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Abstract

Costa has proved that for non-causally known Gaussian interference at a power constrained transmitter

communicating over an additive white Gaussian noise channel there is no capacity loss when compared

to a scenario where interference is not present. For the case of a transmitter communicating over a

quasi-static (i.e., non-ergodic) fading channel, his method does not apply.

In this correspondence, we derive upper and lower bounds on the capacity of compound channels

with side-information at the transmitter, first for finite alphabet channels and then, based on this result,

for channels on standard alphabets (this includes real alphabets). For the special case of a degenerate

compound channel with only one possible realization, our bounds are equivalent to the well-known

capacity with side-information formula of Gel’fand and Pinsker. For the quasi-static fading channel,

when fading is Ricean, we suggest a scheme based on our lower bound for which the performance is

found to be relatively good even for moderate K-factor. As K → ∞, the uncertainty on the channel

vanishes and our scheme obtains the performance of dirty paper coding, namely that the interference

is perfectly mitigated. As K → 0, the proposed scheme treats the interferer as additional noise. These

results may be of importance for the emerging field of cognitive radios where one user may be aware

of another user’s intended message to a common receiver, but is unaware of the channel path gains.

Index Terms

Gel’fand-Pinsker channel, dirty paper coding, side-information, compound channels, fading channels,

cognitive radios.

I. INTRODUCTION

Gel’fand and Pinsker first considered the issue of communicating over a channel PY |X when side-

information S is non-causally available at the encoder [10]. By building on the work of Gel’fand and
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Pinsker, Costa showed for the i.i.d. case the surprising result that for additive Gaussian noise channels

(with noise power N and input power constraint P ) with a Gaussian interferer (with power Q) that the

interference could be perfectly mitigated [3] – i.e., that regardless of the power of the interferer Q, the

capacity is 1
2 log(1 + P/N).

This result was obtained by starting with one of the results of Gel’fand and Pinsker in [10], namely

that in the discrete alphabet case, for any auxiliary random variable U distributed jointly with X and S

according to PU,X|S , the rate

R = I(U ; Y )− I(U ; S), (1)

is achievable. Costa then generalized this result to real alphabets and showed that if the joint distribution

is chosen such that U = X + αS with X ∼ N(0, P ) and α = P/(P + N) then R = 1
2 log(1 + P/N),

the capacity of the channel without interference.

That the capacity is the same as if the interferer were not present has been generalized to the case

where the additive noise is a stationary Gaussian process and the interferer is any power limited ergodic

process [2]. Other extensions may be found for which both S and N are Gaussian but not necessarily

stationary or ergodic [23], the interfering sequence is chosen arbitrarily [24] or extension to various

multi-user settings with Gaussian channels [16].

There has also been much renewed interest in Gel’fand-Pinsker channels and in particular, the ap-

plication of Costa’s surprising dirty paper coding result. This is in part due to its application to the

derivation of the capacity of Gaussian Broadcast Channels [1], [15], [18]–[20], [22]. In all these works,

it is assumed that the transmitter has perfect channel state information, i.e., the fading coefficients of the

wireless channel are assumed known to the transmitter and the receiver(s).

In this work, we are interested in generalizing the results of Gel’fand and Pinsker to the case where the

channel is parameterized continuously by β (belonging to a compact set C) unknown to the transmitter, but

assumed known at the decoder. This model reflects fading channels where the channel state information

may be estimated at the receiver, but is unknown to the transmitter. For communication over a channel

without side-information, such channels are often called compound channels1 [6], [21].

While an interesting problem in itself, our motivation for considering compound channels with side-

information at the transmitter is due to the study of cognitive radios [8], [17]. In such a framework, a

cognitive radio is aware of its environment in real-time. In particular, consider the situation where another

1In [21], the channel is said to be compound provided that β is unknown to either the transmitter, the receiver or both. Here,

we are interested in the scenario where β is known to the receiver but not the transmitter.
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(possibly non-cognitive) user transmits to a receiver in either a frequency or time slot. The cognitive radio

may sense this transmission and, if sufficiently near the transmitting node, rapidly acquire the entire

message. Had there been no uncertainty on the channel, the cognitive radio could then dirty paper code

against the first user’s transmission by treating it as known interference. Hence, a greedy cognitive radio

could communicate in the same time or frequency slot at no extra penalty to itself, regardless of the rate

at which the first user is attempting to communicate.

Had both users known each other’s messages then collaboration would be equivalent to a 2 × 1

Multiple Input Single Output (MISO) system. Had neither user known the other user’s message, then

sharing the channel is a multiple access problem.

In a recent work [7], the 2 × 2 interference channel has been generalized to the cognitive case and

achievable regions derived. In the 2 × 2 interference channel, two users (say X1 and X2) wish to

communicate to two receivers (say Y1 and Y2), with the performance measured by the rate at which

independent information can be sent from X1 to Y1 and X2 to Y2. In the genie-aided cognitive setting,

one further assumes that the second user has non-causal knowledge of the first user’s message. In [7],

achievable regions were derived by combining dirty paper-like coding techniques with those of [14]. In

particular, using dirty paper-like methods, the second user can mitigate any part of the first user’s message.

However, in the case of compound channels (which is a more realistic model for wireless interference

channels), it is not clear how side-information can be employed at a transmitter if the interference (and

transmitted signal) are both subject to fading.

The scenarios we are interested in is when there is uncertainty on the channel. In wireless channels,

it is common that only the receiver has channel state information. Hence we study this particular kind

of compound channel with side information at the transmitter.

For the traditional discrete compound channel P β
Y |X where β denotes the unknown parameter at the

transmitter, it is well known that the capacity, [21], is given by

C = sup
PX

inf
β

Iβ(X; Y ), (2)

where Iβ(X; Y ) := I(PX , P β
Y |X) denotes the mutual information between X and Y given the realization

of the channel parameter is β.

Our main result in the finite alphabet case for compound channels with side-information at the

transmitter is as follows:

Theorem 1: The capacity C of the discrete memoryless compound channel with side information at
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the transmitter is bounded by CL ≤ C ≤ CU where

CL = sup
PU|X,S,W ,PX|S,W ,PW

[

inf
β∈C

[

Iβ(U ; Y |W )− I(U ; S|W )
]

]

, (3)

CU = sup
{P β

U|X,S,W
}β ,PX|S,W ,PW

[

inf
β∈C

[

Iβ(U ; Y |W )− I(U ; S|W )
]

]

, (4)

and the suprema are over all finite alphabet auxiliary random variables U and finite alphabet time-sharing

random variables W and {P β
U |X,S,W }β denotes any family of distributions (i.e., in CU a distribution

PU |X,S,W is chosen for each β before the minimization over β is performed) .

We remark that since the joint distribution PX,S,W in CU does not depend on β, the upper bound CU

is in general tighter than if a genie had revealed β to the transmitter. We note that for the degenerate

case where C is a singleton, both bounds reduce to the well known result of Gel’fand and Pinsker.

