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Abstract—This paper studies the design of beamforming
weights for a multi-antenna secondary transmitter in an underlay
cognitive setting that simultaneously maximizes the secondary
received-power while limiting the primary interference to some
threshold ϵ. With perfect channel state information (CSI), a
closed-form expression for the maximum secondary received-
power is found. Under imperfect CSI and when the beam-
forming weights are computed using the channel estimates, the
actual secondary received-power, G, and the actual primary
interference-power, I , are derived. We show that the mean E[G]
has a term that grows linearly with the number of secondary
antennas, N , and additional terms dependent on ϵ. Consequently,
we obtain tradeoffs between E[G] and ϵ. Under perfect CSI,
we show that small increases in ϵ from zero lead to moderate
enhancements in E[G] for small N . However, increasing N
reduces the enhancements. Under imperfect CSI, the gain in
E[G] is less compared to the perfect CSI case. Furthermore, we
show that the dominant parts of E[I] are independent of N . Thus,
we conclude that there is no significant loss for the secondary
to perform null-steering beamforming instead. Moreover, it can
employ additional antennas to improve E[G] without generating
significant extra interference on the primary.

Index Terms—Underlay cognitive radio, Multiple-input single-
output, Beamforming, Null-steering, Estimation error.

I. INTRODUCTION

Radio spectrum occupancy measurements indicate that fixed
spectrum licensing policy has failed to accommodate wireless
services in an efficient manner, and has lead to an under-
utilization of frequency bands [1], [2]. On the other hand,
unlicensed wireless users and applications have a rapidly
growing demand for bandwidth. This inspires the idea of
cognitive radio systems, which was first introduced in [3].
A cognitive radio system allows the unlicensed (secondary)
users to access the licensed bands under the condition that the
interference on the licensed (primary) system is controlled and
thus its quality of service (QoS) remains satisfactory.

Spectrum underlay, overlay, and interweave are three basic
operation models for cognitive radio systems that have been
under significant developments throughout the recent decade
[4]-[8]. Spectrum underlay focuses on the scenario in which
both secondary and primary systems operate in the same
frequency bands simultaneously [4]. The secondary system
aims to maximize its own received-power while imposing
minimal co-channel interference on the primary receivers.

A widely recognized approach to enhance the secondary
system’s performance in underlay cognitive systems is to
exploit spatial diversity by using multiple antennas at the
secondary transmitter [9]-[19]. If the secondary receiver
has a single antenna, this leads to a multiple-input single-
output (MISO) channel. In such systems, with a secondary
transmit power constraint, the transmit covariance matrix

at the secondary transmitter can be chosen to satisfy the
primary interference-power constraints while maximizing the
secondary received-power. As [9], [10], and [11] show, the
optimal covariance matrix in a MISO channel is rank-one
which implies that beamforming is optimal. Therefore, tak-
ing advantage of small-scale channel fading, the secondary
transmitter should set the beamforming weights such that
the received signals from different transmit antennas combine
destructively at the primary receiver and constructively at the
secondary receiver.

Beamforming has been broadly investigated in the literature
as a technique to provide performance enhancements in MISO
cognitive settings. Under perfect channel state information
(CSI), [11] and [12] derive optimal solutions to their associated
optimization problems and subsequently evaluate the perfor-
mance of primary and secondary systems analytically, whereas
[13] takes a numerical approach to the same problem. In the
realistic case of imperfect CSI, where the channel gains are
not perfectly known at the beamformer, [14] and [15] consider
probabilistic interference constraints for the primary system
and subsequently study robust beamforming numerically. In
[16] and [17], even though the actual channel gains are un-
known at the beamformer, the knowledge of some uncertainty
regions containing the actual gains is assumed to be available.
Under such assumptions, [16] solves the associated problem
numerically while [17] solves it analytically. In this paper,
we take a different approach to performance analysis under
imperfect CSI. Unlike [16] and [17], we do not assume that
uncertainty regions containing the actual gains are known
at the beamformer. Thus, an optimal beamforming vector is
found merely based on the estimates of the channel gains.

In cognitive settings, obtaining closed-form expressions for
performance metrics such as maximum secondary received-
power and primary interference-power are undoubtedly cru-
cial, specifically in the realistic case of imperfect CSI. Such
expressions can provide insightful performance tradeoffs and
knowledge on the impact of different parameters (such as the
estimation error’s variance) on the performance of secondary
and primary systems. This paper aims to obtain such closed-
form results in both cases of perfect and imperfect CSI. A
key contribution of this paper is to introduce an alternative
analytic approach to optimal beamforming in the perfect CSI
case which is also applicable to the case of imperfect CSI.

In our previous study in [18], null-steering beamforming is
addressed for a MISO cognitive setting. Null-steering refers
to the case when the primary system tolerates no interference
from the secondary and thus the secondary system must
nullify its co-channel interference at the primary receivers.
Subsequently, under this condition, the maximum secondary
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received-power is derived in a closed-form expression and its
mean value is found to grow linearly with the number of
secondary antennas.

Intuitively, as the primary interference constraint is relaxed
and a small nonzero interference on the primary receiver is
permitted, a higher secondary received-power is anticipated.
In this paper, we are interested in finding such a tradeoff be-
tween the primary interference-power and the mean secondary
received-power. We consider a MISO underlay cognitive set-
ting with P as the maximum secondary transmit power and a
small threshold ϵ = αP (α ≥ 0) as the maximum interference
tolerable at the primary receiver. First, we examine the case
of perfect CSI and find the maximum secondary received-
power while the primary interference-power is limited to
the threshold ϵ. In the realistic case of imperfect CSI, we
assume that the secondary transmitter ignores or is ignorant
of the existence of estimation errors. Therefore, beamforming
wights are computed merely by using the channel estimates.
Subsequently, the actual secondary received-power, G, and the
actual primary interference-power, I , are derived. Our results
in this paper indicate that:

• E[G] consists of a term independent of α which is referred
to as the null-steering result in the sequel. This term
grows linearly with the number of secondary transmit an-
tennas, N , (due to spatial diversity). Therefore, employ-
ing more transmit antennas leads to a better performance
for the secondary system.

• E[G] has additional terms dependent on α with a dom-
inant term that grows as

√
α. Therefore, we can obtain

the following tradeoffs between E[G] and α:
– Under perfect CSI, an small increase in α can result

in a moderate improvement in E[G] when N is small.
Particularly, increasing α from zero to 0.1 leads to
an increase of 31% for E[G] when N = 2. However,
the amount of increase reduces as N grows larger.

– Under imperfect CSI, the enhancement in E[G] is
less compared to the perfect CSI case.

• Under imperfect CSI, the dominant parts of E[I] are
independent of N . This implies that while employing ad-
ditional antennas at the secondary transmitter can benefit
the secondary link by increasing E[G], it results in little
extra interference on the primary receiver. Furthermore,
since the primary’s allowance for a small nonzero inter-
ference threshold results in no significant enhancement
to the secondary’s performance compared to when the
interference threshold is zero (α = 0), there is no
significant loss for the secondary system to perform null-
steering beamforming instead.

