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Abstract

The performance of collaborative beamforming is analyzed using the theory of random arrays. The

statistical average and distribution of the beampattern of randomly generated phased arrays is derived

in the framework of wireless ad hoc sensor networks. Each sensor node is assumed to have a single

isotropic antenna and nodes in the cluster collaboratively transmit the signal such that the signal in

the target direction is coherently added in the far-field region. It is shown that with N sensor nodes

uniformly distributed over a disk, the directivity can approach N , provided that the nodes are located

sparsely enough. The distribution of the maximum sidelobe peak is also studied. With the application

to ad hoc networks in mind, two scenarios, closed-loop and open-loop, are considered. Associated with

these scenarios, the effects of phase jitter and location estimation errors on the average beampattern are

also analyzed.
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I. INTRODUCTION

Recent advances in the construction of low cost, low power, and mass produced micro sensors and

micro-electro-mechanical (MEM) systems have ushered in a new era in system design using distributed

sensor networks [1, 2]. The advent of sensor network technology provides a variety of applications that

have been considered unrealistic in the past. One such application is in the area of space communications:

with ad hoc sensor networks, a number of sensor nodes randomly placed on a planet can collaboratively

collect information and then, also collaboratively, send the information back to Earth. In this scenario,

the sensors must have an ability to transmit information over very long distances with high energy

efficiency. In this kind of point-to-point communication, directional antennas are a preferred means to

avoid interference.

In general, this can be achieved by adaptive beamforming. Given a number of well-designed an-

tenna elements at the transmitting/receiving sensor nodes, each node could in principle autonomously

transmit/receive the information to/from any desired direction. The advantages and applications of beam-

forming with antenna arrays are well known; in wireless communications, this enables Space-Division

Multiplex Access (SDMA), a technology which has the potential to significantly increase the capacity of

the multiple access channel.

One of the most important constraints on wireless sensors is energy efficiency. Since the sensor nodes

are often distributed in places where manual maintenance is costly, such as remote locations, on top of

buildings and so on, it should be possible to operate these for several months without battery replacement.

Considering the fact that each antenna element requires analog circuitry (and thus leads to costly hard-

ware), in practice each distributed sensor is likely equipped with only a single antenna and this precludes

the use of autonomous beamforming in scenarios of very energy efficient communication. Nevertheless, if

the sensors in the cluster share the information a priori and synchronously transmit the data collaboratively

as sketched in Fig. 1, it may be possible to beamform when transmitting (and also receiving) the data in

a distributed manner. The resultant overhead due to intra-cluster information sharing may be relatively

small as this can be done by low-cost short distance broadcasting-type communication among nodes.

Thus, with distributed collaborative beamforming, the nodes can send the collected information to the

far-end receiver over long distances with high efficiency. Also, only the sensor cluster in the specified

target direction receives the data with high signal power and no significant interference occurs for clusters

in other directions. Overall there is thus a potential to increase the capacity of the multiple access channel

significantly despite the additional overhead for information sharing.

The obvious question is whether one can form a nice beampattern with a narrow mainbeam, or

achieve a reasonable directional gain (directivity). The sensor nodes in ad hoc networks are located

randomly by nature, and the resultant beampattern depends on the particular realization of the sensor node

DRAFT



3

cluster head

Cluster A

Cluster B

Cluster C

Fig. 1. Collaborative beamforming concept in ad hoc sensor networks.

locations. Therefore, it may be quite natural to treat the beampattern with probabilistic arguments. In this

paper, assuming idealized channel model conditions and antenna properties, we analyze the achievable

performance of collaborative beamforming based on distributed sensor nodes in a probabilistic sense.

Specifically, the statistical properties of the achievable beampattern of the random sensor arrays are

studied based on the following assumptions. The sensors form an ad hoc network and the geometry

of the cluster is given by a two-dimensional circle of a given radius over which all sensor nodes are

distributed uniformly as illustrated in Fig. 1. Since the corresponding far-field beampattern depends on the

particular realization of the random array of nodes, the probability distribution of the far-field beampattern

is of particular interest.

In the antenna design literature, probabilistic analysis of random arrays is not new. In the framework

of linear array design with a large number of sensors, Lo [3] has developed a comprehensive theory

of random arrays in the late 1960’s, and it has been shown that randomly generated arrays with large

numbers of nodes can in fact form a good beampattern with high probability1. It has been shown that

with N collaborative nodes, the directivity approaches N asymptotically. Although our scenario is quite

1The theory of random arrays has been discussed and developed almost exclusively in the antenna design community, e.g., in

[3–6]. However, considering that the underlying theory is based on probabilistic approaches, we believe that the ideas behind

this work also fall upon the wide interest of the signal processing community.
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different in that our main goal is not to design array geometry but to exploit the randomness of the

distributed sensor network, it turns out that the results we shall develop in this paper can be seen as an

extension of the theory of linear random arrays by Lo [3]. Thus, the same conclusion will be reached;

with N sensor nodes, one can achieve a directivity of order N asymptotically.

The major difference between classical beamforming by antenna arrays and distributed beamforming is

that whereas the geometry of the former is usually known a priori, the exact location of the sensor nodes

in ad hoc network is not, and it should be acquired dynamically. Even if their relative location is estimated

by some adaptive algorithm (e.g., [1] for receiver beamforming), considering the low SNR operation of the

sensor nodes, it is highly likely that the acquired geometric information has some inaccuracy. Also, since

all nodes are operated with physically different local oscillators, each node may suffer from statistically

independent phase offsets. In order to model and investigate the effect of these impairments, we consider

the following two scenarios: closed-loop and open-loop. The closed-loop scenario may be described as

follows. Each node independently synchronizes itself to the beacon sent from the destination node (such

as a base station) and adjusts its initial phase to it. Thus, the beam will be formed in the direction of

arrival of the beacon. This kind of system is often referred to as a self-phasing array in the literature,

and may be effective for systems operating in time-division duplex (TDD) mode. The residual phase

jitter due to synchronization and phase offset estimation among sensor nodes is then often the dominant

impairment. On the other hand, in the open-loop scenario we assume that all nodes within the cluster

acquire their relative locations from the beacon of a nearby reference point or cluster head. The beam

will then be steered toward an arbitrary direction. Thus, the destination need not transmit a beacon, but

each node requires precise knowledge of its relative position from a predetermined reference point within

the cluster. This case may occur in ad hoc sensor networks where sensor nodes do not have sufficient

knowledge of the destination direction a priori. In this scenario, the location estimation ambiguity among

sensors may also affect the beampattern.

Throughout the paper, the nodes and channel are assumed to be static over the communication period,

and for simplicity the information rate is sufficiently low that inter-symbol interference (ISI), due to

residual timing offset, is negligible.