Bounds on the capacity of a two-sided side-information channel [4] may be derived as a special

case of Theorem 1. In a two-sided side-information scenario, not only does the transmitter have a side-

information sequence S1, but the receiver is presented with a correlated sequence S2 and the channel

is governed by P β
Y |X,S1,S2

. By augmenting the channel so that it yields an output Y ′ = (Y, S2) with

P β
Y ′|X,S1

= PS2|S1
P β

Y |X,S1,S2
, the problem is reformulated so that Theorem 1 applies, from which it follows

that the rate C ′
L = supPU,X|S1,W ,PW

infβ
[

Iβ(U ; Y, S2|W )− I(U ; S1|W )
]

is achievable and likewise, an

upper bound may be determined.

When the input is standard (this includes Euclidean space), we generalize Theorem 1 (Theorem 2 in

Section IV) with the addition that the auxiliary random variable must now be allowed to be standard (but

the time-sharing random variable remains finite alphabet) and the side-information S must be quantized.

Under some suitable conditions on the compound channel and the choice of auxiliary random variable,

the quantized side-information may be replaced with the actual side-information S. This will turn out to

be the case for the proposed scheme for cognitive radio channels.

We also consider the case where the input is power constrained (Theorem 3 in Section IV). Our result

there is that except for a mild technicality, the bounds are essentially the same as in Theorem 2 except

that the suprema must now be limited to those distributions for which the average constraint is met (i.e.,

those distributions for which E|X|2 < P ).

Returning to the cognitive radio scenario, we consider the problem of encoding a message V with

knowledge of a Gaussian interfering signal S of power Q. The encoder output X is also power constrained

to P = Q and the signal received at the decoder is Y = β1X+β2S+Z where Z is independent Gaussian

noise and the compound parameter is β := (β1, β2).
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Similar to Costa’s scheme, we suggest U = X + αS, where α is now chosen as a function of the

second order statistics of β1 and β2. The scheme proposed in Section V selects

α =
µ∗

1µ2SNR

(|µ1|2 + σ2
1)SNR + 1

, (5)

where µi and σ2
i are the mean and variance of βi. We note the following three facts about this choice

for Ricean fading channels where β1 and β2 have K-factors K1 and K2 respectively:

1) If K1, K2 →∞, then the scheme is identical to Costa’s with α = P/(P +N) and the interference

is perfectly mitigated.

2) If either K1 → 0 or K2 → 0, the scheme treats the interferer as noise.

3) The performance does not depend on the phase difference between µ1 and µ2 as this choice of α

rotates the mean channels so that their phases are aligned.

Furthermore, with this selection of α, it is numerically found that performance in terms of achievable

rates for given outage probabilities is good over a wide range of K-factors. This conclusion is drawn by

comparing to the outage capacity of an interference-free scenario and a scenario where the interference

is treated as noise.

This correspondence is structured as follows. In Section II, we introduce our notation more formally.

In Section III, we define the problem for the finite alphabet case and outline the proof of our first main

result, Theorem 1, which states bounds on the capacity of the finite alphabet compound channel with side

information. The proof itself may be found in Appendix II. In Section IV, we generalize this result to

standard alphabets and prove the rest of our main results, Theorems 2 and 3. In Section V, we apply these

results to derive lower bounds on the outage capacity for our cognitive radio problem. This is achieved

by proposing a distribution on U and X as a function of the second order statistics of the channel.

Numerical evaluation of this lower bound is compared to two other scenarios: treating the interference as

noise and an interference-free scenario. Our results show that for a wide range of K-factors, performance

is much better than treating the interference as noise and for low SNR such as 5 dB, performance is

close to the interference-free upper bound. In Section VI, we conclude this work. The proofs of some

technical lemmas may be found in Appendix I.

II. PRELIMINARIES AND NOTATION

In the first part of this correspondence, all variables are discrete random variables with finite alphabets.

We denote the realization of a random variable X by lowercase symbols such as x and the finite alphabet

by X . Sequences denoted by bold face x := xn
1 := (x1, . . . , xn) are always of length n.
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We denote a Probability Mass Function (PMF) or distribution on X by PX and the space of PMFs on

X by EX with metric

d(P 1
X , P 2

X) = max
x

∣

∣P 1
X [x]− P 2

X [x]
∣

∣ . (6)

Likewise, a conditional distribution on Y given X is denoted by PY |X and the space of all conditional

distributions EY |X is given the metric

d(P 1
Y |X , P 2

Y |X) = max
y,x

∣

∣

∣
P 1

Y |X [y|x]− P 2
Y |X [y|x]

∣

∣

∣
. (7)

In this correspondence, we shall employ the notion of strongly and conditionally typical sequences as

defined in [6]. We denote by N(a|x) the number of occurrences of the letter a ∈ X in the sequence x.

Then we have the following definitions.

Definition 1: For any distribution PX on X , a sequence x is called (PX , δ)-typical if
∣

∣

∣

∣

1

n
N(a|x)− PX [a]

∣

∣

∣

∣

≤ δ, (8)

and no a ∈ X with PX [a] = 0 occurs in x. The set of such sequences is denoted by T n(PX , δ).

Definition 2: For a stochastic matrix PY |X a sequence y is (PY |X , δ)-typical with respect to x if

1

n

∣

∣N(a, b|x,y)−N(a|x)PY |X [b|a]
∣

∣ ≤ δ, (9)

and N(a, b|x,y) = 0 if PY |X [b|a] = 0. The set of such y sequences will be denoted by T n(PY |X , δ)(x).

In the proof of Theorem 1, we will need the following two results. The first is a strengthening of the

upper bound of Lemma 13.6.2 in [5] such that ε1 depends only on δ and both |X | and |Y|, but not the

underlying distributions. The second essentially follows easily from Lemma 2.12 of [6]. The proofs may

be found in Appendix I.

Lemma 1: Let Y be drawn i.i.d. according to PY , which is consistent with the joint distribution

PY |X × PX . If there exists (x,y) ∈ T n(PY |X × PX , δ) then

P [(x,Y) ∈ T n(PY |X × PX , δ)] ≤ 2−n[I(PX ,PY |X)−ε1)]. (10)

where I(PX , PY |X) is the mutual information betwen X and Y under the joint distribution PY |X ×PX ,

ε1 → 0 as δ → 0 and n→∞ and ε1 does not depend on the underlying distributions.

Lemma 2: If x ∈ T n(PX , δ) and Y is generated i.i.d. according to PY |X then for any δ′ > 0,

P [(x,Y) /∈ T n(PY |X × PX , δ + δ′)] ≤
K

n(δ′)2
, (11)

where K = |X ||Y|.
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In the second part of this correspondence, we will remove the restriction on finite alphabets. If X is

a random variable on a standard space [11], (AX ,BX), where AX is the alphabet and BX denotes the

Borel σ-field of events, then we denote a distribution on X by pX (as opposed to PX when we wish to

emphasize that X is known to have a finite alphabet). We also define the following metric, known as the

variational metric [12], between two distributions p1
X and p2

X on X ,

d(p1
X , p2

X) = 2 sup
F∈BX

∣

∣p1
X(F )− p2

X(F )
∣

∣ . (12)

In the case that X has a finite alphabet, it is clear that the metrics in (6) and (12) induce the same

topology. Finally, we say that any family of conditional distributions pβ
Y |X when AX and AY are standard

is continuously parametrized by β if pβ
XY = pβ

Y |X × pX is continuous in β under (12) for all pX .

