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The Asymptotic Uniformity of the Output of
Convolutional Codes Under Markov Inputs
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Abstract— In this letter, we prove a published conjecture on the
asymptotic uniformity of the outputs of a convolutional encoder
under biased inputs. These results are interesting in light of
recent research on joint source-channel coding as well as source
coding using turbo codes in which the constituent encoders are
convolutional codes. In particular, it is well-known that in many
situations a good code should result in a uniform distribution on
blocks of consecutive encoded symbols. The results presented here
provide insights into the choice of encoders in such scenarios.

Index Terms— Convolutional codes, nonuniform sources, joint
source-channel coding.

I. I NTRODUCTION

Much recent research in coding theory has been in the area
of joint source-channel coding as well as distributed source
coding and data compression using methods that are more
traditionally associated with channel coding. For example, in
[9], non-systematic turbo codes are studied in the context of
joint source-channel coding over additive white Gaussian noise
(AWGN) channels and Raleigh fading channels while in [8]
non-systematic LDPC codes are investigated in the context
of AWGN channels. More recently, in [1] error probability
bounds are derived for codes in the presence of biased inputs
and it was found that a good code should map information
sequences with high Hamming distances to codewords with
low Hamming distances. In [4] and [5], parallel concatenated
turbo codes are employed to compress i.i.d. binary sources
and are applied to the Slepian-Wolf distributed source coding
problem respectively. In [2], serial turbo codes were applied
to the Slepian-Wolf problem.

This work is motivated by an observation in [9]. In par-
ticular, it was noted there that one of the limiting factors
in approaching the Shannon limit in joint source-channel
coding (and likewise for data compression applications) with
concatenated convolutional codes is the mismatch between
the empirical distribution at the input to the channel and
the capacity achieving input distribution. In particular,for
AWGN and Raleigh channels, the capacity achieving input
distribution is the uniform distribution and a good joint source-
channel coding scheme should result in a nearly uniform
output distribution (and hence the non-systematic nature of [8],
[9]). Indeed, for traditional channel coding it has been shown
that for any fixed positive integerk > 0, thek-order empirical
distribution (see eq. (3) of [7]) of any sequence of good
channel codes in the information theoretic sense converges(in
divergence) to the capacity achieving input distribution [7].

If the input sequence to a convolutional encoder is biased,
no finite length output has a uniform distribution. However
if the encoding block lengths are moderately large, then the

asymptotic distribution ofM consecutive outputs may be a
good indicator of channel input matching. In [9], given the
feedforward and feedback polynomialsG(D) and F (D) in
minimal form (i.e., they do not share any common factors), it
was conjectured that asymptotically for any bias0 < P[Uk =
1] < 1 on a sequence of i.i.d. input bits, the distribution onM
consecutive output bits is asymptotically uniform whereM is
the degree ofF (D). This result was then verified based on
extensive simulations for degrees up toM = 4.

In this letter, we prove the stronger theorem below which
confirms the conjecture in [9] as a special case.

Theorem 1: Suppose a homogeneous Markov sourceUk

with distribution 0 < PUk+1|Uk
[uk+1|uk] < 1 is input into

a recursive convolutional encoder with feedback polynomial
F (D) and feed-forward polynomialG(D). If G(D)/F (D)
is in its minimal form whereM is the degree ofF (D),
then the M -order distribution of M consecutive outputs
(Xn, . . . ,Xn+M−1) is asymptotically uniform forall such
input processes asn → ∞ while this is not the case for the
(M+1)-order distribution. Specifically, ifPn is the distribution
of (Xn, . . . ,Xn+M−1) then P

n converges to the uniform
distribution asn → ∞.

In related work, Leeper [6] has shown that it is always
possible to whiten all the first and second order statistics of
an arbitrary binary source at the cost of an arbitrarily small
error rateǫ in the reconstruction of the source. In particular, a
bound on the order of the feedback polynomial was derived for
which it could be guaranteed that an encoder exists for which
all outputs are first and second order uniform within a given
density imbalanceδ. By contrast, here, we derive the exact
order of theasymptotic uniformity for consecutive outputs as
a function of the feedback and feedforward polynomials for
both i.i.d. and Markov inputs.