It will be also assumed that all nodes share the same transmitting information a priori, as the main

focus of the paper is on the beampattern, rather than the front-end communication performance.

The paper is organized as follows. Section II describes the assumptions, model, and main parameters

that describe beam characteristics. In Section III, the average properties of the beampattern are derived. In

Section IV, the statistical distribution of the beampattern in a specific direction is derived. The accuracy

of the Gaussian approximation of the array factor, which is a common assumption in the random array

literature, is also examined in detail. The distribution of the maximum of the sidelobe region is discussed
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Fig. 2. Definitions of notation.

in Section V, and the effect of phase jitter or location estimation errors on the resultant beampattern is

analyzed in Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND BEAMPATTERN

The geometrical configuration of the distributed nodes and destination (or target) is illustrated in Fig. 2

where, without loss of generality, all the collaborative sensor nodes are assumed to be located on the

x-y plane. The kth node location is thus denoted in polar coordinates by (rk, ψk). The location of the

destination is given in spherical coordinates by (A,φ0, θ0). Following the standard notation in antenna

theory [7], the angle θ ∈ [0, π] denotes the elevation direction, whereas the angle φ ∈ [−π, π] represents

the azimuth direction. In order to simplify the analysis, the following assumptions are made:

1) The location of each node is chosen randomly, following a uniform distribution within a disk of

radius R.

2) Each node is equipped with a single ideal isotropic antenna.

3) All sensor nodes transmit identical energy, and the path losses of all nodes are also identical. Thus

the underlying model falls within the framework of phased arrays.

4) There is no reflection or scattering of the signal. Thus, there is no multipath fading or shadowing.

5) The nodes are sufficiently separated that any mutual coupling effects [7] among the antennas of

sensor nodes are negligible.

Furthermore, we also assume that all the nodes are perfectly synchronized so that no frequency offset

or phase jitter occurs. The effects of phase ambiguities on the beampattern will be discussed in Section VI.

Let dk(φ, θ) denote the Euclidean distance between the kth node and the reference location (A,φ, θ),

which is given by

dk(φ, θ) =
√

A2 + r2k − 2rkA sin θ cos(φ− ψk) . (1)
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If the initial phase of the node k ∈ {1, 2, . . . , N} is set to

Ψk = −2π

λ
dk(φ0, θ0), (2)

the corresponding array factor, given the realization of node locations r = [r1, r2, . . . , rN ] ∈ [0, R]N and

ψ = [ψ1, ψ2, . . . , ψN ] ∈ [−π, π]N , is given by

F (φ, θ|r,ψ) =
1

N

N
∑

k=1

ejΨkej
2π

λ
dk(φ,θ) =

1

N

N
∑

k=1

ej
2π

λ
[dk(φ,θ)−dk(φ0,θ0)] (3)

where N is the number of sensor nodes and λ is the wavelength of the radio frequency (RF) carrier.

In this paper, we are interested in the radiation pattern in the far-field region, and we assume that the

far-field condition A� rk holds. The far-field distance dk(φ, θ) in (1) can then be approximated as

dk(φ, θ) ≈ A− rk sin θ cos(φ− ψk). (4)

The far-field beam pattern is thus approximated by

F (φ, θ|r,ψ) ≈ 1

N

N
∑

k=1

ej
2π

λ
rk[sin θ0 cos(φ0−ψk)−sin θ cos(φ−ψk)] , F̃ (φ, θ|r,ψ). (5)

Alternatively, if, instead of applying Ψk as in (2), we choose

Ψ†
k =

2π

λ
rk sin θ0 cos(φ0 − ψk), (6)

then we obtain the array factor as

F †(φ, θ|r,ψ) =
1

N

N
∑

k=1

ejΨ
†

kej
2π

λ
dk(φ,θ)

≈ 1

N

N
∑

k=1

ej
2π

λ
[A−rk sin θ cos(φ−ψk)+rk sin θ0 cos(φ0−ψk)]

= ej
2π

λ
A 1

N

N
∑

k=1

ej
2π

λ
rk[sin θ0 cos(φ0−ψk)−sin θ cos(φ−ψk)] , F̃ †(φ, θ|r,ψ). (7)

The only difference between F̃ (φ, θ|r,ψ) in (5) and F̃ †(φ, θ|r,ψ) in (7) is the existence of the initial

phase offset by 2π
λ
A. The far-field beampattern is thus identical for both systems, and the received signal

exhibits no difference as long as the base station compensates for this phase rotation.

Therefore, there are two ways of forming a beam. One way is to use (2), but this approach requires

accurate knowledge of the distance, relative to the wavelength λ, between each node and destination.

Thus, this applies to the closed-loop case such as self-phasing arrays. Alternatively, the use of (6) requires

knowledge of the node positions relative to some common reference (such as the origin in this example),

and thus corresponds to the open-loop case. Knowledge of the elevation direction θ0 is also required,

but this may be assumed to be known a priori in many applications. In both cases, the synchronization
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among sensors is critical, which may be achieved by the use of reference signals such as those of the

Global Positioning System (GPS).

Of particular interest in practice is the case where θ = π
2 , i.e., the azimuth directivity of the beam, and

thus for simplicity we will assume that θ = θ0 = π
2 for the rest of the paper. Therefore, for simplicity

we denote F̃ (φ, θ = π/2|r,ψ) in (5) by F̃ (φ|r,ψ) , and F̃ †(φ, θ = π/2|r,ψ) in (7) by F̃ †(φ|r,ψ) .

By assumption, the node locations (rk, ψk) follow the uniform distribution over the disk of radius R.

Thus, the probability density functions (pdfs) of rk and ψk are given by

frk(r) =
2r

R2
, 0 < r < R, and fψk(ψ) =

1

2π
, −π ≤ ψ < π.

From (5), we have (with θ = θ0 = π/2)

F̃ (φ|r,ψ) =
1

N

N
∑

k=1

ej
4π

λ
rk sin(φ0−φ

2
) sin(ψk−φ0+φ

2
) =

1

N

N
∑

k=1

ej4π
R

λ
sin(φ0−φ

2
)r̃k sin ψ̃k , (8)

where r̃k , rk/R and ψ̃k , ψk − φ0+φ
2 . The compound random variable

zk , r̃k sin ψ̃k, (9)

has the following pdf:

fzk(z) =
2

π

√

1 − z2, −1 ≤ z ≤ 1. (10)

Note that since the above model is symmetric with respect to the azimuth direction φ, the particular

choice of φ0 does not change the results in the following. Therefore, without loss of generality, we

assume that φ0 = 0, and the parameter φ simply corresponds to the difference angle between the target

direction and the reference. Also, note that |φ| ≤ π.