III. THE DISCRETE CASE

A. Problem Formulation

Consider the discrete memoryless compound channel with side information at the transmitter as

illustrated in Fig. 1. There, a sender wishes to encode a message V for transmission over a channel

P β
Y |X,S where X denotes the input to the channel from the encoder, S denotes non-causal side-information

known to the encoder only and the channel is continuously parameterized by β ∈ C (C compact) which

is unknown to the encoder but known to the receiver.

In particular, β is chosen from the set C and kept fixed for the duration of the frame. Prior to

the encoding of the message, a sequence s with each letter generated independently according to the

distribution PS [Si = si] (and statistically independent of β) is revealed to the encoder. The encoder

wishes to send a message V ∈ {1, . . . , 2nR}. Based on knowledge of s (but no knowledge of β), the

encoder constructs a sequence x which is transmitted over the channel.

The receiver observes a stochastic sequence Y whose distribution is given by

P β
Y|X,S =

n
∏

i=1

P β
Y |X,S [Yi = yi|Xi = xi, Si = si]. (13)

Then, based only on this observation and knowledge of β ∈ C, the decoder produces an estimate V̂ of

the message. As the actual channel realization β ∈ C is unknown at the encoder, we have the following

performance measure for a code of block length n

λn = sup
β∈C

P [V̂ 6= V |β], (14)

where we assume that the distribution on the messages V is uniform.
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We say that a rate R is achievable if there exists a sequence of codes of block length n, n = 1, 2, 3, . . .

for which λn → 0. We denote by C the supremum of achievable rates and call it the capacity of the

discrete memoryless compound channel with side-information at the transmitter.

X Y DECODERENCODERV

S

β ∈ C

P
β
Y |X,S V̂

Fig. 1. The memoryless compound channel with side information at the transmitter.

B. General Approach

The result will be proved for time sharing random variables W with |W| = 1. The extension to |W|

finite is straightforward but notationally cumbersome. The proof combines the techniques of Gel’fand

and Pinsker [10] as well as Wolfowitz [21]. Due to their careful interplay we present the entire proof in

detail in Appendix II. Here, we present the general approach.

As in [10], channel coding is to be performed on the fictitious auxiliary random variable U . In particular,

if we view the output Y to be the result of the Markov chain U → (X, S)→ Y , then the link U → Y

may be viewed as a compound channel P β
Y |U . For such a channel, 2nRU distinct codewords U with input

distribution PU can be transmitted reliably over the compound channel where RU = infβ Iβ(U ; Y ).

The achieved information rate is not RU however. The difficulty is that s is given and not the result

of the chosen u codeword. In particular, it is only likely to be jointly typical with a randomly selected u

codeword with probability 2−nI(U ;S). Hence, if with each message v ∈ {1, . . . , 2nR} is associated a bin

of 2n[I(U ;S)+ε] auxiliary codewords, it is likely that one will be jointly typical with s. (The set of bins is

denoted B(U) and is called the codebook.) The cost of this approach is that the rate R achieved is then

R = RU − I(U ; S).

The general outline of the constructive proof of the lower bound is as follows. In the first part, we

shall show that there is a sequence of codes of length n for which the maximal probability of error on a

simplified compound channel C(n) goes to zero. In particular, C(n) will be a finite subset of C chosen to
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grow polynomially in n and such that under the metric in (7), for each β ∈ C, there is a β ′ ∈ C(n) such

that d(P β
Y |U,S , P β′

Y |U,S) ≤ 1/n4.

Hence, we will have a sequence of codes that performs well on increasingly better approximations

C(n) to C. It will then be shown that this sequence of codes also performs well on the entire compound

channel C in the sense that the maximal probability of error on C is at most greater than that on C(n) by

an amount that is only a function of n and the alphabet sizes and which goes to 0 as n→∞.

The proof of the existence of a sequence of codes which is good on C(n) will employ random coding

arguments. We will show that averaged over all randomly chosen bins B(U),

EB(U) max
β′∈C(n)

P [V̂ 6= V |β′] ≤ EB(U)P [Ee] + EB(U)|Ēe
max

β′∈C(n)

[

P [Ed1|Ēe, β
′] + P [Ed2|Ēe, Ēd1, β

′]
]

(15)

goes to zero as n → ∞, where Ee denotes an encoding error event and together Ed1 and Ed2 cover

all possible decoding error events and the right side is evaluated for a fixed V = v, say v = 1. (Ed1

is the event that Y is not jointly typical with u and Ed2 is the event that there is another u which is

jointly typical with Y.) Conditioned on Ēe, we will see that P [Ed1|Ēe, β
′] may be bounded in a fashion

independent of the chosen codebook or β′. If we denote this bound by P [Ed1|Ēe], then it will suffice to

demonstrate that

EB(U)P [Ee] + P [Ed1|Ēe] +
∑

β′∈C(n)

EB(U)|Ēe
P [Ed2|Ēe, Ēd1, β

′]→ 0, (16)

as n → ∞ to prove the existence of a sequence of good codes on C(n). The details may be found in

Appendix II.

IV. CONTINUOUS ALPHABETS

In this section, we generalize the discrete memoryless compound channel with side information to the

case where the input and output alphabets are not necessarily drawn from a finite alphabet. In particular,

in this section, we assume that all variables X , Y , S and U are standard [11]. This includes most cases

of practical relevance such as Euclidean space Rn (and all finite alphabet variables as well).

The usual approach to generalize to continuous alphabet channels results which are proved for the

finite alphabet case centers around invoking quantization arguments [3], [9]. The traditional argument

for a non-compound continuous-alphabet channel pY |X is essentially summarized as follows. Consider

any input distribution pX for the continuous channel. By choosing a sufficiently fine but finite alphabet

approximation to pX and sufficiently finely quantizing the continuous output Y , the mutual information

between the quantized inputs and outputs may be made arbitrarily close to I(X; Y )|p(X).
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We shall take the same approach. However, for the case of compound channels, such arguments require

careful justification on two points. First, one must choose a sequence of successively finer quantizers at

the input and at the output in such a way that the mutual information between the quantized inputs and

quantized outputs approaches that of the desired continuous inputs and outputs for all possible channel

realizations pβ
Y |X , i.e., we may not choose the quantizer as a function of the channel. For the case of

non-compound channels, this is not an issue as there is only one possible channel realization. Second,

as capacity formulas for compound channels typically involve minimizing over the possible realization

β before maximizing over the input distribution, one must not only show that convergence is achieved

for all β, but that convergence is uniform in β.

The first issue will be resolved by restricting the alphabets to be standard and will be elaborated on

in Section IV-A. The second issue will be dealt with by invoking a result from analysis. This result is

essentially a variation of Dini’s theorem, which provides sufficient conditions for a sequence of functions

on a compact space to converge uniformly when it is known to converge pointwise. This technical lemma

is also discussed in Section IV-A.