The rest of this paper is organized as follows. Our system
setting is introduced in Section II. The case of perfect CSI is
studied in Section III. In Section IV, we consider the case of
imperfect CSI. Finally, we conclude this paper in Section V.
Detailed derivations of E[I] and E[G] in the case of imperfect
CSI are provided in Appendix A and Appendix B respectively.

In the sequel, boldface uppercase and lowercase letters
denote matrices and vectors, respectively. Notations (.)∗, (.)T ,
and (.)† respectively refer to complex conjugate, transpose,

secondary

transmitter

Fig. 1. A secondary system with a multi-antenna transmitter and a single-
antenna receiver coexists with a primary system with one single-antenna
receiver.

and conjugate transpose of a vector or a matrix. For a
complex number x, arg(x) denotes its phase. For a vector
y = (y1, y2, . . . , yN ), we denote y−1 = (y2, y3, . . . , yN ).
The notation =d refers to equality in distribution and ∥.∥ is
the Euclidean norm of a vector. Distribution of a circularly
symmetric complex Gaussian (CSCG) vector with mean µ
and covariance matric Σ is written as CN (µ,Σ). Tr(S) is the
trace of a square matrix S and S ≽ 0 means that S is positive
semi-definite. For functions p(x) and q(x) defined on some
subset of real numbers, we have p(x) = O(q(x)) as x → 0
if and only if there exist positive numbers δ and M such that
|p(x)| ≤ M |q(x)| for |x| < δ.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a system setting that con-
sists of a secondary transmitter equipped with N antennas and
one single-antenna secondary receiver. This secondary system
shares the same frequency band concurrently with a primary
system with one single-antenna receiver (underlay cognitive
setting) and aims to satisfy a primary interference constraint.
Note that we only consider one-way communication from the
secondary transmitter to the secondary receiver.

The channel gain between the secondary transmitter and
the secondary receiver is denoted by g∈ CN×1 where g ∼
CN (0, 2σ2I). The channel gain between the secondary trans-
mitter and the primary receiver is denoted by h∈ CN×1 where
h ∼ CN (0, 2σ2

II). Moreover, the entries of g are independent
from the entries of h. The vectors g and h are interchangeably
referred to as the secondary channel gain and the primary
channel gain respectively throughout the paper. Without loss
of generality, we assume σ2

I = σ2.

III. PERFECT CSI

In this section, we assume that perfect knowledge of the
channel gains is available at the secondary transmitter. We for-
mulate an optimization problem based on our system setting.
Then we solve the problem to find the optimal beamforming
vector and the maximum secondary received-power.

A. Problem Formulation

We denote the secondary transmitted signal at the discrete
time instant n by s[n]. Therefore, the received signal at the
secondary (resp. primary) receiver at time instant n can be
expressed as rs[n] = gT s[n] + w[n] (resp. rp[n] = hT s[n] +
v[n]), where w[n] (resp. v[n]) is the additive noise at the
secondary (resp. primary) receiver. Denoting S = E[s[n]s†[n]]
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as the secondary transmitter’s covariance matrix, the main
optimization problem (P0) can be formulated as

G = maximize gTSg∗ (1)

subject to: hTSh∗ ≤ ϵ, (2)
Tr(S) ≤ P, S ≽ 0. (3)

In P0, the optimization (1) is over S, while gTSg∗ is the
secondary received-power, hTSh∗ is the primary interference-
power, and the secondary transmitted-power is limited to P
according to (3).

As shown in [9], [10], and [11], beamforming is optimal
to maximize the secondary received-power in MISO channels.
Therefore, the optimal solution, S, to the problem P0 is rank-
one and we can express S as S = xx†, where x ∈ CN×1 is
the beamforming vector. Consequently, by replacing S = xx†

in P0 we obtain the equivalent optimization problem (P1) as

G = maximize |xTg|2 (4)

subject to: |xTh|2 ≤ ϵ, (5)

∥x∥2 ≤ P. (6)

Therefore, we focus on beamforming at the secondary trans-
mitter which aims to make the primary interference-power less
than or equal to the threshold ϵ and at the same time maximize
the secondary received-power.

It is worth noting that in this paper, beamforming is per-
formed at each discrete time instant n based on the chan-
nel knowledge at that instant. Consequently, the interference
power constraint (5) is satisfied at each time instant n and
thus is characterized as the peak interference power constraint
[20]. Alternatively, the average interference power constraint
is a long term constraint for the average interference power
over all the fading states of the channel [20].

B. Solving the Optimization Problem

To solve P1, we apply a rotation matrix U ∈ CN×N that
rotates the vector h to ∥h∥e1, where e1 is the unit vector
in the direction of the first coordinate of x. Since U−1U =
I, we can express the constraint |xTh|2 ≤ ϵ, as |xTh|2 =
|(xTU−1)(Uh)|2 ≤ ϵ. By Defining xTU−1 = yT , where
y = (y1, . . . , yN )T is a new coordinate system, and knowing
that Uh = (∥h∥, 0, . . . , 0), we obtain |xTh|2 = ∥h∥2|y1|2 ≤
ϵ. Consequently, applying a change of coordination according
to the rotation U, we have a new formulation for P1 in terms
of y = (y1, y2, . . . , yN )T expressed as (P2)

G = maximize f(y) = |yT g̃|2 (7)

subject to: ∥h∥2|y1|2 ≤ ϵ, (8)

∥y∥2 ≤ P. (9)

In P2, the vector g̃ = Ug is a rotated vector. Since a
rotation matrix is a unitary matrix and the distribution of
the CSCG-distributed vector g is invariant under rotation, we
have g̃ ∼ CN (0, 2σ2I). Furthermore, the entries of g̃ are
independent from the entries of h.

P2 implies that only y1 contributes to the interference-
power at the primary receiver. Using |y1| as a slack variable,
we can convert P2 to the equivalent problem (P3)

G = maximize f(y) = |yT g̃|2 (10)

subject to: 0 ≤ |y1| ≤
√
ϵ

∥h∥
, (11)

∥y−1∥2 ≤ P − |y1|2. (12)

Maximization of the objective f(y) = |yT g̃|2 over
y yields arg(yopti ) = − arg(g̃i) for i = 1, . . . , N .
Therefore, making (12) tight in the constraint, we obtain
y−1

opt =
g̃∗
−1

∥g̃−1∥

√
P − |y1|2. Consequently, the objective

function is f(y) =
(
|y1||g̃1|+

√
P − |y1|2 ∥g̃−1∥

)2

.

Maximizing f(y) over 0 ≤ |y1| ≤
√
ϵ

∥h∥ yields the following
two cases:
If ∥h∥2 ≤ ϵ

P
∥g̃∥2

|g̃1|2 ; then |yopt1 | = |g̃1|
∥g̃∥

√
P . Thus, we obtain the

optimal solution as yopt = g̃∗

∥g̃∥
√
P and the optimal secondary

received-power is G = P∥g̃∥2.
If ∥h∥2 > ϵ

P
∥g̃∥2

|g̃1|2 ; then we obtain |yopt1 | =
√
ϵ

∥h∥ ,

and thus y−1
opt =

g̃∗
−1

∥g̃−1∥

√
P − ϵ

∥h∥2 . Therefore,
the optimal secondary received-power is G =(√

ϵ|g̃1|
∥h∥ +

√
P − ϵ

∥h∥2 ∥g̃−1∥
)2

.