The array factor of (8) can then be rewritten as

F̃ (φ|z) =
1

N

N
∑

k=1

e−j4πR̃ sin(φ
2
)zk , (11)

where R̃ , R
λ

is the radius of the disk normalized by the wavelength.

Finally, the far-field beampattern can be defined as

P (φ|z) ,

∣

∣

∣F̃ (φ|z)
∣

∣

∣

2
= F̃ (φ|z)F̃ ∗(φ|z)

=
1

N2

N
∑

k=1

N
∑

l=1

e−j4πR̃ sin(φ
2
)(zk−zl)

=
1

N
+

1

N2

N
∑

k=1

e−jα(φ)zk

N
∑

l=1
l 6=k

ejα(φ)zl (12)

where

α(φ) , 4πR̃ sin
φ

2
. (13)
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III. AVERAGE PROPERTIES OF BEAMPATTERN OF UNIFORMLY DISTRIBUTED SENSOR ARRAY WITH

PERFECT PHASE INFORMATION

A. Average Far-Field Beampattern

We start by investigating the average beampattern of the random array resulting from the distributed

sensor network model in the previous section. Here, the average is taken over all realizations of z, and

from (12) the average beampattern is expressed as

Pav(φ) , Ez [P (φ|z)] , (14)

where Ex[·] denotes expectation with respect to the random variables x. From (12) and (10), it can be

readily shown that

Pav(φ) =
1

N
+

(

1 − 1

N

) ∣

∣

∣

∣

2 · J1 (α(φ))

α(φ)

∣

∣

∣

∣

2

, (15)

where Jn(x) is the nth order Bessel function of the first kind. Although the function J1(x)/x is oscillatory,

the local maxima of oscillation tend to decrease with increasing x. In (15), the first term represents the

average power level of the sidelobe which does not depend on the node location, whereas the second

term is the contribution of the mainlobe factor. Since, conditioned on φ, the array factor of the form (11)

is an average of bounded independent and identically distributed (i.i.d.) complex random variables, as

N → ∞, by the strong law of large numbers it approaches the ensemble average (15) with probability

one.

The average beampattern of (15) is plotted in Fig. 3 for several values of R̃ with N = 16 and 256. As

can be observed, the sidelobe approaches 1/N as the beam angle moves away from the target direction.

To gain further insight, consider the asymptotic expansion of the Bessel function J1(x) for x� 1 as

J1(x) ∼
√

2

πx
cos

(

x− 3

4
π

)

. (16)

We then have
∣

∣

∣

∣

2 · J1(x)

x

∣

∣

∣

∣

2

∼ 8

πx3
cos2

(

x− 3

4
π

)

, (17)

and (15) becomes, for α(φ) = 4πR̃ sin
(

φ
2

)

� 1,

Pav(φ) ∼ 1

N
+

(

1 − 1

N

)

8

πα(φ)3
cos2

(

α(φ) − 3

4
π

)

. (18)

The nth peak of the average sidelobe will appear around α(φn) ≈
(

n− 1
4

)

π, n = 1, 2, . . ., and its

corresponding value becomes

Pav(φ
peak
n ) ∼ 1

N
+

(

1 − 1

N

)

1

π

[

2

π
(

n− 1
4

)

]3

, (19)
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Fig. 3. Average beampattern with different R̃ and N = 16, 256.

which does not depend on R̃. On the other hand, the nth peak and nth zero positions (in the sense of

the second term in (15)) can be expressed asymptotically as

φpeak
n ∼ 2 arcsin

(

n− 1
4

4R̃

)

(20)

φzero
n ∼ 2 arcsin

(

n+ 1
4

4R̃

)

. (21)

Since the peak sidelobe value does not depend on R̃ and is less sensitive to the value of N , it is apparent

that the only way one can avoid high peaks in the sidelobe region is to increase R̃ such that most of the

major peaks are relatively concentrated around the mainlobe. This phenomenon will be further examined

in the following subsection.

B. 3 dB Beamwidth of the Average Beampattern

One of the important figures of merit in directional antenna design is the 3 dB beamwidth. In the

deterministic antenna, the 3 dB beamwidth is the threshold angle at which the power of the beampattern

drops 3 dB below that in the target direction φ0. In our scenario, the 3 dB beamwidth itself is a random

variable and it is not easy to characterize analytically. Thus, as an alternative measure, we may define

the 3dB beamwidth of the average beampattern denoted by φ3dB
av as the angle φ that satisfies

Pav(φ
3dB
av ) =

1

2
. (22)
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In the limit as N → ∞, one may obtain

φ3dB
av = 2arcsin

(

0.1286

R̃

)

, (23)

by numerically solving (15). For R̃ � 1, (23) can be approximated as φ3dB
av ≈ 0.26/R̃. Therefore, the

beamwidth is asymptotically independent of N and is mainly determined by the inverse of the circle

radius of the cluster. Consequently, sparsely distributed sensors tend to form a narrow beam on average.

This sharp mainbeam property may be desirable, but if the far-field destination node has mobility, it

should be designed carefully; the calibration should take place before the mobile node moves out of the

mainbeam, but the mainbeam width is inversely proportional to the normalized radius R̃ as observed in

Fig. 3. Therefore, calibration should be performed more frequently if the destination node moves rapidly

or when R̃ is increased.

C. 3 dB Sidelobe Region

Similar to the 3 dB beamwidth concept, it may be also convenient for our subsequent analysis to define

the region within which the average of the sidelobe beampattern falls below some threshold level. As

we have seen, for large R̃, the sidelobe of the average beampattern is given by 1/N asymptotically.

Therefore, we shall define the 3 dB sidelobe region as the region in which neither neighboring sidelobe

peak in the average beampattern exceeds 3 dB above 1/N . Let n0 denote the minimum index of the peak

position such that the corresponding peak value satisfies this 3 dB condition. Specifically, from (19), n0

is the minimum integer n that satisfies

Pav(φ
peak
n )

1/N
∼ 1 + (N − 1)

1

π

[

2

π
(

n− 1
4

)

]3

≤ 2, (24)

and it can be bounded by

n0 ≥ 1

4
+

2

π

(

N − 1

π

) 1

3

. (25)

Let φzero
n0

> 0 denote the angle corresponding to the zero point next to the n0th peak sidelobe which can

be obtained by (21) with n = n0. Consequently, in this paper, the 3 dB sidelobe region is defined as

S3dB ,
{

φ
∣

∣π ≥ |φ| ≥ φzero
n0

}

. (26)

Fig. 4 illustrates the definitions of the 3 dB sidelobe region together with that of the 3 dB beamwidth.