Our main result in this section is stated below.

Theorem 2: Let pβ
Y |X,S be a compound channel continuously parameterized in β ∈ C (C compact)

where the input and output alphabets are standard. Then, the capacity of the compound channel with

side-information at the transmitter, C, is bounded by CL ≤ C ≤ CU where

CL = sup
pU|X,q(S),W ,pX|q(S),W ,PW

[

inf
β∈C

[

Iβ(U ; Y |W )− I(U ; q(S)|W )
]

]

(17)

CU = sup
{pβ

U|X,S,W
}β ,pX|S,W ,PW

[

inf
β∈C

[

Iβ(U ; Y |W )− I(U ; S|W )
]

]

, (18)

and the suprema are over all distributions on standard alphabets U , all distributions on finite alphabet

random variables W and all quantizers q(.) for S.

For some cases of interest, if the compound channel and the auxiliary random variable are sufficiently

well-behaved, then q(S) may be replaced with S in the the lower bound CL. This will be the case for

the proposed distribution in Section V (where the desired joint distribution on U , X , S and Y is then

Gaussian).

Examples of channels to which this theorem applies includes Multiple Input Multiple Output (MIMO)

channels with Additive White Gaussian Noise (AWGN) when the channel gain matrix H is continuously

parameterized by β. For finite alphabet channels, Theorem 2 is seen to also apply.

For continuous input channels, it is often desired to impose constraints on the input to the channel,
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such as peak or average power constraints. For example, if the input X is peak constrained to a maximal

amplitude of M , then this is equivalent to restricting X = [−M, M ] for channels with real inputs and

Theorem 2 directly applies.

For average power constrained channels (such that the input codeword must have power less than

M say), it is sufficient to limit the supremum for CL in Theorem 2 to those distributions for which

EX2 < M and EX4 exists. This is because for any pU,X|S,W , PW for which this is true, the input

codeword will satisfy the required power constraint with high probability (provided the frame length n is

large enough) by the weak law of large numbers2. It is equally true that in the upperbound of Theorem

1, any induced distribution by the encoder must satisfy the power constraint. Hence, we may add the

constraint that EX2 < K to the upperbound CU as well.

Theorem 3: Consider the compound channel described in Theorem 2. Furthermore, assume there is

a power constraint 1
n

∑

i X
2
i < M on the input to the channel. Then the constrained capacity is bounded

as in Theorem 2 with the additional conditions that all distributions considered must satisfy EX2 < M

and, for the lowerbound only, EX4 is finite.

A. Some Supporting Results

In this section, we briefly review some basic facts about standard spaces and state the analytical lemma.

For a definition of standard spaces and a survey of important results of note, the reader is referred to the

books by Gray [11], [12].

We define a quantizer qX on a measurable space (AX ,BX) (recall that AX denotes the alphabet and

BX the Borel set) to be a measurable mapping qX : AX → DX where |DX | is finite. We say that a

quantizer q′X is finer than a quantizer qX if the atoms QX := {q−1
X (a); a ∈ AX} are unions of atoms of

Q′
X .

The following is a slightly stronger restatement of Lemma 5.5.5 in [12] which follows from the

discussion following Lemma 5.5.1 in [12].

Lemma 3: Suppose that X and Y are random variables with standard alphabets defined on a common

probability space. Suppose that qk
X , k = 1, 2, . . . is a sequence of progressively finer quantizers such that

the partitions asymptotically generate BX and define a sequence of quantizers qk
Y similarly. Then, for

any distribution pXY ,

I(X; Y ) = lim
k→∞

I(qk
X(X); qk

Y (Y )). (19)

2That the weak law of large numbers applies to X2 follows from the fact that the fourth moment of X exists.
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That is, the same sequence of quantizers works for all distributions pXY .

Fig. 2 illustrates the idea here. The input to the channel is always X and the immediate output Y ,

no matter the quantizer employed. The mutual information terms on the right of (19) are between the

quantized value of input X and the quantized value of output Y . An alternate interpretation is possible.

We note that the arrow q(X)← X may be inverted. Then the interpretation is that the quantized random

variable q(X) is generated first. X is obtained from q(X) by dithering the atoms QX . For example, if X

is a uniform random variable in [0, 1], and the quantizer evaluates the most significant bit of the binary

representation of X , the alternate interpretation is that the most significant bit is selected first and then

the remaining bits are “added”. In general, the dithering depends on the realization of qk(X).

X Yp
β
Y |Xqk

X(X) qk
Y (Y )

Fig. 2. Quantization of input and output variables of a channel.

We close this subsection with an analytical result whose proof is very similar to that of Dini’s Theorem

and may be found in Appendix I.

Lemma 4: Let X be a compact space and consider a sequence of continuous functions fk(x) : X → R.

Suppose further that fk(x) converges pointwise and non-decreasingly to a (possibly non-continuous)

function f(x). Furthermore, if g(x) is a continuous function such that f(x) ≥ g(x), then for every ε > 0,

there exists an N(ε) such that when k > N(ε), fk(x) > g(x)− ε uniformly for all x.

B. Proof of Theorem 2

In this section we shall present the proof of Theorem 2. First, a key supporting lemma is shown.

Lemma 5: Consider any family of distributions pβ
Y |X continuously parametrized by β taking values

in a compact set C. Then, for each pX , there exists a sequence of successively finer quantizers qk
X , qk

Y

such that for each ε > 0, there is an N(ε) such that for every k > N(ε),

Iβ(qk
X(X); qk

Y (Y )) ≥ inf
β

Iβ(X; Y )− ε. (20)

Proof: By the continuity of pβ
Y |X in β it follows that Iβ(qk

X(X); qk
Y (Y )) is also continuous in β. By

Lemma 3, this sequence of functions converges pointwise to the function Iβ(X; Y ) ≥ I∗ where I∗ is the
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constant infβ Iβ(X; Y ). Since the quantizers are successively finer, we have that Iβ(qk+1
X (X); qk+1

Y (Y )) ≥

Iβ(qk
X(X); qk

Y (Y )). Hence, by Lemma 4, it follows that such an N(ε) can be found.

Proof of Theorem 2: We first note that the proof of the upper bound of Theorem 1 requires no

particular assumption about the nature of the random variables X , S, U and Y except for (58), where if

the only assumptions on Y and S are that they are standard, then U must be assumed standard.

As for the direct part, again the result will be proved for the case that |W| = 1. For any finite

|W|, the generalization is straightforward. Consider a given pU,X|qS(S). We will show that by em-

ploying sufficiently fine quantizers for all random variables but S, for any ε > 0, the rate R :=

infβ∈C
[

Iβ(U ; Y )− I(U ; qS(S))
]

− 2ε may be achieved.

YX

Sqk
S(S)

qk
Y (Y )qk

U(U) p
β
Y |X,S

Fig. 3. Quantization of input and output variables of the compound channel with side information.