It is worth noting that, in order to convert yopt back to the
original coordinate system x, and thus find the solution to P1,
we can use the fact that x = UTy and obtain xopt = UTyopt.

C. Maximum Secondary Received-power

Having the two different cases for the optimal solution as
derived in Section III-B, the maximum secondary received-
power can be expressed compactly as

G = P∥g̃∥2 · 1{
∥h∥2≤ ϵ

P
∥g̃∥2
|g̃1|2

}
+

(
|g̃1|

√
ϵ

∥h∥
+

√
P − ϵ

∥h∥2
∥g̃−1∥

)2

· 1{
∥h∥2> ϵ

P
∥g̃∥2
|g̃1|2

}.
(13)

Therefore, using E[G] = Eg̃ [Eh [G|g̃]], the expected value of
G is

E[G] = PEg̃

[
E

[
∥g̃∥2 · 1{

∥h∥2≤ ϵ
P

∥g̃∥2
|g̃1|2

}|g̃
]]

+ Eg̃

[
E

[(
|g̃1|

√
ϵ

∥h∥ +

√
P − ϵ

∥h∥2 ∥g̃−1∥
)2

· 1{
∥h∥2> ϵ

P
∥g̃∥2
|g̃1|2

}|g̃
]]

.

(14)

Since 1{
∥h∥2> ϵ

P
∥g̃∥2
|g̃1|2

} ̸= 0 implies that ϵ < P∥h∥2, we have

(√
P − ϵ

∥h∥2

)
· 1{

∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}

=
√
P

(
1− ϵ

2∥h∥2P −O

(( ϵ

P

)2))
· 1{

∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}.
(15)
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Thus, since P is a fixed constant and ϵ ≥ 0 is varied, we can
write(

|g̃1|
√
ϵ

∥h∥ +

√
P − ϵ

∥h∥2 ∥g̃−1∥
)2

· 1{
∥h∥2> ϵ

P
∥g̃∥2
|g̃1|2

}

=

(
P∥g̃−1∥2 +

√
ϵ

(
2|g̃1|∥g̃−1∥

∥h∥
√
P

)
− ϵ

(
∥g̃−1∥2 − |g̃1|2

∥h∥2

)
−O

(( ϵ

P

) 3
2

))
· 1{

∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}. (16)

Therefore, since g̃ and h are independent, we obtain

E[G] = PEg̃

[
∥g̃∥2Pr

{
∥h∥2 ≤ ϵ

P

∥g̃∥2

|g̃1|2
|g̃
}]

+ PEg̃

[
∥g̃−1∥2Pr

{
∥h∥2 >

ϵ

P

∥g̃∥2

|g̃1|2
|g̃
}]

+ 2
√
P
√
ϵEg̃

|g̃1|∥g̃−1∥E

1{∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}

∥h∥
|g̃


− ϵEg̃

(∥g̃−1∥2 − |g̃1|2
)
E

1{∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}

∥h∥2
|g̃


−O

(( ϵ

P

) 3
2

)
. (17)

The random variable ∥h∥2

σ2 is chi-square distributed with 2N
degrees of freedom (see [21]). Therefore,

Pr
{
∥h∥2 > u

}
=

(
1 +

u

2σ2
+

u2

(2σ2)22!
+ . . .

+
uN−1

(2σ2)N−1(N − 1)!

)
e−

u
2σ2 , (18)

where u is a positive real number (see [21]), and thus using
the series expansion of e−

u
2σ2 with u = ϵ

P
∥g̃∥2

|g̃1|2 for a fixed g̃,
we find

Pr

{
∥h∥2 >

ϵ

P

∥g̃∥2

|g̃1|2
|g̃
}

= 1− 1

N !

(
∥g̃∥2

|g̃1|2

)N ( ϵ

2Pσ2

)N

+O

(( ϵ

P

)N+1
)
. (19)

Furthermore, for a fixed g̃ we can write

E

1{∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}

∥h∥ |g̃

 = E

[
1

∥h∥

]

− 2−N

σΓ(N)

∫ ϵ
Pσ2

∥g̃∥2

|g̃1|2

0

xN− 3
2 e−

x
2 dx = E

[
1

∥h∥

]

− 2−N

σΓ(N)

∫ ϵ
Pσ2

∥g̃∥2

|g̃1|2

0

xN− 3
2

(
1 +

∞∑
n=1

(−1)n(xn)

2n

)
dx, (20)

where Γ(.) is the Gamma function.
Since E

[
1

∥h∥

]
=

√
2 Γ(N+ 1

2 )

σΓ(N)(2N−1) (see [21]), we obtain

Eg̃

E
1{∥h∥2> ϵ

P
∥g̃∥2
|g̃1|2

}

∥h∥
|g̃

 =

√
2Γ(N + 1

2 )

σΓ(N)(2N − 1)

−O

(( ϵ

P

)N− 1
2

)
. (21)

Using the same approach as in (20), since E
[

1
∥h∥2

]
=

1
2(N−1)σ2 (see [21]), we obtain

Eg̃

E
1{∥h∥2> ϵ

P
∥g̃∥2
|g̃1|2

}

∥h∥2 |g̃

 =
1

2(N − 1)σ2
−O

(( ϵ

P

)N−1
)
.

(22)

Therefore, by (19), (21), and (22), we can derive

Eg̃

[
∥g̃∥2 · Pr

{
∥h∥2 ≤ ϵ

P

∥g̃∥2

|g̃1|2
|g̃
}]

= E [f1 (g̃)]O

(( ϵ

P

)N
)
,

(23)

Eg̃

[
∥g̃−1∥2 · Pr

{
∥h∥2 >

ϵ

P

∥g̃∥2

|g̃1|2
|g̃
}]

= E
[
∥g̃−1∥2

]
− E [f2 (g̃)]O

(( ϵ

P

)N
)
, (24)

Eg̃

|g̃1|∥g̃−1∥E

1{∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}

∥h∥
|g̃


=

√
2Γ(N + 1

2 )

σΓ(N)(2N − 1)
E [|g̃1|∥g̃−1∥]− E [f3 (g̃)]O

(( ϵ

P

)N− 1
2

)
,

(25)

Eg̃

(∥g̃−1∥2 − |g̃1|2
)
E

1{∥h∥2> ϵ
P

∥g̃∥2
|g̃1|2

}

∥h∥2
|g̃


=

E
[
∥g̃−1∥2 − |g̃1|2

]
2(N − 1)σ2

− E [f4 (g̃)]O

(( ϵ

P

)N−1
)
, (26)

where f1, f2, f3, f4 are suitable functions of the entries of g̃.
Thus, following (17) and using (23)-(26), the expected value
of G can be written as

E[G] = PE
[
∥g̃−1∥2

]
+
√
2Pϵ

Γ(N + 1
2 )

σΓ(N)(N − 1
2 )

E [|g̃1|]E [∥g̃−1∥]

+ ϵ
E
[
|g̃1|2 − ∥g̃−1∥2

]
2(N − 1)σ2

−O

(( ϵ

P

) 3
2

)
. (27)