The idea behind the introduction of 3 dB sidelobes is that in this region one may assume that the

mean value of the random array factor of (8) sampled at φ ∈ S3dB becomes a random variable with

approximately zero mean, as will be shown in Section IV-C. Thus we may reasonably assume that the

array factor has zero mean in this region, and this assumption significantly simplifies the analysis of the

statistical distribution in the following sections.
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Fig. 5 shows the threshold angle above which the 3 dB sidelobe region begins. The asymptotic 3 dB

beamwidth (23) is also shown for reference. As can be observed, whereas the 3 dB beamwidth is less

sensitive to the number of nodes N , the 3 dB sidelobe region will be considerably reduced as N increases.

This means that as N increases the dominant non-negligible sidelobe peak may occur with high probability

unless R̃ is also increased. This trade-off will be clarified by the study of directivity in the following

subsection.

D. Average Directivity

The directivity or directional gain is the parameter that characterizes how much radiated energy is

concentrated in the desired direction, relative to a single isotropic antenna. Specifically, it may be defined

as

D ,

∫ π

−π P (0)dφ
∫ π

−π P (φ)dφ
=

2π
∫ π

−π P (φ)dφ
, (27)

where P (φ) is the radiated power density in the direction of φ. In the scenario of this paper, since P (φ)

depends on the particular realization of z, the corresponding gain may be expressed, by substituting
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P (φ|z) of (12) into the above, as

D(z) =









1

N
+

1

N2

N
∑

k=1

N
∑

l=1
l 6=k

J0

(

4πR̃(zk − zl)
)









−1

. (28)

The mean value of (28) is given by

Dav , Ez[D(z)]. (29)

Unfortunately, direct calculation of (29) does not result in a closed-form or insightful expression. Thus,

we shall consider the following as an alternative measure:

D̃av ,
2π

∫ π

−π Ez[P (φ|z)]dφ =
2π

∫ π

−π Pav(φ)dφ
. (30)

Note that by Jensen’s inequality, we have

D̃av ≤ Dav, (31)

which means that D̃av in (29) is a lower bound on Dav. However, since by the law of large numbers the

denominator of D(z) may approach its average value with high probability as N increases, the above

bound is expected to become tight as N increases. This will be verified in the numerical results below.
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Substituting (15) into the above, we obtain2

D̃av =
N

1 + (N − 1) 2F3

(

1
2 ,

3
2 ; 1, 2, 3 ; −(4πR̃)2

) , (32)

where 2F3

(

1
2 ,

3
2 ; 1, 2, 3 ; −x2

)

is a generalized hypergeometric function which monotonically decreases

with increasing x and converges to 0 as x → ∞. Therefore, unlike well-designed deterministic linear

arrays, the gain of a given realization is very likely to be less than N , and the limit N can be approached

only by increasing R̃. This agrees with the previous observation that the average mainbeam becomes

narrow as R̃ increases and thus improves the directivity.

Fig. 6 shows the relationship between the normalized directivity bound D̃av/N and R̃. Also shown in

the figure as diamond-shaped points are the corresponding exact average directivities Dav/N obtained by

the simulation of 1000 realizations. As can be observed, the bound is very tight compared to the exact

performance. Thus, it follows that in order to achieve high normalized directivity (i.e. directivity close

to N ) with N nodes, the distribution of the nodes should be as sparse as possible. In fact, we have the

following theorem:

2Although (32) is a simple form and offers some insight on asymptotic behavior of directivity, the calculation of the generalized

hypergeometric function involved in (32) becomes numerically unstable as R̃ increases, and it is much easier to compute the

numerical integration of (30) directly.
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Theorem 1 (Normalized Directivity Lower Bound): For large R̃ and N , Dav/N is lower bounded by

Dav

N
≥ 1

1 + µN
R̃

, (33)

where µ is a positive constant independent of N and R̃ (µ ≈ 0.09332).

Proof: See Appendix I.

Note that the factor N/R̃ can be seen as a one-dimensional node density. To verify the above theorem,

Fig. 7 shows the relationship between D̃av/N and the node density N/R̃, as well as the lower bound in

(33).

The above theorem indicates that there is a simple relationship between directivity and node density.

It can be seen that the node density almost uniquely determines the normalized directivity Dav/N . It is

important to note that in order to achieve a certain normalized directivity with a large number of nodes

N , the node density should be maintained to the desired value by spreading the nodes as sparsely as

possible. Alternatively, if the normalized region R̃ is fixed, it is not efficient in terms of normalized

directivity to increase the number of sensor nodes.

The above theorem also indicates that if the sensor nodes are uniformly distributed and if we are to

choose N nodes out of them, in terms of normalized directivity it may be better to choose them as

sparsely as possible.
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IV. DISTRIBUTION OF FAR-FIELD BEAMPATTERN OF COLLABORATIVE BEAMFORMING WITH

PERFECT PHASE INFORMATION

In the previous section, we have seen that random arrays have nice average beampatterns with low

sidelobes. However, the average behavior does not necessarily represent a beampattern of any given

realization unless N → ∞ (and even then, only with probability 1). In fact, even though the average

beampattern has a sharp mainbeam and sidelobes always close to 1/N , there is a large dynamic range

of sidelobes among randomly generated beampatterns. As an example, the average beampattern and one

particular realization of randomly generated sensor locations is shown in Fig. 8. The mainbeam of the

realization closely matches the average, but sidelobes may fluctuate with a large dynamic range and easily

exceed the average level.

Therefore, in practice, the statistical distribution of beampatterns and sidelobes in particular, is of

interest. By approximating the beampattern sidelobes as a complex Gaussian process, Lo [3] has derived

the distribution of the beampattern in the case of linear random arrays.

In the following, we first derive a numerical method that allows calculation of the exact distribution

of the beampattern without applying Gaussian approximations. We then derive a convenient asymptotic

form of the sidelobe distribution using a Gaussian approximation similar to [3], and evaluate its validity

in our framework.
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A. Exact Evaluation of Distribution

Since the array factor is a sum of i.i.d. random variables, its distribution can be computed numerically

by the characteristic function method. To this end, from (11) let

F̃ (φ|z) =
1

N

N
∑

k=1

(x̃k − jỹk) ,
1

N

(

X̃ − jỸ
)

, (34)

where

x̃k , cos (zkα(φ)) , ỹk , sin (zkα(φ)) (35)

and α(φ) is defined in (13). The joint characteristic function of x̃k and ỹk is given by

Φx̃k,ỹk(ω, ν) = Ex̃k,ỹk

[

ej(ωx̃k−νỹk)
]

= Ezk

[

ej[ω cos(zkα(φ))−ν sin(zkα(φ))]
]

. (36)

For a given pair of ω and ν, the above expectation is a single integral of a well-behaved function and

can be calculated numerically.