Let pβ
U,X,qS(S),S,Y = pU,X|qS(S) × pqS(S)|S × pS × pβ

Y |X,S and pβ
qk

U (U),qk
X(X),qS(S),S,qk

Y (Y )
denote the

distribution induced on the quantized qk
U (U), qk

X(X), qk
Y (Y ) as well as S and qS(S) by pβ

U,X,qS(S),S,Y .

The general outline is illustrated in Fig. 3. The encoder is given the non-quantized S. It first proceeds

to quantize it to obtain qS(S). From this, encoding is performed on the fictitious finite alphabet auxiliary

random variable qk
U (U) as in Theorem 1. The encoder then generates the finite-alphabet input qk

X(X)

from qS(S) and qk
U (U). The actual input X to the channel is generated stochastically according to

pX|qk
X(X),qk

U (U),qS(S). The effect of the latter is to dither the atoms of qk
X such that the distribution

pX,qS(S),qk
U (U) induces the original quantized Pqk

X(X),qS(S),qk
U (U). The output of the channel is Y which

is quantized to qk
Y (Y ) and decoding proceeds as in Theorem 1. Note that due to the dithering of the

atoms of qk
X(X), pβ

qk
U (U),qk

X(X),qS(S),S,qk
Y (Y )

is also the joint distribution on qk
U (U), qk

X(X), qS(S), S and

qk
Y (Y ) induced by the finite-alphabet encoder.

For each k, the rate achieved by the encoder and decoder operating on the quantized alphabets is then

Rk = min
β∈C

[

Iβ(qk
U (U); qk

Y (Y ))− I(qk
U (U); qS(S))

]

. (21)

Now, by Lemma 5, one can find an N(ε) such that for all k > N1(ε), Iβ(qk
U (U); qk

Y (Y )) > infβ Iβ(U ; Y )−

ε. Also, by Lemma 3, one can find an N2 such that for k > N2, |I(qk
U (U); qS(S))− I(U ; qS(S))| < ε.
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Then Rk > R− 2ε.

We remark that the reason that finely quantizing S does not allow us to replace qS(S) with S is that

while S is a dithering of the atoms of qS(S), it is a dithering that is not correlated with qU (U) nor

qX(X). However, the amount of dithering becomes rather small for fine quantizers and if the compound

channel and desired pU |X,S are well behaved, this effect may become negligible, in which case q(S) may

be replaced with S. A case of this for a particular choice of pU,X|S will be observed in the next section.

V. APPLICATION TO FADING CHANNELS

In this section, we are interested in studying achievable outage probabilities for communicating over a

fading channel with a fading interferer whose signal, but not fading coefficient, is known at the transmitter.

This scenario is motivated by cognitive radio channels [7], [17]. In the simplest cognitive framework,

two nearby users share a common channel to a single receiver. As the users are nearby, it is reasonable to

assume that one user, say the second, may quickly acquire the message of the first when the first transmits

to the receiver. If all the channel parameters are known, then a greedy second user may communicate

simultaneously using a dirty paper coding scheme with no loss to capacity for itself, regardless of the

rate at which the first user is attempting to communicate (this may degrade the performance of the first

user). In the case that the channel parameters are unknown at the transmitter, the channel is compound

and a traditional dirty paper coding scheme cannot be employed.

The model we consider is illustrated in Fig. 4. There, a message V is encoded with knowledge of

a Gaussian interfering signal S of power Q. The encoder output X is power constrained to P . The

received signal at the decoder is Y = β1X + β2S + Z where the compound parameter at the encoder is

β := (β1, β2) and the noise power of Z is N .

We shall now assume a probability distribution on the parameters β. In particular, we assume that

β1 and β2 are independent Ricean distributed with parameters K1 and K2, i.e., β1 = µ1 + Z1 where

Z1 is a zero mean circularly symmetric complex Gaussian random variable with variance σ2
1 such that

|µ1|
2 + σ2

1 = 1 and |µ1|
2/σ2

1 = K1 and likewise for β2.

For a given pU,X|q(S),W and PW , we say that a rate R has outage probability Pout if Pout = P [R >

Iβ(U ; Y |W ) − I(U ; q(S)|W )]. This definition is justified since for all β such that |β| < L for some

constant L and R ≤ Iβ(U ; Y |W ) − I(U ; q(S)|W ), Theorem 3 assures us that a rate R is achievable.

If L is taken sufficiently large, then the probability of observing a realization |β| > L can be made

arbitrarily small and our definition takes the operational significance that there is a code of rate R for

which communication is successful on a set of β whose probability is 1− Pout.
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× +

β1

×

Y

Z

β2

ENCV

S

X

Fig. 4. Communications over a fading channel with a fading interferer whose signal, but not fading coefficient, is known at

the transmitter.

We seek to determine a lower bound on achievable rates for a given outage probability. This will be

accomplished by suggesting a distribution pU,X|S and numerically evaluating (R, Pout) pairs. (For the

rest of this section, we assume that W = φ). Similar to Costa’s dirty paper coding scheme, the desired

joint distribution on U , X and S is specified by U = X + αS, where the parameter α should depend

only on the second order statistics µ1, µ2, σ1 and σ2 while X is zero mean Gaussian with variance P .

However, as required by Theorem 2, we first consider pUk,X|qk(S) for some appropriate sequence of

successively finer quantizers, i.e., we consider Uk = X +αqk(S)+Wk where Wk is independent uniform

additive dithering noise. Then, it can be shown that infβ Iβ(Uk; Y ) → infβ Iβ(U ; Y ) on any bounded

subset of β as k →∞ (see Appendix III).

We may therefore choose U = X+αS. With such a choice of auxiliary random variable, the covariance

matrix of (U, Y ) is

COV (U, Y ) =





P + |α|2Q β∗
1P + αβ∗

2Q

β1P + α∗β2Q |β1|
2P + |β2|

2Q + N



 . (22)

Hence,

I(U ; Y ) = log
(

(|β1|
2P + |β2|

2Q + N)(P + |α|2Q)
)

− log
(

(|β1|
2P + |β2|

2Q + N)(P + |α|2Q)− |β1P + α∗β2Q|
2
)

(23)

I(U ; S) = log
(

(P + |α|2Q)/P
)

. (24)

Then, if we define I(β1, β2) := I(U ; Y )− I(U ; S) and make the simplifications P = Q and SNR =

P/N = Q/N (if P < Q say, then the extra interference power could be absorbed into the µ2 and σ2

December 20, 2005 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. YY, 2006 16

statistics), we obtain

I(β1, β2) = log
(

(|β1|
2 + |β2|

2)SNR + 1
)

− log
(

SNR|β2 − αβ1|
2 + 1 + |α|2

)

. (25)

It is not clear what choice of α will minimize outage probability for a given rate, but a reasonable

choice of α can be obtained by selecting it to minimize the expected value of SNR|β2−αβ1|
2+1+ |α|2.