II. DEFINITIONS AND PROOF

We consider the traditional structure of a convolutional
encoder overF = GF (2) as illustrated in Fig. 1. IfH(D)
denotes theD-transform of a one-sided binary sequenceh =
h0, h1, h2, . . ., i.e., H(D) = h0 + h1D + h2D

2 + · · · , then it
is well-known that the state sequencern; k = 0, 1, 2, . . ., and
output sequencexn; k = 0, 1, 2, . . ., are related to the input
sequenceun;n = 0, 1, 2, . . ., by the following relations

R(D) = U(D)/F (D) (1)

X(D) = U(D)G(D)/F (D), (2)

where F (D) and G(D) are the D-transforms of the
f0, f1, . . . , fM and g0, g1, . . . , gM sequences respectively
(with the convention thatf0 = 1).
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Fig. 1. The structure of a convolutional encoder.

If F (D) = 1 then clearly not even the 1st order distribution
is in general asymptotically uniform since then by (2),xn

is only a finite sum of biased inputsuk. Therefore we only
consider feedback polynomialsF (D) 6= 1.

In this case, the impulse responseH(D) := G(D)/F (D)
is infinite and except for an initial transient of lengthT <
2M , is periodic with repetitions of the fundamental sequence
c = (c0, c1, . . . , cL−1) = (hT , hT+1, . . . , hT+L−1) where L
is the period of the tail. Since multiple concatenations of the
sequencec is also a periodic sequence inH(D), without loss
of generality we assumeL ≥ M + 1.

Also, we denote byw the infinite vector obtained by
repeatedly concatenatingc and we denote byS the op-
eration of cyclically left shifting a sequence, i.e.,Sc
= (c1, c2, . . . , cL−1, c0). Given a vectorx, x

(m)
n denotes

the first m entries starting at indexn, i.e, x
(m)
n :=

(xn, xn+1, . . . , xn+m−1).
In particular, we have thatw(m)

0 = (c0, . . . , cm−1) = w
(m)
L ,

w
(m)
1 = (c1, . . . , cm), . . ., w

(m)
L−1 = (cL−1, c0, . . . , cm−2). In

this paper, all vector additions are understood to be modulo2.
For simplicity of exposition, we first prove the following

lemma about the dimension of the space spanned by these
L m-windowed sequences in the i.i.d. case which illustrates
the key ideas. This is then generalized to the Markov case by
highlighting the key differences.

Lemma 2: The output of a convolutional encoder is asymp-
totically uniform with orderm for all i.i.d. input processes
0 < PUk

[uk = 1] < 1 if and only if the vectorsw(m)
L =

w
(m)
0 , . . . ,w

(m)
L−1 have dimensionm.

Proof: Given n = T + kL + r with 0 ≤ r < L then
as shown in the Appendix, the outputX of the convolutional
encoder satisfies

X
(m)
n = V1 + V2 + V3, (3)

where,

V1 =

T
∑

p=−m+1

Un−ph
(m)
p (4)

V2 =

[

k−1
∑

p=0

U
(L)
r+pL

]

W (m) (5)

V3 =

r−1
∑

p=0

Upw
(m)
r−p, (6)

and

W (m),T =
[

w
(m),T
L · · · w

(m),T
2 w

(m),T
1

]T

. (7)

In the above,V1 is the effect of the transient behavior of
the impulse response,V2 is the effect due to full repetitions of
the fundamental sequencec andV3 is the effect of a partially
complete sequencec.

In the limit thatk → ∞, each entry inŨ :=
∑k−1

p=0 U
(L)
r+pL

is the modulo sum of infinitely many i.i.d. biased binary
random variables. This latter is known to converge to a
uniform binary random variable [3]. Furthermore, since each
entry ofU(L)

r+pL is independent of every other entry ofU
(L)
r+p̃L,

then the entries in the vector̃U are independent, i.e., as
k → ∞, Ũ is i.i.d. and asymptotically uniform.