The random variable, ∥g̃−1∥2

σ2 (resp. ∥g̃−1∥
σ ) is chi-square

(resp. chi) distributed with 2(N − 1) degrees of freedom.
Therefore, we have E

[
∥g̃−1∥2

]
= 2(N − 1)σ2, E [∥g̃−1∥] =√

2σ
Γ(N− 1

2 )

Γ(N−1) , E
[
|g̃1|2

]
= 2σ2, and E [|g̃1|] =

√
2Γ

(
3
2

)
σ, (see

[21]). Thus, for ϵ = αP , we obtain

E[G] = 2Pσ2(N − 1) + 2
√
2Pϵ σ

(
Γ
(
3
2

)
Γ(N − 1

2
)Γ
(
N + 1

2

)
Γ(N)Γ(N − 1)

(
N − 1

2

) )

− ϵ

(
N − 2

N − 1

)
−O

(( ϵ

P

) 3
2

)
(28)

= 2Pσ2(N − 1) + 2
√
2αPσ

(
Γ
(
3
2

)
Γ(N − 1

2
)Γ
(
N + 1

2

)
Γ(N)Γ(N − 1)

(
N − 1

2

) )

− αP

(
N − 2

N − 1

)
−O

(
α

3
2

)
. (29)
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Fig. 2. The exact value of E[G] in the case of perfect CSI and its second order
approximation versus N for different values of α when P = 1 and σ = 1.
For different values of α from zero to 0.5, the approximation tracks well the
exact value. For a fixed N , as α increases, E[G] increases, i.e., intentionally
allowing additional interference to the primary provides additional received-
power to the secondary. With the increase of N , the gap between the null-
steering result (performance for α = 0) and the performance corresponding
to other values of α decreases.

D. Performance Evaluation

The first term in (29) corresponds to null-steering beam-
forming (α = 0) which has been studied in [18]. This term
grows linearly with N due to spatial diversity and we refer to
it as the null-steering result. If we exclude higher order terms
in (29) (i.e. terms of order α

3
2 and higher), we obtain a second

order approximation of E[G] in
√
α. Note that throughout

this paper, second order approximation refers to second order
approximation in

√
α.

Figures 2 and 3 plot E[G] (the exact value) and its second
order approximation versus N and α respectively, for P = 1
and σ = 1. As shown in the figures, the second order
approximations track well the exact value. Therefore, the
second order approximation of E[G] is accurate for α at least
as large as 0.5.

As N increases, the terms
Γ(N− 1

2 )Γ(N+ 1
2 )

Γ(N)Γ(N−1)(N− 1
2 )

and N−2
N−1

in (29), both converge to 1. Particularly, for N = 10, we

have
Γ(N− 1

2 )Γ(N+ 1
2 )

Γ(N)Γ(N−1)(N− 1
2 )

≃ 0.97 and N−2
N−1 ≃ 0.89. Therefore,

for large N , the second order approximation of E[G] can be
written as

E[G] ≃ 2Pσ2(N − 1) + 2
√
2αPσ Γ

(
3

2

)
− αP. (30)

We are interested in finding tradeoffs between the primary
interference threshold, ϵ = αP , and the mean secondary
received-power, E[G]. In other words, we aim to study the
improvement in E[G] as α grows slightly larger than zero.
In (30), since N is sufficiently large, for small α the first
term is clearly dominant. Thus, a small increase in α from
zero results in a small relative increase in E[G]. Therefore,
when the number of secondary antennas is large, a nonzero
interference threshold does not lead to a much greater E[G]
than the null-steering result.

On the other hand, for smaller values of N , since the
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Fig. 3. The exact value of E[G] in the case of perfect CSI and its second
order approximation versus α for different values of N when P = 1 and
σ = 1. The approximation tracks well the exact value. E[G] increases as α
increases. Smaller N leads to a higher increase in E[G]. For N = 2, N = 3,
N = 4, N = 6, and N = 9, the increase in E[G] is 1.2 dB (31%), 0.7 dB
(16%), 0.5 dB (11%), 0.3 dB (6%), and 0.2dB (4%) respectively, when α
increases from 0 to 0.1.

first term in the second order approximation of (29) is not
dominant, an increase in α from zero does lead to a moderate
increase in E[G]. As shown in Fig. 3, for N = 2, N = 4,
and N = 6, the change of α from 0 to 0.1 leads to an
increase of 1.2dB (31%), 0.5dB (11%), and 0.3dB (6%)
in E[G] respectively. In other words, intentionally allowing
additional interference to the primary provides additional
received-power to the secondary. For larger values of N , a
small change of α has a relatively smaller impact on E[G].
This fact can also be observed in Fig. 2 as the gap between
the the performance for α = 0 (null-steering result) and the
performance corresponding to different values of α decreases
as N increases.

IV. IMPERFECT CSI

A more general and realistic scenario is when the channel
gains are not perfectly known at the secondary transmitter.
This happens due to channel estimation errors which are
nonzero. With estimation errors, the estimated channel gains
can be expressed as

ĝ = g +w, ĥ = h+ v, (31)

where g and h are the actual secondary channel gain and the
actual primary channel gain, respectively. The vectors w and v
in (31) are estimation error vectors. The random vectors h, g,
w, and v are assumed to be mutually independent. In addition,
w and v are assumed to be distributed as CN (0, 2σ2

eI) (a
Gaussian-distributed model for the estimated channel gains
is often a reasonable model in estimation methods such as
Maximum Likelihood estimation (MLE) [22]).

We assume that the secondary transmitter does not have a
priori knowledge of the error vectors, σ2

e , or any uncertainty
regions containing the actual channel channels. Therefore,
uncertainty analysis can not be performed. Instead, we find
an optimal beamforming vector merely by using the estimates
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of channel gains instead of the actual channel gains. Conse-
quently, we derive the secondary received-power (resp. pri-
mary interference-power) corresponding to this beamforming
vector and refer to it as the “actual” secondary received-power
(resp. primary interference-power). Then, we analyze the effect
of channel estimation error on these results. Intuitively, esti-
mation error leads to extra interference at the primary receiver
and less power at the secondary receiver compared to the
corresponding values in the case of perfect CSI. Therefore,
the results in the case of perfect CSI are upperbounds for the
results obtained in this section.

A. Problem Formulation

As stated earlier, in the imperfect CSI case, only the esti-
mated channel gains are available at the secondary transmitter.
Therefore, the optimization problem considered in this section
has the same formulation as P1 in Section III-A but with the
estimated channel gains instead. Therefore, we obtain P4 as

maximize |xT ĝ|2 (32)

subject to: |xT ĥ|2 ≤ ϵ, (33)

∥x∥2 ≤ P. (34)

To solve P4, we follow the same approach as in Section III-B.
We can similarly exploit U

′
as a rotation matrix and finally

obtain the optimal beamforming vector in two different cases.