If β1 and β2 have small variance, then this choice will approximately maximize EI(β1, β2). Carrying

out the expectation, α is found to be

α =
µ∗

1µ2SNR

(|µ1|2 + σ2
1)SNR + 1

, (26)

which is the desired choice of α in terms of the second order statistics of the fading coefficients. We

note the following three facts about this choice for Ricean fading channels:

1) If K1, K2 →∞, then the scheme is identical to Costa’s with α = P/(P +N) and the interference

is perfectly mitigated.

2) If either K1 → 0 or K2 → 0, the scheme treats the interferer as noise.

3) The performance does not depend on the phase difference between µ1 and µ2 as this choice of α

rotates the mean channels so that their phases are aligned.

Fig. 5 shows the achievable rates for given outage probabilities of 10−1, 10−2 and 10−3 at SNR = 5

dB over a wide range of K-factors when both β1 and β2 have the same K-factor. This is reasonable if

we are to assume that the interferer and user are nearby, as would be the case in cognitive radio channels.

Also illustrated for comparison is the performance of a scenario when there is no interference (which

provides an upper bound on the outage capacity) and when the interference is treated as noise.

From the figure, it is seen that for K-factors of 10 dB or greater, significant gains are achieved over

treating the interference as noise. (It has been found experimentally that in the New Jersey area, 70%

of wireless channels have a K-factor of at least 5 dB and 55% have K factor of 10 dB or more [13]).

Furthermore, for very high reliability such as an outage probability of 10−2 or 10−3, the achievable rate

is very near the interference-free upper bound. In all cases, for large K-factor, the scheme achieves the

performance of the upperbound (asymptotically). This is not surprising as in the large K regime, there

is little or no uncertainty on the channel and the proposed scheme mimics Costa’s dirty paper coding,

i.e., the interference is perfectly mitigated.

Figs. 6 and 7 show similar plots for 10 and 20 dB SNR respectively. Again, over a wide range of K-

factors, the scheme outperforms treating the interferer as noise by a wide margin and for high K-factors,
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completely mitigates the interference. In the low K regime, the scheme is not as near the upper bound

as it was for SNR = 5 dB. However, as our scheme is only a lower bound on performance, the exact

outage capacity for this problem remains open.
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Fig. 5. Communications over a fading channel with a fading interferer whose signal, but not fading coefficient, is known at

the transmitter for SNR = 5 dB with P = Q = 1.

VI. CONCLUSION

We have derived bounds on the capacity of compound channels with side information at the transmitter,

first for the finite alphabet case and then, based on these results, for standard alphabets. Bounds for two-

sided state-information problems (i.e., a side information sequence at the transmitter and another at the

receiver) can also be derived as a special case of this result. While the exact capacity remains an open

problem, we suspect that the lower bound is in fact tight. The apparent looseness in the upper bound is

due to the fact that the empirical distribution on U that is derived in the converse is itself obtained from

the distribution on Y induced by the encoder. As the latter is clearly a function of the channel realization,

so is the distribution on U . Intuitively, this could be plausible – the auxiliary codebook is fictitious and
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Fig. 6. Communications over a fading channel with a fading interferer whose signal, but not fading coefficient, is known at

the transmitter for SNR = 10 dB with P = Q = 1.

one may perhaps be able to generate a different auxilliary codebook for each possible channel realization.

Despite this observation, we believe that this is not the case and that the lower bound is tight.

We have also considered the problem of a user communicating over a fading channel with a fading

interferer whose signal, but not fading coefficient, is known at the transmitter. This scenario is of interest

for the emerging field of cognitive radios. By proposing an input distribution, we have derived achievable

rates for given outage probabilities. We have also compared these rates to the outage capacities of two

schemes: communication over an interference-free fading channel and treating the interference as noise.

Our results indicate significant gains are possible over the latter while in the low SNR regime, performance

is near the upper bound of the interference-free scenario.
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APPENDIX I

PROOF OF LEMMAS

We will need the following Lemma which slightly extends Lemma 2.10 in [6].

Lemma 6:

1) If x ∈ T n(PX , δ) and y ∈ T n(PY |X , δ′)(x) then (x,y) ∈ T n(PY |X × PX , δ + δ′).

2) If (x,y) ∈ T n(PY |X × PX , δ) then x ∈ T n(PX , δ|Y|) and y ∈ T n(PY |X , 2δ|Y|)(x).

Proof: Part 1) is proved in [6] while part 2) follows from Definitions 1 and 2 and the triangle

inequality.

Proof of Lemma 1: The left of (10) may be upper-bounded by
∑

PY [y] where the sum is over all

y sequences such that (x,y) ∈ T n(PY |X ×PX , δ). If QY denotes the type (empirical distribution) of y,

then PY [y] ≤ 2−nH(QY ) (by (2.5) in [6]).
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Since the y sequences we are summing over satisfy y ∈ T n(PY , δ|X |), we have by the uniform

continuity of the entropy function H(·) that H(QY ) ≥ H(PY )− ε2 and ε2 → 0 as δ → 0 and does not

depend on PY . We may thus bound the left side of (10) by

≤
∑

2−n[H(PY )−ε2], (27)

where the sum is over all y sequences such that (x,y) ∈ T n(PY |X × PX , δ).

By Lemma 6, we may further upperbound the desired expression by extending the sum to all y ∈

Tn(PY |X , 2δ|Y|)(x). Since x ∈ T n(PX , δ|Y|), by Lemma 2.13 of [6], there are at most 2n[H(PY |X |PX)+ε3]

such y sequences where ε3 does not depend on PY |X or PX and ε3 → 0 as δ → 0 and n → ∞. The

result then follows since I(PX , PY |X) = H(PY )−H(PY |X |PX).

Proof of Lemma 2: By Lemma 6,

P [(x,Y) /∈ T n(PY |X × PX , δ + δ′)] ≤ P [Y /∈ T n(PY |X , δ′)(x)]. (28)

The result then follows directly from Lemma 2.12 in [6] where it is shown that the right side of (28) is

bounded by |X ||Y|/n(δ′)2.

Proof of Lemma 4: For each x, one can find an N(x) such that for all k > N(x), fk(x) > g(x)−ε.

By continuity of fk(x) and g(x), it is also true that for some open neighborhood of x, denoted B(x),

for each y ∈ B(x), fk(y) > g(y) whenever k > N(x). Since X is compact, the open cover B(x)

can be reduced to a finite cover B(x(1)), . . . , B(x(M)). The theorem is satisfied if we take N(ε) =

max1≤i≤M N(x(i)).

APPENDIX II

PROOF OF THEOREM 1

A. Lower bound CL:

For any PU,X|S ∈ EU,X|S , ε > 0, we show that the rate R = infβ∈B

[

Iβ(U ; Y )− I(U ; S)
]

− 2ε is

achievable.

Codebook generation: From PU,X|S and PS , the encoder computes the marginalization PU and proceeds

to generate 2n(I∗(U ;Y )−ε) codewords u, where I∗(U ; Y ) = infβ∈C Iβ(U ; Y ) and the ith letter of u is

distributed according to PU [U = ui].