As theW (m) matrix is assumed to have rankm, it follows
that the right side of (5) results in a uniform distribution on
the vectorV2, i.e., each of the2m binary sequences ofV2

are asymptotically equally likely.
As the vectorsV1, V2 and V3 are independent, then the

sumX
(m)
n also has a uniform distribution in the limit ask →

∞ or equivalently, asn → ∞.
To prove the converse, suppose thatz

T 6= 0 is in the
null space of the matrixW (m). Then X

(m)
n z

T = V1z
T +

V2z
T + V3z

T = V1z
T . SinceV1z

T is the modulo sum of
at most2M + m binary random variables, the distribution is
not asymptotically uniform asn → ∞ for any i.i.d. biased
input process and hence the distribution onX

(m)
n cannot be

asymptotically uniform asn → ∞.
The following is a generalization of Lemma 2 to the Markov

case where for clarity, we focus on the key differences.
Lemma 3: The output of a convolutional encoder is asymp-

totically uniform with orderm for all binary homogeneous
Markov input process with0 < PUk+1|Uk

[uk+1|uk] < 1 if and

only if the vectorsw(m)
0 , . . . ,w

(m)
L−1 have dimensionm.

Proof: All the steps in the proof for the i.i.d. case hold
expect that we must show that̃U is asymptotically uniform
under the Markov assumption and whileV2 is not independent
of V1 andV3 for any fixedn, we will show that in the limit
asn → ∞ it is.

First, observe thatV2 is correlated toV3 and V1 only
throughUr andUr+kL.

Let Sℓ = Ur+ℓL for ℓ = 0, ..., k. Then clearly
S0, S1, . . . , Sk is an aperiodic irreducible Markov chain. Let
PS denote its unique invariant distribution.

Similarly, let Ũℓ =
∑ℓ−1

p=0 U
(L)
r+pL with the convention that

Ũ0 = 0. Then we also have the Markov relation

V3 → (S0, Ũ0) → (S1, Ũ1) → · · · → (Sk, Ũk) → V1. (8)

Now, the time homogeneous Markov chain(Sℓ, Ũℓ) →
(Sℓ+1, Ũℓ+1) is aperiodic and irreducible. Thus, the joint
distribution at timek, pk

S,Ũ
, converges to the unique invariant

distribution PS,Ũ of the Markov chain. We claim that this is
in fact the productPS,Ũ = PS × P

Ũ
where P

Ũ
is uniform

over the set of2L binary vectors of lengthL.
If this is the case, sincẽUk = V2, then(Sk,V2) is asymp-

totically uniform and independent of(S0 = Ur, Ũ0 = 0)
and by the Markov property, independent ofV3. Furthermore,
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Ũk = V2 is asymptotically uniform and independent of
Sk = Ur+kL and thus, independent ofV1.

Thus, it remains to show thatPS × P
Ũ

is an invariant
distribution of the Markov chain. First, note that

PSℓ+1,Ũℓ+1|Sℓ,Ũℓ
= PSℓ+1|Sℓ

P
Ũℓ+1|Sℓ+1,Sℓ,Ũℓ

(9)

Therefore,
∑

sℓ

∑

uℓ

PSℓ+1,Ũℓ+1|Sℓ,Ũℓ
[sℓ+1, ũℓ+1|sℓ, ũℓ]PS [sℓ]PŨ

[ũℓ]

=
∑

sℓ

[

PSℓ+1|Sℓ
[sℓ+1|sℓ]PS [sℓ]×

∑

uℓ

P
Ũℓ+1|Sℓ+1,Sℓ,Ũℓ

[ũℓ+1|sℓ+1, sℓ, ũℓ]PŨ
[ũℓ]

]

(10)

=
∑

sℓ

PSℓ+1|Sℓ
[sℓ+1|sℓ]PS [sℓ]PŨ

[ũℓ+1] (11)

= PS [sℓ+1]PŨ
[ũℓ+1], (12)

where (11) follows because given a uniform random binary
vector Y independent of a (not necessarily uniform) binary
random vectorZ, Y + Z is uniform.