Since F̃ (φ|z) is a sum of N i.i.d. complex random variables, the joint probability density of X̃ and

Ỹ in (34) is given by

fX̃,Ỹ (x, y) =

(

1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞
ΦNx̃k,ỹk(ω, ν)e

−j(ωx+νy) dω dν. (37)

The above integral can be computed efficiently using the two-dimensional Fast Fourier Transform (FFT).

Finally, the complementary cumulative distribution function (CCDF) of the beampattern, i.e., the proba-

bility that the instantaneous power of a given realization in the direction φ exceeds the threshold power,

P0, is given by

Pr [P (φ) > P0] = Pr

[

X̃2 + Ỹ 2

N2
> P0

]

=

∫∫

x2+y2>N2P0

fX̃,Ỹ (x, y) dx dy. (38)

B. Gaussian Approximation of Distribution

The exact evaluation of the CCDF outlined above is computationally demanding, especially if the

desired numerical precision is high. Considering that the array factor consists of a sum of N statistically

independent random variables, as N increases, by the central limit theorem we may expect that the array

factor with any given direction, except at the deterministic angle φ = 0, approaches a complex Gaussian

distribution. This approximation may typically result in a simpler distribution formula. To this end, we

write (34) as

F̃ (φ|z) =
1√
N

(X − jY ) (39)
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where

X ,
1√
N

N
∑

k=1

cos (zkα(φ)) , Y ,
1√
N

N
∑

k=1

sin (zkα(φ)) . (40)

Since the zk’s are i.i.d. random variables, as N increases the distribution of X and Y at the direction

π ≥ |φ| > 0 may approach that of a Gaussian with

E[X] = 2
J1 (α(φ))

α(φ)

√
N , mx (41)

VAR[X] =
1

2

(

1 +
J1 (2α(φ))

α(φ)

)

−
[

2
J1 (α(φ))

α(φ)

]2

, σ2
x (42)

E[Y ] = 0 (43)

VAR[Y ] =
1

2

(

1 − J1 (2α(φ))

α(φ)

)

, σ2
y . (44)

Note that X and Y are orthogonal and thus statistically uncorrelated. The joint pdf of X and Y is then

given by

fX,Y (x, y) =
1

2πσxσy
exp

(

−|x−mx|2
2σ2

x

− y2

2σ2
y

)

. (45)

The CCDF of P0 can be expressed as

Pr [P (φ) > P0] = Pr

[

X2 + Y 2

N
> P0

]

= Pr
[
√

X2 + Y 2 >
√

NP0

]

=

∫ ∞

√
NP0

∫ π

−π

r

2πσxσy
exp

(

−|r cosω −mx|2
2σ2

x

− r2 sin2 ω

2σ2
y

)

dω dr

=

∫ π

−π

1

4πσxσyU2
ω

e
V 2
ω−

m2
x

2σ2
x

[√
πVω erfc (Wω − Vω) + e−(Wω−Vω)2

]

dω, (46)

where

Uω ,

√

cos2 ω

2σ2
x

+
sin2 ω

2σ2
y

, Vω ,
mx cosω

2σ2
xUω

, Wω ,
√

NP0Uω. (47)

For α(φ) � 1, the terms J1(2α(φ))/α(φ) and |J1(α(φ))/α(φ)|2 in the variance expressions (42) and

(44) rapidly decrease and their contribution to the resulting variances becomes minor. Therefore, it is

very likely that both variances are approximately equal in the sidelobe region. When this is the case,

i.e., if σ2
x ≈ σ2

y ≈ 1/2, the distribution of the complex envelope becomes a Nakagami-Rice distribution.

Consequently, the resulting integral can be expressed by the first-order Marcum-Q function

Pr [P (φ) > P0] = Q

(

mx

σx
,

√
NP0

σx

)

= Q
(√

2mx,
√

2NP0

)

. (48)

Furthermore, if the mean E[X] is zero, the envelope follows a Rayleigh distribution and we simply

have

Pr [P (φ) > P0] = e−NP0 . (49)
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C. Mean Value of Array Factor within 3 dB Sidelobe Region

As we have seen, if the mean value of the array factor can be assumed to be zero, the distribution

can be significantly simplified and thus analysis becomes readily tractable. From (41) it is apparent that

under the constant variance constraint the mean value increases as N increases. Therefore, when N is

large, the zero mean assumption may not be guaranteed in general. In Section III-C, we have introduced

the 3 dB sidelobe region, and in the following we derive properties of the mean value of the array factor

in this region.

From the definition of (24), the sidelobe in the 3 dB region satisfies

NPav(φ) ≤ 2. (50)

It follows that

VAR[X] + VAR[Y ] + |E[X]|2 ≤ 2. (51)

From (41), (42), and (44), we have

1 − 1

N
|E[X]|2 + |E[X]|2 ≤ 2, (52)

and thus we get

|E[X]|2 ≤ 1

1 − 1
N

. (53)

Therefore, in the 3 dB sidelobe region, the mean square is bounded by unity in the large-N asymptote

and thus the mean does not grow with the number of nodes N .

D. Numerical Comparison

In Fig. 9, the CCDF’s computed with various formulae are shown with R̃ = 2 and φ = π/4, which

corresponds to the sidelobe region. The exact formula of (38), the equal variance Gaussian approximation

of (48), and the zero-mean Gaussian approximation of (49) are shown in the figure. Note that the exact

Gaussian case of (46) was also calculated but is almost identical to (48) for this case and thus is not

shown. As observed from Fig. 9, even the zero-mean Gaussian approximation may be valid for this

sidelobe region, but for N = 1024 the Gaussian approximation will have some noticeable discrepancy

with the exact value. This is due to the fact that the zero-mean approximation does not hold for this

case. In fact, Fig. 5 indicates that for this value of N , the angle falls between the 3 dB sidelobe region

and the mainlobe region and thus the zero mean assumption may not be accurate.

Fig. 10 shows the distribution at 3 dB beamwidth of the average beampattern defined by (23). In this

case, (38), (48), and (49) show the different results even for relatively large N , since at this angle the

variance of the array factor may be small and thus a large number of random variables is required for its
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Fig. 9. CCDF of beampattern with φ = π/4, and R̃ = 2.

convergence toward a non-zero mean Gaussian random variable. As observed, as the number of nodes

increases, the mainbeam variance becomes small and approaches the mean value of -3 dB, as expected.

Therefore, it can be concluded that for large N , the mainbeam can be made stable. This observation

agrees with the result in [3].

V. DISTRIBUTION OF THE MAXIMUM OF THE SIDELOBES

It is well known that unlike periodic or equally-spaced antenna arrays, many arrays with unequal

spacing will yield no grating lobes for a large number of elements. This property is also preserved for

random arrays [3, 8], but in order to verify this, one may need to find the distribution of the maximum

power of the sidelobes. In this section, we develop an approximate upper bound on the distribution of

the peak sidelobes for random sensor networks.