These codewords are then evenly distributed into 2n(R−2ε) bins in a uniformly random manner, i.e.,

there are 2n(I(U ;S)+ε) codewords in each bin. The jth codeword in the vth bin is denoted u(v, j).

Codeword selection: The encoder wishes to transmit message V ∈ {1, . . . , 2n(R−ε)}. To that end, it

looks in the V th bin for a codeword u that is (PU |S × PS , δ)-jointly typical with s.

December 20, 2005 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. YY, 2006 21

From Lemma 13.6.2 of [5], the probability of any generated u sequence being thus jointly typical is

at least 2−n(I(U ;S)−ε1) with ε1 → 0 as δ → 0 and n→∞. The probability that there is no jointly typical

u sequence in the V th bin is then well known to be bounded by

EB(U)P [Ee] ≤ exp(−2n(I(U ;S)+ε)2−n(I(U ;S)−ε1)), (29)

which decays doubly exponentially provided ε1 < ε which itself can be assured by taking δ sufficiently

small and n sufficiently large.

The encoder then creates an x sequence stochastically by choosing each letter xi according to PX|U,S [X =

xi|U = ui, S = si].

Decoding on C(n):

With the choice of PU,X|S , we may compute PX,S|U through Baye’s rule. We note that by the selection

of a u as a jointly typical sequence with s, the output y appears to be the result of the Markov chain

U → (X, S)→ Y with P β
Y |U,S =

∑

x P β
Y |X,S [Y = y|X = x, S = s]P [X = x, S = s|U = u]. We denote

the set of such P β
Y |U,S as the causal equivalent compound channel.

The remainder of the proof is structured as follows. First, we show that for a sequence of appropriately

chosen subsets C(n) of C, a sequence of codes of length n whose average probability of error goes to

zero on the subsets C(n) may be found. In the second part, we show that this code is in fact good on the

entire compound channel C.

First, consider subsets C(n) ⊂ C such that for each β ∈ C, there is a β ′ ∈ C(n) with

d(P β
Y |U,S , P β′

Y |U,S) ≤ 1/n4, (30)

where d(·, ·) is the metric defined in (7). Since the space of all possible distributions EY |U,S is bounded,

the cardinality of C(n) is at most O(n4|U||Y||S|), i.e., polynomial.

Now, define the following decoding sets D,

Dβ,v,j = {y : (y,u(v, j)) ∈ T n(P β
Y,U , δ2), @(v′ 6= v, j′) s.t. , (y,u(v′, j′)) ∈ Tn(P β

Y,U , δ2)}, (31)

where δ2 = |S|(δ + δ′) for some δ′ > 0.

The decoder receives y and knows β ∈ C(n). The decoder searches through the sequence of sets Dβ,v,j

until it finds a v̂ and ĵ such that y ∈ Dβ,v̂,ĵ . These sets were chosen to be disjoint (over v). Hence, while

y may belong to more than one D-set, they all have the same v̂. The decoder then declares the bin v̂ to

be its estimate of the encoded message V .

With this choice of decoding sets, for each β ∈ C(n), we mimic the random coding argument. In

particular, the probability of a decoding error conditioned on successful encoding, P [Ed|Ēe, β], is bounded
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by

P [Ed|Ēe, β] ≤ P [Ed1|Ēe, β] + P [Ed2|Ēd1, Ēe, β], (32)

where Ed1 denotes the event that Y is not (P β
Y |U × PU , δ2)-jointly typical with u(v, j) and Ed2 denotes

the event that there is a (v′ 6= v, j′) such that (u(v′, j′),Y) is (P β
U,Y , δ2)-typical.

Now, since encoding was successful, (u(v, j), s) are (PU,S , δ)-typical. Since by Lemma 2, for any

jointly typical (u, s), the probability that (u, s,y) is not (P β
U,S,Y , δ+δ′)-typical is less than |U||S||Y|/n(δ′)2,

the first term of the right of (32) is bounded by

P [Ed1|Ēe, β] ≤ |U||S||Y|/n(δ′)2 (33)

:= P [Ed1|Ēe], (34)

where P [Ed1|Ēe] is independent of β and the codebook conditioned on Ēe. Furthermore, P [Ed1|Ēe]→ 0

when δ′(n) = n1/4 and n→∞.

It therefore remains to show that

∑

β∈C(n)

EB(U)|Ēe
P [Ed2|Ēe, Ēd1, β]→ 0. (35)

Since (u(v, j),y) are (PU,Y , δ2)-typical, by Lemma 1 the probability of Ed2 averaged over all randomly

chosen codewords in bins other than bin v is no more than

EB(U)|Ēe
P [Ed2|Ēe, Ēd1, β] ≤ 2n(I∗(U ;Y )−ε)2−n(Iβ(U ;Y )−ε1) (36)

≤ 2n(ε1−ε), (37)

where the last inequality follows from our definition of I∗(U ; Y ) = infβ Iβ(U ; Y ). We note that since ε1

does not depend on the underlying distribution, neither of these bounds depends on β. By letting n→∞

as δ → 0, then ε1 < ε and the bound in (37) decays exponentially, uniformly for all β. Since |C(n)| is

polynomial, the sum in (35) asymptotically vanishes.

Hence, one can find a sequence of good codebooks for which

P [E|C(n)] := P [Ee] + max
β′∈C(n)

P [Ed|Ēe, β
′], (38)

goes to zero as n→∞.

Decoding on C:

We wish to show to show that for the same sequence of codebooks,

P [E|C] := P [Ee] + sup
β∈C

P [Ed|Ēe, β], (39)
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also goes to zero as n→∞. It will suffice to show that

sup
β∈C

P [Ed|Ēe, β]→ 0. (40)

If we define Dβ′,v = ∪jDβ′,v,j , we note that the probability of correct decoding for a β ′ ∈ C(n) may

be expressed as

P [Ēd|Ēe, β
′] =

∑

v,j,s

P [Y ∈ Dβ′,v|u(v, j), s]P [v, j, s|Ēe] (41)

≥ 1− λ(n)
n , (42)

with λ
(n)
n → 0 as n→∞ and is not a function of β ′ ∈ C(n).

We will now show that if given any actual channel realization β ∈ C, decoding is performed with the

decoding sets for β′, β′ chosen as a function of β according to (30), then

P [Y ∈ Dβ′,v|u(v, j), s, β] ≥
(n2 − 1)

n2

(

P [Y ∈ Dβ′,v|u(v, j), s, β′]−
|U||S||Y|

n

)

. (43)

Hence, for any β ∈ C,

P [Ēd|Ēe, β] ≥
(n2 − 1)

n2

(

λ(n)
n −

|U||S||Y|

n

)

, (44)

which implies (40). Hence, the decoder may choose Dβ,v,j = Dβ′,v,j and the code is still good.