B. Actual Primary Interference-power

Since P4 has the same formulation as P1 in Section III-A,
the optimal solution to P4 is similar to the optimal solution
to P1 with estimated channel gains instead (see Appendix
A). Therefore, using (31) which relates the actual unknown
channel gains to the estimated channel gains and having the
optimal solution to P4, the actual primary interference-power
is

I = |hTxopt|2 = |(ĥT − vT )xopt|2 = |ĥTxopt − vTxopt|2

= |∥ĥ∥yopt1 − ṽTyopt|2 = ∥ĥ∥2|yopt1 |2 + |ṽTyopt|2

− ∥ĥ∥yopt1 ṽ†yopt∗ − ∥ĥ∥yopt1

∗
ṽTyopt, (35)

where ṽ is the rotated version of v and thus it is also
distributed as CN (0, 2σ2

eI). It is worth noting that the term
∥ĥ∥2|yopt1 |2 in (35) is the primary interference threshold ϵ =
αP (the maximum allowable interference) while its following
terms are introduced by the estimation error. The mean E[I]
is then derived as (see Appendix A)

E[I] = 2Pσ2
e + αP −O

(
αN

)
. (36)

C. Actual Secondary Received-power

Having the optimal solution to P4 and using (31), the actual
power at the secondary receiver is

G = |gTxopt|2 = |(ĝT −wT )xopt|2 = |ĝTxopt −wTxopt|2

= |˜̂g
T
yopt − w̃Tyopt|2 = |˜̂g

T
yopt|2 + |w̃Tyopt|2

− ˜̂g
T
yoptw̃†yopt∗ − ˜̂g

†
yopt∗w̃Tyopt, (37)
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Fig. 4. The exact value of E[I] in the case of imperfect CSI and its second
order approximation versus N for different values of α and γ when P = 1
and σ = 1. The second order approximation tracks well the exact value and
it is insensitive to N .

where w̃ is the rotated version of w and thus it is also
distributed as CN (0, 2σ2

eI). For ϵ = αP , E[G] is derived as
(see Appendix B)

E[G] = Q+
√
αR+ αT +O

(
α

3
2

)
, (38)

where

Q = 2P (N − 1)σ2

(
1− 1

γ
+

1

γ(1 + γ)
+

1

(N − 1)(1 + γ)

)
,

(39)

R = 2
√
2Pσ

Γ
(
3
2

)
Γ
(
N − 1

2

)
Γ
(
N + 1

2

)
Γ(N)Γ(N − 1)

(
N − 1

2

) (
γ

1 + γ

) 3
2

, (40)

T = P

(
−1 +

1

N − 1
− 1

(1 + γ)2
− γ

(N − 1)(1 + γ)2

+
2N − 3

(N − 1)(1 + γ)

)
, (41)

and γ = σ2/σ2
e is the ratio of the scattering component’s

power to the power of the estimation error. Note that in the
case of no channel estimation error (γ = ∞), (38) equals to
(29).

D. Performance Evaluation

In (36), the first term is equal to the actual mean primary
interference-power for null-steering beamforming (α = 0)
[18]. In the case of a relatively small α, for sufficiently large
N , the first two terms in (36) (second order approximation
in

√
α) become dominant, and these terms are independent

of N . Therefore, employing more antennas at the secondary
transmitter to improve its performance generates no significant
extra interference at the primary receiver.

The empirical average of the actual interference at the
primary receiver (the exact E[I]) and the second order ap-
proximation of E[I] in (36) are plotted versus N in Fig. 4.
As shown in the figure, the approximation tracks well the
exact value and is effectively insensitive to N . Even though
the acceptable primary interference threshold is ϵ = αP ,
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Fig. 5. The exact value of E[G] in the case of imperfect CSI and the
corresponding analytic result versus N for different values of γ when α = 0,
P = 1, and σ = 1. The analytic result tracks well the exact value. For a
fixed N , as γ increases, E[G] increases to approach the upperbound (the w/o
error performance).

because of channel estimation inaccuracy, E[I] has an extra
dominant term in (36), which is proportional to the power of
the estimation error. Therefore, more accurate estimations of
the channel gains result in values of interference-power that
are closer to the desired threshold ϵ.

The mean secondary received-power found with perfect CSI
in (29) is an upperbound for the actual secondary received-
power derived in (38). In other words, as γ → ∞, (38)
converges to (29). Fig. 5 plots E[G] and the analytic result
in (38) for α = 0 versus N for different values of γ, when
P = 1 and σ = 1. As shown in the figure, the analytic result
tracks well the exact value. Furthermore, for a fixed N , as γ
increases, E[G] increases to approach the upperbound (the w/o
error performance).

As N increases, the second order approximation of (38)
converges to

E[G] ≃ 2Pσ2

1 + γ
+ 2Pσ2

(
1− 1

γ
+

1

γ(1 + γ)

)
(N − 1)

+ 2
√
2αP σ Γ

(
3

2

)(
γ

1 + γ

) 3
2

− αP

(
1 +

1

(1 + γ)2

)
. (42)

Figures 6 and 7 plot the exact E[G] in (38) and its second
order approximation versus N for different values of γ and
α when P = 1 and σ = 1. As shown in the figures, the
second order approximation tracks well the exact value in each
case. Furthermore, according to these figures, for small N ,
E[G] increases moderately as α increases but for larger values
of N , the increase of α leads to a small relative increase in
E[G]. In other words, with the increase of N , the gap between
the performance for α = 0 (the null-steering result) and the
performance corresponding to different values of α decreases.

Fig. 8 plots the exact E[G] in (38) and its second order
approximation versus α for N = 5 and N = 9, when
P = 1 and σ = 1. According to the figure, the second
order approximation tracks well the exact E[G] for different
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Fig. 6. The exact value of E[G] in the case of imperfect CSI and its second
order approximation versus N for different values of α and γ when P = 1
and σ = 1. The second order approximation tracks well the exact value. Left:
γ = 3dB, Right: γ = 6dB,
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Fig. 7. The exact value of E[G] in the case of imperfect CSI and its second
order approximation versus N for different values of α when γ = 10dB,
P = 1, and σ = 1. The second order approximation tracks well the exact
value. For a fixed N , as α increases, E[G] increases. With the increase of N ,
the gap between the performance for α = 0 (the null-steering result) and the
performance corresponding to different values of α decreases.

values of γ. Furthermore, E[G] does not significantly improve
with the increase in α, the improvements in the case of
imperfect CSI are less compared to the perfect CSI case,
and the improvements decrease as the number of antennas
increases.

Thus, in the imperfect CSI case, the primary’s allowance
for a small nonzero interference is not a significant factor
in improving the secondary’s performance. Therefore, the
secondary system can employ a large number of antennas
to boost its performance without significantly impacting the
primary, and perform null-steering beamforming instead. In
this way, the mean actual interference at the primary receiver
is only 2Pσ2

e according to (36) (recall that α = 0 and the
dominant terms in (36) are independent of N ) and can be
less than the interference threshold ϵ if the estimation error
variance σ2

e is small enough.
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Fig. 8. The exact value of E[G] in the case of imperfect CSI and its second
order approximation versus α for different values of N and γ, when P = 1
and σ = 1. Top; N = 5, Bottom; N = 9. The second order approximation
tracks well the exact value of E[G] for different values of γ. The exact E[G]
does not improve significantly with the increase in α. The improvements in
the case of imperfect CSI are less compared to the perfect CSI case (w/o error
performance).