In the previous section, we have seen that the distribution of the beampattern samples within the

sidelobe region can be characterized by a zero mean Gaussian random variable if the zero-mean condition

is satisfied. In the following, we further assume that the beam pattern is a Gaussian random process.

In this case, any two samples taken from the beampattern should be characterized by jointly Gaussian

random variables. In the linear random array framework, the distribution of peak sidelobes has been

studied in [4–6], assuming the array factor is a Gaussian process. For simplicity, only the 3 dB sidelobe

region is considered and it will be assumed that the process is stationary with zero mean. The extension
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to the non-stationary case is studied in [6].

In the following, the CCDF of the maximum peak sidelobe, which is the probability that the maximum

peak sidelobe exceeds a given power level, will also be referred to as outage probability and denoted by

Pout.

A. Upper bound on the distribution of peak sidelobe

Let ν(a) denote the random variable representing the number of upward crossings at a given level a

per interval in the 3 dB sidelobe region S3dB. As shown in Appendix II, assuming that the array factor

in this region can be approximated as a zero-mean Gaussian process, the mean of ν(a) is given by

E[ν(a)] = 4

(

1 − sin
φzero
n0

2

)√
πR̃ae−a

2

. (54)

Note that the above function monotonically decreases with increasing a only for a > 1/
√

2, and thus is

meaningful only in this region. Finally, noticing that the outage probability is the probability that at least

one peak exceeds level a and is given by [6]

Pout = Pr [ν(a) ≥ 1] =
∞
∑

k=1

Pr[ν(a) = k] ≤
∞
∑

k=1

kPr[ν(a) = k] = E[ν(a)], (55)
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Fig. 11. Comparison of CCDF and upper bound of the sidelobe peaks with R̃/N = 0.5.

(54) serves as an upper bound for the outage probability for the maximum sidelobe peak for a > 1/
√

2.

Thus, we obtain the CCDF upper bound as

Pr

[

max
S3dB

X2 + Y 2 > P0

]

≤ 4

(

1 − sin
φzero
n0

2

)√
πR̃
√

NP0e
−NP0 , for NP0 >

1

2
. (56)

B. Numerical Results

Fig. 11 shows the comparison between simulation results and the upper bound (56). For the simulation,

the outage probability is calculated based on 10 000 randomly generated realizations with R̃/N = 1/2

and only the peaks within the 3 dB sidelobe region are examined. Also, in order to capture peak values

accurately, the entire 3 dB sidelobe region of φ is sampled at a rate as large as 16πR̃. As can be observed,

the bound is in good agreement with simulation for large N .

Let P̃0 = NP0 denote the maximum peak value relative to the average sidelobe level. From (56), we

have

Pout ≤ 4
√
πR̃

√

P̃0e
−P̃0 , P̃0 > 1/2. (57)

The above inequality illuminates the relationship between the outage probability and R̃ (assuming that

φzero
n0

is negligibly small). Fig. 12 shows the maximum possible value of P̃0 for a given outage probability

and R̃. As can be observed, the maximum sidelobe may grow as R̃ increases, but the amount may be below

12 dB for many cases of interest. Consequently, with the normalized sidelobe level P̃0, the maximum
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sidelobe level (in the 3 dB region) of the randomly generated arrays may be given by P0 = P̃0/N . The

required margin P̃0 depends on the parameters R̃ and Pout, but not on N . Thus, increasing N always

results in a reduction of maximum sidelobe level.

VI. PERFORMANCE OF DISTRIBUTED BEAMFORMING WITH IMPERFECT PHASE

So far, we have evaluated the beampattern assuming perfect knowledge of the initial phase for each

node. In this section, we analyze the effect of the phase ambiguities in the closed-loop scenario as well

as location estimation errors in the open-loop scenario. For each of the two scenarios, we derive the

average beampattern and calculate the amount of degradation.

A. Closed-loop case

In the closed-loop case, the effects of imperfect phase may be easily derived, following the approach

developed by Steinberg [8]. The initial phase of node k in (2) will now be given by

Ψ̂k = −2π

λ
dk(φ0, θ0) + δϕk (58)

where δϕk corresponds to the phase offset due to the phase ambiguity caused by carrier phase jitter or

offset between the transmitter and receiver nodes. In the following, the phase offset δϕk’s are assumed to

be i.i.d. random variables. Then, from (3), (4), (5), and (11), the far-field array factor (with θ = θ0 = π/2)
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will be given by

F̃ (φ|z, δϕ) =
1

N

N
∑

k=1

ej(−zk4πR̃ sin φ

2
+δϕk) =

1

N

N
∑

k=1

e−jzk4πR̃ sin φ

2 ejδϕk . (59)

The average beampattern of (14) will be replaced by

Pav(φ) , Ez,δϕ [P (φ|z, δϕ)] . (60)

Similar to (15), direct calculation of (60) results in

Pav(φ) =
1

N
+

(

1 − 1

N

) ∣

∣

∣

∣

2
J1 (α(φ))

α(φ)

∣

∣

∣

∣

2

|Aϕ|2 (61)

where

Aϕ , Eδϕk

[

ejδϕk
]

. (62)

Thus, as N → ∞, the average beampattern will simply become a scaled version of the original by a

factor of |Aϕ|2.

Let us now assume that the phase offset follows a Tikhonov distribution, a typical phase jitter model

for phase-locked loop (PLL) circuits, given by [9]

fϕ(x) =
1

2πI0
(

1/σ2
ϕ

) exp
(

cos(x)/σ2
ϕ

)

, |x| ≤ π (63)

where σ2
ϕ is the variance of the phase noise and In is the nth order modified Bessel function of the first

kind. The corresponding attenuation factor is given by

Aϕ =
I1(1/σ

2
ϕ)

I0(1/σ2
ϕ)
. (64)

The variance of the phase noise σ2
ϕ is related to the loop SNR of the PLL by

ρϕ = 1/σ2
ϕ. (65)

Fig. 13 shows the degradation factor |Aϕ|2 with respect to the loop SNR. As observed from the figure, a

loop SNR of 5 dB may be necessary for each node in order to reduce the overall beampattern degradation

to less than 3 dB.