So it remains to show (43). Now, for any u and s, consider partitioning Dβ′,v into D1
β′,v and D2

β′,v,

where

D1
β′,v = {y ∈ Dβ′,v : ∃i s.t. P β′

Y |U,S [yi|ui, si] < 1/n2} (45)

D2
β′,v = {y ∈ Dβ′,v : ∀i P β′

Y |U,S [yi|ui, si] ≥ 1/n2}. (46)

Then,

P β′

Y |U,S [D1
β′,k|u, s] ≤ n(1/n2)|U||Y||S| (47)

P β
Y |U,S [D1

β′,k|u, s] ≤ n(2/n2)|U||Y||S|, (48)

where the last inequality follows from (30). Also, from (30) and (45), we have that for y ∈ D2
β′,v

P β [y|u, s]

P β′ [y|u, s]
≥

(

1/n2 − 1/n4

1/n2

)n

. (49)
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Combining these results,

P [Y ∈ Dβ′,v|u(v, j), s, β] ≥
P [Y ∈ D2

β′,v|u(v, j), s, β]

P [Y ∈ D2
β′,v|u(v, j), s, β′]

× P [Y ∈ D2
β′,v|u(v, j), s, β′] (50)

≥

(

n2 − 1

n2

)

P [Y ∈ D2
β′,v|u(v, j), s, β′] (51)

≥

(

n2 − 1

n2

) (

P [Y ∈ Dβ′,v|u(v, j), s, β′]−
2|U||Y||S|

n

)

. (52)

B. Upper bound CU :

The encoder produces an output x = f(v, s) where f may be a stochastic function. When V is uniform

in {1, . . . , 2nR}, this induces a distribution on the tuple (V,S,X,Y). It is a simple extension of the basic

Fano inequality [5] to show that for the induced distribution

Hβ(V |Y) ≤ h(Pe(β)) + Pe(β) log(2nR − 1) (53)

≤ n[h(Pe(β)) + Pe(β)R] (54)

:= nδ(Pe(β)), (55)

holds simultaneously for all β ∈ C where Pe(β) = P [V 6= V̂ |β] and h(.) is the binary entropy function.

Then, since V is independent of the side-information,

Iβ(V ;Y)− I(V ;S) = H(V )−Hβ(V |Y) (56)

≥ n(R− δ(Pe(β))), (57)

holds simultaneously for all β ∈ C. Furthermore, from Lemma 4 in [10], we have that if we define the

n random variables

U(i) = (V, Y i−1
1 , Sn

i+1), (58)

then the induced distribution on the tuples (U(i), Xi, Si) by the encoder f(v, s) is such that,
n

∑

i=1

Iβ(U(i); Yi)− I(U(i); Si) ≥ Iβ(V ;Y)− I(V ;S) (59)

≥ n(R− δ(Pe(β))), (60)

which again hold simultaneously for all β ∈ C. Also, the induced distribution on the tuple may be factored

as PXi,Si
×P β

Ui|Xi,Si
. Furthermore, if S and Y are drawn from finite alphabets, so is U(i). Defining W to

be a random variable uniformly distributed in {1, . . . , n} and U = U(i), S = Si, X = Xi when W = i,

Iβ(U ; Y |W )− I(U ; S|W ) ≥ R− δ(Pe(β)). (61)
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If we minimize over all β ∈ C and rearrange terms,

sup
β∈C

δ(Pe(β)) ≥ R− inf
β∈B

Iβ(U ; Y |W )− I(U ; S|W ), (62)

which proves the converse for a PX|S,W and any family {P β
U |X,S,W }β .

APPENDIX III

PROPOSED SCHEME

In this section, we show the following result.

Lemma 7: Let X , S and Z be jointly Gaussian random variables whose covariance matrix is contin-

uously parameterized by β ∈ C (C compact). Then there exists a sequence of quantizers, qk(S), for S

such that infβ Iβ(X + qk(S) + Wk; Z)→ infβ Iβ(X + S; Z).

Proof: Let Wk be uniform additive noise in [−L/k, L/k] and qk be a uniform quantizer on [−L, L]

with k levels (if |y| > L then qk(·) is overloaded and the output is the constant sign(y)(1 + 1/k)L).

Denote by fβ
X,Y,Z the joint probability density function (pdf) on X , Y and Z when Y = S and by

f̃β
X,Y,Z the joint pdf on X , Y and Z when Y = qk(S) + Wk. Likewise, denote by fβ

U,V,Z and f̃β
U,V,Z the

joint pdf on U , V and Z when U = X + Y and V = X − Y . We will not explicitly state the subscripts

when they are clear from context.

By Lemma 5, for any ε1, we can find quantizers for U and Z such that infβ Iβ(qU (U); qZ(Z))|fβ

U,Z
>

infβ Iβ(U ; Z)|fβ

U,Z
− ε1. We will show that by choosing k large enough,

∣

∣

∣
Iβ(qU (U); qZ(Z))|fβ

U,Z
− Iβ(qU (U); qZ(Z))|f̃β

U,Z

∣

∣

∣
< ε1, (63)

which will prove the result. Since,
∫

x,y,z

∣

∣

∣
f̃β(x, y, z)− fβ(x, y, z)

∣

∣

∣
dxdydz =

∫

u,v,z

∣

∣

∣
f̃β(u, v, z)− fβ(u, v, z)

∣

∣

∣
dudvdz (64)

≥

∫

u,z

∣

∣

∣

∣

∫

v
f̃β(u, v, z)− fβ(u, v, z)dv

∣

∣

∣

∣

dudz (65)

=

∫

u,z

∣

∣

∣
f̃β(u, z)− fβ(u, z)

∣

∣

∣
dudz (66)

≥ d(P̃ β
qU (U),qZ(Z), P

β
qU (U),qZ(Z)), (67)

for any quantizers qU (.) and qZ(.), where P β
qU (U),qZ(Z) is the PMF induced by fβ(u, z) and the quantizers

qU (.) and qZ(.). By the uniform continuity of mutual information for finite-alphabet random variables,

it will suffice to show that the left of (64) can be made uniformly small for all β.
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Now, for any ε > 0, choose L such that
∫

R3\{|x|≤L,|y|≤L,|z|≤L}
fβ(x, y, z) < ε, (68)

for all β ∈ C. Also, let KL = max|x|≤L,|y|≤L,|z|≤L,β fβ(x, z). Since | d
dyfβ(y|x, z)| has a maximum on

|x| ≤ L, |y| ≤ L, |z| ≤ L, β ∈ C, by choosing k sufficiently large, we can restrict
∣

∣

∣
f̃β(y|x, z)− fβ(y|x, z)

∣

∣

∣
< δ, (69)

for any δ > 0. Then, for |x| ≤ L, |y| ≤ L, |z| ≤ L and β ∈ C,
∣

∣

∣
f̃β(x, y, z)− fβ(x, y, z)

∣

∣

∣
< KLδ. (70)

Then,
∫

x,y,z
|f̃β(x, y, z)− fβ(x, y, z)|dxdydz ≤

∫

|x|≤L,|y|≤L,|z|≤L
|f̃β(x, y, z)− fβ(x, y, z)|dxdydz (71)

+

∫

R3\{|x|≤L,|y|≤L,|z|≤L}
f̃β(x, y, z) + fβ(x, y, z)dxdydz

≤ L3
εKLε

δ + 2ε. (72)
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