of (E;}) r?sEltsminbfa uniform distributiYo[n o]
is infinite and except for an initial transient of lengih < the vectorVs, l.e., each of the inary Sequences ov,

2M is periodic with repetitions of the fundamental sequend® asymptotically equally likely. .

2. (COIDC1 o f hp oo hrer 1) whergL As the vectorsV,, V, and V5 are independent, then the
- ) PR - - ) Yty — (’m) . . . . . .

is the period of the tail. Since multiple concatenationshef t SUM X~ also has a uniform distribution in the limit ds—

sequence: is also a periodic sequence Hi(D), without loss °© or equivalently, as: — oo. .

of generality we assumé > M + 1. To prove the converse, suppose tfﬁ( t) # 0 is in the

- C e . . i m m) T __ T

Also, we denote byw the infinite vector obtained by Null space of the matri® ). Then X,"'z" = V12" +

repeatedly concatenating and we denote byS the op- Voz! + Viz! = VlZT- SinceVlzT_ is the modulo sum of
eration of cyclically left shifing a sequence, i.eSc at most2™ + m binary random variables, the distribution is

not asymptotically uniform as — oo for any i.i.d. biased

Fig. 1. The structure of a convolutional encoder.

(m)

= (c1,¢9,...,c0-1,¢0). Given a vectorx, x, ' denotes | R )
the first m entries starting at indexn, i.e «m . input process and hence the distribution X" cannot be
(s Tnin Tnrmt) Lo T asymptotically uniform as — oc. [
ny+n sty nTrm— . . . . .
. m , The following is a generalization of Lemma 2 to the Markov
In particular, we have thax/(()m) =(Coy-vsCm_1) = w(L’”), 9 g

(m) (m) case where for clarity, we focus on the key differences.

Wi = (e, sCm), s Wi = (cL—1,€05- .., Cm—2). In Lemma 3: The output of a convolutional encoder is asymp-
this paper, all vector additions are understood to be m°ﬁ“|°totically uniform with orderm for all binary homogeneous

For simplicity of exposition, we first prove the following p;4rkov input process with < Py, 1, [u+1|ux] < 1 if and

lemma about the dimension of the space spanned by thes? . (m) (m) . .
L m-windowed sequences in the i.i.d. case which illustratSS™Y If the vectorsw; WLl have d'mer.‘s'o"‘”- -
Proof: All the steps in the proof for the i.i.d. case hold

the key ideas. This is then generalized to the Markov case gXpect that we must show thal is asymptotically uniform

highlighting .the key differences. . . under the Markov assumption and whW¥g is not independent
Lemma 2: The output of a convolutional encoder is asympz V,, and V5 for any fixedn, we will show that in the limit

totically uniform with orderm for all i.i.d. input processes S
asn — oo It Is.

_ ; ; (m) _
0 < Py, [ux = 1] <1 if and only if the vectorsw ™ = First, observe thaiV, is correlated toVs; and V; only

wim ,w(L"j_)l have dimensionn. O throughU, and U, , 47
Proof: Givenn =T + kL +r with 0 < r < L then Let S; = Upye for ¢ = 0,..,k. Then clearly
as shown in the Appendix, the outpkt of the convolutional g g, g, is an aperiodic irreducible Markov chain. Let
encoder satisfies Ps denote its unique invariant distribution.
_ Similarly, let U, = Zﬁ;ﬁ) Uﬁ)pL with the convention that
X(m) =V, 4+ Vy + Vi, (3) Uo =0. Then we also have the Markov relation
where, V3 — (S0, Up) — (S1,U1) — -+ — (Sk, Ui) — V1. (8)
T Now, the time homogeneous Markov cha(rSe,le) —
Vi= > U, ,h{™ (4) (Se41,Ugyq) is aperiodic and irreducible. Thus, the joint
p=—m-+1 distribution at timek, p’;‘ o converges to the unique invariant
el distribution P ¢; of the Markov chain. We claim that this is
V, = lz Uipr] wm (5) in fact the productPs g = Ps x Pg where Py is uniform
p=0 over the set oR” binary vectors of lengtiL.

r—1 (m) If this is the case, sinctl;, = Vo, then(Sy, V2) is asymp-
V3 = ZUperpv (6) totically uniform and independent dfS, = U,, U, = 0)
p=0 and by the Markov property, independent$. Furthermore,



U, = V, is asymptotically uniform and independent ofw{" w'™ . w{™) have dimensiom/ while w{™ ™) =
Sk = U'r+'kL and .thus, independent &f;. . _ ' wéMH),ngH),...,w(L]‘ffl) also have dimensiod/. m
“Thus, it remains to show thaks x Pg is an invariant  The theorem then follows by applying Lemmas 2 and 4 in
distribution of the Markov chain. First, note that the i.i.d. case and Lemmas 3 and 4 in the more general Markov
case.
Psuhﬁuﬂsbﬁz = PS[+1|SZPGZ+1|SZ+17SZ7GZ ©)
Therefore, I11. CONCLUSION
~ ~ ~ We have derived the exact order of asymptotic uniformity
P 3 T 1Se+1, 0 sp, 0y|Pg|se| P[0 . .
;; Se1OenalSe 0[S, eralse, QelPslse Py ] on the outputs of a convolutional code under both i.i.d. and
L Markov binary input processes. The methods employed here
= Z [PSMISZ [sev1]se]Ps(se]x also generalize to shift register structures over arhjtfarite
se fields. These results are of significance to the choice of
D Py, Sesr.50.0, [Ber|ser, se, 0] Pgli] | (10)  constituent convolutional encoders when employed in joint
g source-channel coding as well as source coding application
= %: Ps, 118 [se+1]5e]Ps[se]Pg[t41] (11) APPENDIX
= Pg[s0+1|Pg[0et1], (12) Extended justifications for (3)-(7):

. . . n+m—1
where (11) follows because given a uniform random binal m) _ (m)
X = 3" unl,
0

vector Y independent of a (not necessarily uniform) binary™ "
=

random vectotZ, Y + Z is uniform. | o kL1 b1
Hence, we have derived a equivalent condition for asymp- (m) (m) (m)
: ) L m " = Uyh,” Upyh, ) + Uph, "
totic uniformity in terms of thew'!”™. We now relate this pz:(:) Py ¥ pz:; prmep p:;“ prnep
condition to the feedforward and feedback polynomials. 1 ko1 L1 :
Lemma 4: Given a recursive convolutional encoder (m) (m)
. ; = Uyw,_ + Uy w;
with  feedback polynomial F(D) and feedforward o prrep pz:% ; el L q]
polynomial G(D), if G(D)/F(D) is in its minimal T
form where M is the degree of F(D) then the (m)
vectors wiM) = w(M) w(M)g wiM) (s) l t2 Ul
T = wy ,W; ,...,w; 7 sSpan a linear Y
space of dimension M. Furthermore, the vectors 1 Bl
M+1 M+1 M+1 M+1
wMTD = M) QM) G MED G ot span =S uw™ 3 [Uii)pL} Wwm)
a space of dimensio + 1. O =0 =0
Proof: Consider the matrixd, formed by the firstk T
cyclic shifts of the fundamental sequence + Z Un—ph,(gm)
AT =[cT seT ... sk1cT " (13) P
We first claim thatA,, and A,;,; both have rankM. To
see this, note that given any row vectorc {0,1}* with REFERENCES
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