B. Open-loop case

In the open-loop case, our model of the initial phase is given in (6) with θ0 = π
2 , and if there are

estimation errors in the location parameters rk and ψk, the initial phase will be replaced by

Ψ̂†
k =

2π

λ
(rk + δrk) cos(φ0 − (ψk + δψk))

=
2π

λ
rk cos(φ0 − (ψk + δψk)) +

2π

λ
δrk cos(φ0 − (ψk + δψk)), (66)
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Fig. 13. Mainbeam degradation due to the phase noise in the closed-loop scenario.

where δrk and δψk are the corresponding error random variables, each set assumed to be i.i.d. and also

independent of rk and ψk for simplicity. With the far-field approximation, we have

2π

λ
dk

(

φ,
π

2

)

+ Ψ̂†
k ≈

2π

λ
{A− rk [cos(φ− ψk) − cos(φ0 − ψk − δψk)] + δrk cos(φ0 − (ψk + δψk))}

=
2π

λ
A+

4π

λ
rk

[

sin

(

ψk −
φ0 + φ− δψk

2

)

sin

(

φ0 − φ− δψk
2

)]

+
2π

λ
δrk cos(ψk − (φ0 − δψk)). (67)

Let ψ̃k , ψk − φ+φ0−δψk
2 . Then, the right-hand side (RHS) of (67) is given by

2π

λ
A− 4π

λ
rk sin ψ̃k sin

(

φ− φ0 − δψk
2

)

+
2π

λ
δrk cos

(

ψ̃k +
φ− φ0 + δψk

2

)

. (68)

The resultant far-field array factor of (7) will then be given by

F̃ †(φ|r,ψ, δψ, δr) = ej
2π

λ
A 1

N

N
∑

k=1

e−j
4π

λ
rk sin ψ̃k sin(φ−φ0−δψk

2
)+j 2π

λ
δrk cos(ψ̃k+φ−φ0+δψk

2
), (69)

and the beampattern is expressed as

P (φ|z,v, δψ) =
1

N
+

1

N2

N
∑

k=1

N
∑

l=1
l 6=k

e−j4πR̃{zk sin(φ−φ0−δψk
2

)−zl sin(φ−φ0−δψl
2

)}ej 2π

λ
(vk−vl), (70)
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where

zk ,
rk
R

sin ψ̃k = r̃k sin

(

ψk +
δψk
2

− φ+ φ0

2

)

(71)

vk , δrk cos

(

ψ̃k +
φ+ δψk

2

)

= δrk cos (ψk + δψk − φ0) . (72)

Conditioned on φ, φ0 and δφk, the angle ψ̃k can be seen as a uniformly distributed random variable, and

thus the pdf of zk is given by (10). Considering the fact that rk and δrk are assumed to be statistically

independent, we further assume for analytical purposes that zk and vk are statistically independent. Then,

again, the beampattern does not depend on the particular choice of φ0. Furthermore, on modeling δrk

as being uniformly distributed over [−rmax, rmax] and assuming the phase term of vk to be uniformly

distributed over [0, 2π], the probability density function of vk will be given by

fvk(v) =
1

πrmax



ln



1 +

√

1 −
(

v

rmax

)2


− ln
|v|
rmax



 , |v| ≤ rmax (73)

Consequently, the average beampattern can be written as

Pav(φ) =
1

N
+

(

1 − 1

N

)

|Aψ(φ)|2 |Ar|2 , (74)

where

Ar , Evk

[

ej
2π

λ
vk
]

=
2

π

∫ 1

0
cos

(

2π

λ
rmaxt

)

ln
1 +

√
1 − t2

t
dt

= 1F2

(

1

2
; 1,

3

2
; −
(

π
rmax

λ

)2
)

(75)

Aψ(φ) , Ezk,δψk

[

ej4πR̃zk sin(φ0+δψk−φ

2
)
]

= Eδψk





J1

(

4πR̃ sin φ−δψk
2

)

2πR̃ sin φ−δψk
2



 , (76)

and without loss of generality φ0 = 0 was assumed. In (75), 1F2

(

1
2 ; 1, 3

2 ; −x2
)

denotes a generalized

hypergeometric function which has an oscillatory tail but converges to zero as x increases.

Also, assuming that the δψk are uniformly distributed over [−ψmax, ψmax] and using the approximation

sin (φ+ δψk) ≈ φ+ δψk which is valid for the beampattern around the mainbeam, we obtain

Aψ(φ) ≈ 1

2

(

1 − φ

ψmax

)

1F2

(

1

2
;

3

2
, 2 ; −(πR̃(φ+ ψmax))

2

)

+
1

2

(

1 +
φ

ψmax

)

1F2

(

1

2
;

3

2
, 2 ; −(πR̃(φ− ψmax))

2

)

. (77)

Since the hypergeometric function 1F2

(

1
2 ; 3

2 , 2 ; −x2
)

has a maximum peak value of 1 at x = 0, the

above expression indicates that regardless of the value of R̃, there may be two symmetric peaks around
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Fig. 14. Mainbeam degradation due to location estimation errors in open-loop scenario.

the mainbeam at φ = ±ψmax resulting in a pointing error. Therefore, the mainbeam may spread over by

a factor of ψmax. At the center of the mainbeam, we have

Aψ(0) = 1F2

(

1

2
;

3

2
, 2 ; −

(

π
Rψmax

λ

)2
)

. (78)

Fig. 14 shows the degradation factor |Ar|2 and |Aψ(0)|2 for a given rmax
λ

and Rψmax

λ
. As observed

from the figure and discussion above, the angle estimation error has two effects, i.e., pointing error and

mainbeam degradation. In particular, if we wish to suppress the degradation below 3 dB, from the figure,

we should choose Rψmax/λ ≤ 1/2. This means that the maximum angle estimation error should satisfy

ψmax ≤ λ

2R
=

1

2R̃
, (79)

and as R̃ becomes large, the requirement of minimum angle ambiguity from (79) becomes severe.

VII. CONCLUSION

In this paper, we have analyzed the stochastic performance of random arrays for distributed collaborative

beamforming, in the framework of wireless ad hoc sensor networks. It has been shown that under ideal

channel and system assumptions, directivity of order N can be achieved asymptotically with N sensor

nodes, as long as the sensor nodes are located sparsely enough. We studied the average and the distribution

of the beampattern as well as the distribution of the sidelobe peaks. Several forms of the CCDF of the
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beampattern have been derived and compared, with particular emphasis on the Gaussian approximation

of the array factor. We have considered two scenarios of distributed beamforming and investigated the

effects of phase ambiguity and location estimation error upon the resultant average beampatterns.

Our main conclusion is that, given a number of nodes randomly distributed over a large disk, one

may form a nice beampattern with narrow mainlobe and sidelobes as low as 1/N plus some margin

for maximum sidelobe peaks. Also, the directivity approaches N if the nodes are located as sparsely as

possible. However, our analysis is based on a number of ideal assumptions on the system and channel

model. In practice, a number of open issues remain, such as applicability of beamforming when the

destination or nodes in the cluster are in rapid motion or the channel suffers severe multipath fading.