V. CONCLUDING REMARKS

For a secondary transmitter, the optimal beamforming vector
has been characterized to maximize the secondary received-
power while limiting the primary interference-power to a
threshold ϵ = αP . Both cases of perfect CSI and imperfect
CSI have been studied. We have derived the mean secondary
received-power E[G] in a closed-form expression for both
cases and have shown that they both consist of a term which
grows linearly with N , and additional terms dependent on α.
Furthermore, under imperfect CSI, the dominant parts of E[I]
are found to be independent of N . Therefore, each additional
antenna provides a significant gain in the secondary received-
power without generating significant extra interference at the
primary receiver. Furthermore, since the primary’s allowance
for a small nonzero interference is not a significant factor in
improving the secondary’s performance, the secondary should
perform null-steering beamforming instead. Thus, in the case
of imperfect CSI, if the primary’s interference threshold is
greater than 2Pσ2

e , then null-steering beamforming generates
less mean interference at the primary receiver than the inter-
ference threshold. A direction for future work is the case when
the primary receiver has multiple antennas or more than one
single-antenna primary receiver exist as well as considering the

case of bidirectional communication in the secondary link.

APPENDIX A
In the following, we derive the actual primary interference-

power in the case of imperfect CSI.
When ∥ĥ∥2 ≤ ϵ

P
∥˜̂g∥2

| ˜̂g1|2
: the optimal solution to P4 is yopt =

˜̂g
∗

∥˜̂g∥

√
P . Therefore, using (35), the actual interference-power

at the primary receiver is

I1 =
P∥ĥ∥2|˜̂g1|2

∥˜̂g∥2
+

P

∥˜̂g∥2

∣∣∣∣∣
N∑
i=1

ṽi ˜̂g
∗
i

∣∣∣∣∣
2

− P ˜̂g
∗
1∥ĥ∥

∥˜̂g∥2

N∑
i=1

ṽ∗i ˜̂gi

− P ˜̂g1∥ĥ∥
∥˜̂g∥2

N∑
i=1

ṽi ˜̂g
∗
i . (43)

Then, we derive

E

[
I1 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= PE˜̂g

[
|˜̂g1|2

∥˜̂g∥2
E

[
{∥ĥ∥2 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

+ PE˜̂g

[
|ṽ1|2 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]

+ PN(N − 1)E˜̂g

[
˜̂g
∗
1
˜̂g2

∥˜̂g∥2
E

[
ṽ1ṽ

∗
2 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

− 2PE˜̂g

[
|˜̂g1|2

∥˜̂g∥2
E

[
∥ĥ∥ṽ∗1 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

− 2P

N∑
i=2

E˜̂g

[
˜̂g1
˜̂g
∗
i

∥˜̂g∥2
E

[
∥ĥ∥ṽi · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

. (44)

Because of spherical symmetry, we have

E

[
ṽiṽ

∗
j · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]
= 0, E

[
∥ĥ∥ṽi · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]
= 0,

(45)

for all i and j where i ̸= j. Furthermore, since the random
variable ∥ĥ∥2

σ2 is chi-square distributed with 2N degrees of
freedom, we can write

E
[
∥ĥ∥2 · 1{∥ĥ∥2≤ ϵ

P }
]
=

σ2 + σ2
e

2NΓ(N)

∫ ϵ
P (σ2+σ2

e)

0

xN+1e−
x
2 dx

=
σ2 + σ2

e

2NΓ(N)

∫ ϵ
P (σ2+σ2

e)

0

xN+1

(
1 +

∞∑
n=1

(−1)n(xn)

2n

)
dx

=
4(σ2 + σ2

e)

(N + 2)Γ(N)

(
ϵ

2P (σ2 + σ2
e)

)N+2

+O

(( ϵ

P

)N+3
)
.

(46)

Consequently, we have

E˜̂g

[
|˜̂g1|2

∥˜̂g∥2
E

[
{∥ĥ∥2 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

= E
[
f5(˜̂g)

]
O

(( ϵ

P

)N+2
)
, (47)

where f5 is a suitable function of the entries of ˜̂g. Therefore,
we obtain

E

[
I1 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= PE˜̂g

[
E

[
|ṽ1|2 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

+O

(( ϵ

P

)N+2
)
. (48)
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When ∥ĥ∥2 > ϵ
P

∥˜̂g∥2

| ˜̂g1|2
: the optimal solution to P4 is

yopt1 =
√
ϵe−j arg(˜̂g1)

∥ĥ∥ and y−1
opt =

˜̂g
∗
−1

∥˜̂g−1∥

√
P − ϵ

∥ĥ∥2
. There-

fore, using (35), the actual interference-power is

I2 = ϵ+

∣∣∣∣∣∣
√
ϵ

∥ĥ∥
e−j arg(˜̂g1)ṽ1 +

√
P − ϵ

∥ĥ∥2

∥˜̂g−1∥

N∑
i=2

ṽi ˜̂g
∗
i

∣∣∣∣∣∣
2

−
√
ϵe−j arg(˜̂g1)

 √
ϵ

∥ĥ∥
ej arg(˜̂g1)ṽ∗1 +

√
P − ϵ

∥ĥ∥2

∥˜̂g−1∥

N∑
i=2

ṽ∗i ˜̂gi


−

√
ϵej arg(˜̂g1)

 √
ϵ

∥ĥ∥
e−j arg(˜̂g1)ṽ1 +

√
P − ϵ

∥ĥ∥2

∥˜̂g−1∥

N∑
i=2

ṽi ˜̂g
∗
i

 .

(49)

Then, we have

E

[
I2 · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= ϵE˜̂g

[
E

[
1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

+ ϵE˜̂g

[
E

[
|ṽ1|2

∥ĥ∥2
· 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

+ E˜̂g

[
E

[
|ṽ2|2

(
P − ϵ

∥ĥ∥2

)
· 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

= ϵ+ PE˜̂g

[
E

[
|ṽ2|2 · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

−O

(( ϵ

P

)N)
.

(50)

Note that in the derivation of (50), some terms are zero due
to spherical symmetry. Since ṽ1 is equal in distribution with
ṽ2, for ϵ = αP , we obtain

E[I] = E

[
I1 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
+ E

[
I2 · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]

= PE
[
|ṽ1|2

]
+ ϵ−O

(( ϵ

P

)N)
= 2Pσ2

e + αP −O
(
αN
)
. (51)

APPENDIX B

In the following, we derive the actual secondary received-
power in the case of imperfect CSI.
When ∥ĥ∥2 ≤ ϵ

P
∥˜̂g∥2

| ˜̂g1|2
: in this case, the optimal solution to P4

is yopt =
˜̂g
∗

∥˜̂g∥

√
P . Therefore, using (37), the actual secondary

received-power is

G1 = P∥˜̂g∥2 + P

∥˜̂g∥2

∣∣∣∣∣
N∑
i=1

w̃i
˜̂g
∗
i

∣∣∣∣∣
2

− P
N∑
i=1

w̃∗
i
˜̂gi − P

N∑
i=1

w̃i
˜̂g
∗
i .

(52)

Thus, using (19) with ĥ in place of h, we obtain

E

[
G1 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= E˜̂g

[
G1 · Pr

{
∥ĥ∥2 ≤ ϵ

P

∥˜̂g∥2

| ˜̂g1|2
|˜̂g

}]

= E
[
f6(˜̂g)

]
O

(( ϵ

P

)N)
, (53)

where f6 is a suitable function of the entries of ˜̂g.