Hence, we have derived a equivalent condition for asymp-
totic uniformity in terms of thew(m)

i . We now relate this
condition to the feedforward and feedback polynomials.

Lemma 4: Given a recursive convolutional encoder
with feedback polynomial F (D) and feedforward
polynomial G(D), if G(D)/F (D) is in its minimal
form where M is the degree of F (D) then the
vectors w

(M)
L = w

(M)
0 ,w

(M)
1 , . . . ,w

(M)
L−1 span a linear

space of dimension M . Furthermore, the vectors
w

(M+1)
L = w

(M+1)
0 ,w

(M+1)
1 , . . . ,w

(M+1)
L−1 do not span

a space of dimensionM + 1.
Proof: Consider the matrixAk formed by the firstk

cyclic shifts of the fundamental sequencec,

AT
k =

[

c
T ScT . . . Sk−1

c
T

]T
(13)

We first claim thatAM andAM+1 both have rankM . To
see this, note that given any row vectorz ∈ {0, 1}M with
correspondingZ(D) such thatzAM = 0, we must have that
G(D)/F (D)×Z(D) has an expansion as a finite polynomial
since the former implies that an appropriate linear combination
of at mostM shifts of the infinite sequenceG(D)/F (D) zeros
out all but a finite number of terms. However, sinceG(D) and
F (D) are relatively prime, we must therefore have thatF (D)
dividesZ(D). SinceM − 1 = deg Z(D) < deg F (D) = M ,
this implies thatZ(D) = 0. Hence,z = 0 which implies that
AM has rankM .

Now, consider the matrixAM+1. The firstM rows taken as
a submatrix isAM which has rankM . To show thatAM+1

does not have rankM + 1, consider the non-zero row vector
z ∈ {0, 1}M+1 corresponding toZ(D) = F (D). Then clearly
zAM+1 = 0 sinceG(D)/F (D)×Z(D) has a finite expansion.

Finally, observe that we also have that

AT
k =

[

w
(k),T
0 w

(k),T
1 . . . w

(k),T
L−1

]

(14)

Since the rank of a matrix is also the dimension of
its column space, it follows that the vectorsw(M)

L =

w
(M)
0 ,w

(M)
1 , . . . ,w

(M)
L−1 have dimensionM while w

(M+1)
L =

w
(M+1)
0 ,w

(M+1)
1 , . . . ,w

(M+1)
L−1 also have dimensionM .

The theorem then follows by applying Lemmas 2 and 4 in
the i.i.d. case and Lemmas 3 and 4 in the more general Markov
case.

III. CONCLUSION

We have derived the exact order of asymptotic uniformity
on the outputs of a convolutional code under both i.i.d. and
Markov binary input processes. The methods employed here
also generalize to shift register structures over arbitrary finite
fields. These results are of significance to the choice of
constituent convolutional encoders when employed in joint
source-channel coding as well as source coding applications.

APPENDIX

Extended justifications for (3)-(7):

X
(m)
n =

n+m−1
∑

p=0

Uph
(m)
n−p

=

r−1
∑

p=0

Uph
(m)
n−p +

r+kL−1
∑

p=r

Uph
(m)
n−p +

n+m−1
∑

p=r+kL

Uph
(m)
n−p

=
r−1
∑

p=0

Upw
(m)
r−p +

k−1
∑

p=0

[

L−1
∑

q=0

ur+pL+qw
(m)
L−q

]

+
T

∑

p=−m+1

Un−ph
(m)
p

=

r−1
∑

p=0

Upw
(m)
r−p +

k−1
∑

p=0

[

U
(L)
r+pL

]

W (m)

+

T
∑

p=−m+1

Un−ph
(m)
p
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