Also, specific algorithms should be developed for frequency offset correction of each node as well as

methods for initial phase or location estimation. Finally, efficient protocols for sharing the transmit as

well as calibration information among nodes are required.

APPENDIX I

PROOF OF THEOREM 1

We first prove the following lemma:

Lemma 1: A generalized hypergeometric function 2F3

(

1
2 ,

3
2 ; 1, 2, 3 ; −x2

)

with x� 1 can be bounded

as

f(x) , 2F3

(

1

2
,
3

2
; 1, 2, 3 ; −x2

)

≤ c0
x

(80)

where c0 is a constant (c0 ≈ 1.1727).

Proof: We start with the integral form

f(x) =
1

π

∫ π

0

∣

∣

∣

∣

∣

2
J1

(

x sin θ
2

)

x sin θ
2

∣

∣

∣

∣

∣

2

dθ =
1

π

∫ x

0

∣

∣

∣

∣

2
J1 (t)

t

∣

∣

∣

∣

2 2√
x2 − t2

dt. (81)

Since the asymptotic form of J1(x) given by (16) is valid for x� 1, we have the following inequalities
∣

∣

∣

∣

2
J1 (t)

t

∣

∣

∣

∣

2

≤ cos2(α0t), for t ≤ x0 (82)

∫ t+∆

t

∣

∣

∣

∣

2
J1 (u)

u

∣

∣

∣

∣

2

du ≤
∫ t+∆

t

8

πu3
du, for t > x0 (83)

for some threshold value x0 which should be determined numerically, and for an appropriate interval

∆ > 0. The parameter α0 can be chosen such that

cos(α0x0) =

√

8

πx3
0

, (84)

should hold, and this guarantees a continuity of the function at the threshold t = x0. Fig. 15 illustrates

the relationship of (82) and (83) with x0 chosen as a cross point of t between the functions J1(t) and
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Fig. 15. Function |2J1(t)/t|2 and its upper bound with x0 = 2.4445.

√

2/(πt), yielding x0 = 2.4445. The corresponding value of α0 is 0.4664. Substituting (82) and (83)

into (81), we get for x > x0

f(x) ≤ 2

π

∫ x0

0

cos2 (α0t)√
x2 − t2

dt+
16

π2

∫ x

x0

1

t3
√
x2 − t2

dt. (85)

The first term on the RHS of (85) is given by

2

π

∫ x0

0

cos2 (α0t)

x
√

1 −
(

t
x

)2
dt =

2

πx

∫ x0

0

{

1 +
1

2

(

t

x

)2

+O
(

1/x4
)

}

cos2 (α0t)dt

=
1

πx

(

x0 +
sin(2α0x0)

2α0

)

+O
(

1/x3
)

. (86)

The second term on the RHS of (85) is given by

16

π2

∫ x

x0

1

t3
√
x2 − t2

dt =
16

π2





1

x

√

1 −
(

x0

x

)2

2x2
0

+
1

2x3

{

ln

(

1 +

√

1 −
(x0

x

)2
)

+ ln

(

x

x0

)

}





=
8

π2x2
0

1

x

(

1 −
(x0

x

)2
+O

(

1/x4
)

)

+O
(

ln(x)/x3
)

=
1

x

8

π2x2
0

+O
(

ln(x)/x3
)

. (87)

Consequently, we may write

f(x) ≤ 1

π

(

x0 +
sin(2α0x0)

2α0
+

8

πx2
0

)

1

x
+O

(

ln(x)/x3
)

(88)

DRAFT



29

and the second term on the RHS of (88) drops as x becomes large. With x0 = 2.4445 and α0 = 0.4664,

the coefficient of 1/x can be calculated to be c0 = 1.1727.

Proof: [Proof of Theorem 1] From (31), (32), and Lemma 1, we have

Dav

N
≥ D̃av

N
≥ 1

1 + (N − 1) c0
4πR̃

=
1

1 +
(

1 − 1
N

)

c0
4π

N

R̃

. (89)

For large N , the RHS of (89) converges to (33) with µ = c0
4π ≈ 0.09332.

APPENDIX II

THE MEAN NUMBER OF UPWARD LEVEL CROSSINGS OF A GAUSSIAN PROCESS

In this appendix, we obtain the mean number of upward crossings of a given level of the zero mean

Gaussian process based on the approach of Rice [10, 11]. Assume that X and Y are uncorrelated zero-

mean Gaussian processes with variance σ2
x = σ2

y = 1/2. Let u = sin
(

φ
2

)

and X ′ and Y ′ denote the

corresponding processes differentiated by u. By assumption, X ′ and Y ′ become zero mean Gaussian

processes. In order to calculate the variance, first consider the autocorrelation function of X at instants

u = u1 and u2 given by

ρX(u1, u2) = Ez

[

cos
(

z4πR̃u1

)

cos
(

z4πR̃u2

)]

+ other terms

=
1

2
Ez

[

cos
(

z4πR̃ (u1 + u2)
)]

+
1

2
Ez

[

cos
(

z4πR̃ (u1 − u2)
)]

(90)

where the other terms become zero by the zero mean assumption. Also for the same reason, the first

term of the RHS of (90) may be also approximated by zero. Therefore, letting v = u1 − u2, we obtain

ρX(v) ≈ 1

2
Ez

[

cos
(

z4πR̃ (v)
)]

. (91)

Differentiating the above with respect to v twice, setting v = 0 and carrying out the statistical average

with respect to z, the variance of X ′ is given by [12]

σ2
x′ = −ρ′′X(0) = 2π2R̃2. (92)

Likewise, one may obtain σ2
y′ = σ2

x′ , and the joint pdf of X,X ′, Y, Y ′ is given by

fX,Y,X′,Y ′(x, y, x′, y′) =
1

(2π)2σ2
xσ

2
x′

exp

(

−x
2 + y2

2σ2
x

− x′2 + y′2

2σ2
x′

)

(93)

On changing the random variables in the polar coordinates via X = ΩcosΘ, Y = ΩsinΘ and integrating

out Θ and Θ′, we obtain

fΩ,Ω′(ω, ω′) = ωe−ω
2 1
√
ππR̃

e−
ω′2

4π2R̃2 . (94)

The number of positive (upward) crossings of the process ω at level a per interval du is given by [10,

11]

ν(a)du = du

∫ ∞

0
ω′fΩ,Ω′(a, ω′)dω′ = du 2

√
πR̃ae−a

2

(95)
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Consequently, the mean number of upward crossings for the interval S3dB is given by

E[ν(a)] =

∫

u=sin(φ
2
),φ∈S3dB

du ν(a), (96)

which results in (54).
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