When ∥ĥ∥2 > ϵ
P

∥˜̂g∥2

| ˜̂g1|2
: the optimal solution has yopt1 =

√
ϵe−j arg(˜̂g1)

∥˜̂h∥
and yopt

−1 =
˜̂g
∗
−1

∥˜̂g−1∥

√
P − ϵ

∥ĥ∥2
. Thus, using (37),

the actual secondary received-power can be expressed as

G2 =

(
| ˜̂g1|

√
ϵ

∥ĥ∥
+
√

P − ϵ

∥ĥ∥2
∥˜̂g−1∥

)2

+

∣∣∣∣∣∣ w̃1
√
ϵe−j arg(˜̂g1)

∥˜̂h∥
+

√
P − ϵ

∥ĥ∥2

∥˜̂g−1∥

N∑
i=2

w̃i
˜̂gi

∗

∣∣∣∣∣∣
2

−

(
˜̂g1
√
ϵe−j arg(˜̂g1)

∥˜̂h∥
+
√

P − ϵ

∥ĥ∥2
∥˜̂g−1∥

)
 w̃∗

1

√
ϵej arg(˜̂g1)

∥˜̂h∥
+

√
P − ϵ

∥ĥ∥2

∥˜̂g−1∥

N∑
i=2

w̃∗
i
˜̂gi


−

(
˜̂g
∗
1

√
ϵej arg(˜̂g1)

∥˜̂h∥
+
√

P − ϵ

∥ĥ∥2
∥˜̂g−1∥

)
 w̃1

√
ϵe−j arg(˜̂g1)

∥˜̂h∥
+

√
P − ϵ

∥ĥ∥2

∥˜̂g−1∥

N∑
i=2

w̃i
˜̂gi

∗

 . (54)

Denote the first term in (54) as A. Thus we obtain

E

[
A · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}] = 2P (N − 1)
(
σ2 + σ2

e

)
+ 2

√
2Pϵ(σ2 + σ2

e)
Γ
(
3
2

)
Γ(N − 1

2 )Γ
(
N + 1

2

)
Γ(N)Γ(N − 1)

(
N − 1

2

)
− ϵ

(
N − 2

N − 1

)
−O

(( ϵ

P

) 3
2

)
, (55)

which is derived following the same approach as in Section
III-C with ĥ in place of h and knowing

E
[
∥˜̂g−1∥2

]
= E

[
N∑
i=2

|g̃i + w̃i|2
]
= E

[
N∑
i=2

|g̃i|2
]
+ E

[
N∑
i=2

|w̃i|2
]

= 2(N − 1)
(
σ2 + σ2

e

)
. (56)

Denoting the second term in (54) as B, we obtain

E

[
B · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= ϵE˜̂g

|w̃1|2E

1{∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}

∥ĥ∥2
|˜̂g


+ E˜̂g

[∑N
i=2 |w̃i|2|˜̂gi|2

∥˜̂g−1∥2
E

[(
P − ϵ

∥ĥ∥2

)
1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

+ E˜̂g

[∑N
i=2,i̸=j

∑N
j=2 w̃

∗
i w̃j

˜̂gi
˜̂g
∗
j

∥˜̂g−1∥2
E

[(
P − ϵ

∥ĥ∥2

)
1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

+
√
ϵE˜̂g

 w̃∗
1e

j arg(˜̂g1)
∑N

i=2 w̃i
˜̂g
∗
i

∥˜̂g−1∥
E


√

P − ϵ

∥ĥ∥2

∥ĥ∥
1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g


(57)

+
√
ϵE˜̂g

 w̃1e
−j arg(˜̂g1)

∑N
i=2 w̃

∗
i
˜̂gi

∥˜̂g−1∥
E


√

P − ϵ

∥ĥ∥2

∥ĥ∥
1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
 .

(58)

Therefore, using the same argument as in (15), (21), and (22)
with ĥ in place of h, and knowing that (57) and (58) are
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equivalent due to spherical symmetry, we find

E

[
B · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= ϵE

[
|w̃1|2

]
E

[
1

∥ĥ∥2

]

+ E

[∑N
i=2 |w̃i|2|˜̂gi|2

∥˜̂g−1∥2

]
E

[(
P − ϵ

∥ĥ∥2

)]

+ E

[∑N
i=2,i̸=j

∑N
j=2 w̃

∗
i w̃j

˜̂gi
˜̂g
∗
j

∥˜̂g−1∥2

]
E

[(
P − ϵ

∥ĥ∥2

)]

+ 2
√
ϵE
[
w̃∗

1e
j arg(˜̂g1)

]
E

[∑N
i=2 w̃i

˜̂g
∗
i

∥˜̂g−1∥

]
E

[√
P

∥ĥ∥

]

+O

(( ϵ

P

) 3
2

)
. (59)

Let

W =

∑N
i=2 |w̃i|2|˜̂gi|2

∥˜̂g−1∥2
, V =

∑N
i=2,i̸=j

∑N
j=2 w̃

∗
i w̃j

˜̂gi
˜̂g
∗
j

∥˜̂g−1∥2
·

(60)

Conditioning on the entries of ˜̂g, we obtain

E[W ] =

N∑
i=2

E˜̂g

[
E

[
|w̃i|2|˜̂gi|2

∥˜̂g−1∥2
|˜̂g

]]

=

N∑
i=2

E˜̂g

E
[
|w̃i|2|˜̂gi

]
|˜̂gi|2

∥˜̂g−1∥2

 , (61)

E[V ] =
N∑

i=2,i̸=j

N∑
j=2

E˜̂g

[
E

[
w̃iw̃

∗
j
˜̂g
∗
i
˜̂gj

∥˜̂g−1∥2
|˜̂g

]]

=

N∑
i=2,i̸=j

N∑
j=2

E˜̂g

E
[
w̃i|˜̂gi

]
E
[
w̃∗

j |˜̂gj
]
˜̂g
∗
i
˜̂gj

∥˜̂g−1∥2

 . (62)

Knowing that ˜̂gi = g̃i+ w̃i, define Yi = −σ2
e

σ2 g̃i+ w̃i. Random
variables ˜̂gi and Yi are independent for all i = 1, 2, . . . , N
since they are zero-mean Gaussian distributed and satisfy
E[˜̂giYi] = 0. Furthermore, we have E

[
|Yi|2

]
= 2σ2

e(1 +
σ2
e

σ2 ).
Since w̃i =

σ2
e

σ2+σ2
e

˜̂gi +
σ2

σ2+σ2
e
Yi, we obtain

E
[
|w̃i|2|˜̂gi

]
= E

[∣∣∣∣ σ2
e

σ2 + σ2
e

˜̂gi +
σ2

σ2 + σ2
e

Yi

∣∣∣∣2
]

=

(
σ2
e

σ2 + σ2
e

)2

|˜̂gi|
2 +

(
σ2

σ2 + σ2
e

)2

E
[
|Yi|2

]
=

(
σ2
e

σ2 + σ2
e

)2

|˜̂gi|
2 +

2σ2σ2
e

σ2 + σ2
e

· (63)

Similarly, we can show that E
[
w̃i|˜̂gi

]
=

σ2
e

σ2+σ2
e

˜̂gi and

E
[
w̃∗

j |˜̂gj
]
=

σ2
e

σ2+σ2
e

˜̂g
∗
j . Therefore, we obtain

E[W ] =

(
σ2
e

σ2 + σ2
e

)2 N∑
i=2

E

[
|˜̂gi|4

∥˜̂g−1∥2

]

+
2σ2σ2

e

σ2 + σ2
e

N∑
i=2

E

[
|˜̂gi|2

∥˜̂g−1∥2

]

=

(
σ2
e

σ2 + σ2
e

)2 N∑
l=2

E

[
|˜̂gi|4

∥˜̂g−1∥2

]
+

2σ2σ2
e

σ2 + σ2
e

, (64)

and

E[V ] =

(
σ2
e

σ2 + σ2
e

)2 N∑
i=2,i̸=j

N∑
j=2

E

[
|˜̂gi|2|˜̂gj |2

∥˜̂g−1∥2

]
. (65)

Therefore, we get

E[W + V ] =

(
σ2
e

σ2 + σ2
e

)2

E

[
N∑
i=2

|˜̂gi|
2

]
+

2σ2σ2
e

σ2 + σ2
e

=
2σ4

e

σ2 + σ2
e

(N − 1) +
2σ2σ2

e

σ2 + σ2
e

· (66)

Furthermore, we can write

E
[
w̃∗

1e
j arg(˜̂g1)

]
= E

[
w̃∗

1
˜̂g1

|˜̂g1|

]
= E˜̂g1

[
E

[
w̃∗

1
˜̂g1

|˜̂g1|
|˜̂g1
]]

= E

[(
σ2
e

σ2 + σ2
e

˜̂g
∗
1 +

σ2

σ2 + σ2
e

Y ∗
1

) ˜̂g1
|˜̂g1|

]
=

σ2
e

σ2 + σ2
e

E
[
|˜̂g1|
]
=

√
2Γ

(
3

2

)
σ2
e√

σ2 + σ2
e

·

(67)

Also, we can write

E

[∑N
i=2 w̃i

˜̂g
∗
i

∥˜̂g−1∥

]
= E

∑N
i=2

˜̂g
∗
iE
[
w̃i|˜̂gi

]
∥˜̂g−1∥


= E

∑N
i=2 E

[(
σ2
e

σ2+σ2
e

˜̂gi +
σ2

σ2+σ2
e
Yi

)
˜̂g
∗
i

]
∥˜̂g−1∥


=

σ2
e

σ2 + σ2
e

E

[∑N
i=2 |˜̂gi|

2

∥˜̂g−1∥

]
=

σ2
e

σ2 + σ2
e

E
[
∥˜̂g−1∥

]
=

√
2σ2

e Γ(N − 1
2
)

√
σ2 + σ2

e Γ(N − 1)
· (68)

Therefore, knowing that E
[

1
∥ĥ∥

]
=

√
2 Γ(N+ 1

2 )√
σ2+σ2

e Γ(N) (2N−1)
and

E
[

1
∥ĥ∥2

]
= 1

2(N−1)(σ2+σ2
e)

, from (21) and (22) we obtain

E

[
B · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
=

2Pσ2
e

σ2 + σ2
e

(
σ2
e(N − 1) + σ2)

+ 2
√
2PϵΓ

(
3

2

)
σ4
e Γ
(
N − 1

2

)
Γ
(
N + 1

2

)
(σ2 + σ2

e)
3
2 Γ(N − 1)Γ(N)

(
N − 1

2

)
+

ϵσ2
e

σ2 + σ2
e

(
1

N − 1
− σ2

e

σ2 + σ2
e

− σ2

(N − 1) (σ2 + σ2
e)

)
+O

(( ϵ

P

) 3
2

)
. (69)

Denoting the third term in (54) as C, we obtain

−E

[
C · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= ϵE˜̂g

|w̃1|2E

1
{
∥ĥ∥2> ϵ

P
∥˜̂g∥2
| ˜̂g1|2

}
∥ĥ∥2

|˜̂g




+
√
ϵE˜̂g

 |˜̂g1|∑N
i=2 w̃

∗
i
˜̂gi

∥˜̂g−1∥
E


√

P − ϵ

∥ĥ∥

∥ĥ∥
· 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g


+
√
ϵE˜̂g

w̃∗
1e

j arg(˜̂g1)∥˜̂g−1∥E


√

P − ϵ

∥ĥ∥2

∥ĥ∥
· 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g


+ E˜̂g

[
N∑
i=2

˜̂giw̃
∗
i E

[(
P − ϵ

∥ĥ∥2

)
· 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}|˜̂g
]]

,

(70)
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which can be written as

−E

[
C · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= ϵE

[
|w̃1|2

]
E

[
1

∥ĥ∥2

]

+
√
ϵE
[
|˜̂g1|
]
E

[∑N
i=2 w̃

∗
i
˜̂gi

∥˜̂g−1∥

]
E

[√
P

∥ĥ∥

]

+
√
ϵE
[
w̃∗

1e
j arg(˜̂g1)

]
E
[
∥˜̂g−1∥

]
E

[√
P

∥ĥ∥

]

+ E

[
N∑
i=2

˜̂giw̃
∗
i

]
E

[
P − ϵ

∥ĥ∥2

]
+O

(( ϵ

P

) 3
2

)
. (71)

Therefore, we derive

−E

[
C · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= 2Pσ2

e(N − 1)− ϵ (N − 2)σ2
e

(N − 1) (σ2 + σ2
e)

+
2
√
2Pϵ σΓ

(
3
2

)
Γ
(
N + 1

2

)
Γ
(
N − 1

2

)√
γ(1 + γ)Γ(N)Γ (N − 1)

(
N − 1

2

)
+O

(( ϵ

P

) 3
2

)
. (72)

The fourth term in (54) is equal in distribution with C.
Therefore, we obtain

E

[
G2 · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
= E

[
A · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]

+ E

[
B · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]

+ 2E

[
C · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]

= Q+

√
ϵ

P
R+

ϵ

P
T +O

(( ϵ

P

) 3
2

)
,

(73)

where

Q = 2P (N − 1)σ2

(
1− 1

γ
+

1

γ(1 + γ)
+

1

(N − 1)(1 + γ)

)
,

(74)

R = 2
√
2Pσ

Γ
(
3
2

)
Γ
(
N − 1

2

)
Γ
(
N + 1

2

)
Γ(N)Γ(N − 1)

(
N − 1

2

) (
γ

1 + γ

) 3
2

, (75)

T = P

(
−1 +

1

N − 1
− 1

(1 + γ)2
− γ

(N − 1)(1 + γ)2

+
2N − 3

(N − 1)(1 + γ)

)
, (76)

and γ = σ2/σ2
e is the ratio of the scattering component’s

power to the power of the estimation error.
Therefore, for ϵ = αP , the actual secondary received-power

has the expected value

E[G] = E

[
G1 · 1{

∥ĥ∥2≤ ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]
+ E

[
G2 · 1{

∥ĥ∥2> ϵ
P

∥˜̂g∥2
| ˜̂g1|2

}
]

= Q+

√
ϵ

P
R+

ϵ

P
T +O

(( ϵ

P

) 3
2

)
= Q+

√
αR+ αT +O

(
α

3
2

)
. (77)
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