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Abstract—We study the effect of channel estimation error on
the performance of water-filling in point-to-point MIMO channels
at low signal to noise ratios (SNR). In this regard, we derive the
water-filling throughput of a MIMO channel in the presence of
imperfect channel state information at the transmitter (CSIT).
The asymptotic growth rate for the throughput, R, is then found
and is compared with the asymptotic growth rate for the capacity
with perfect CSIT, CP, as a function of the signal to estimation
error ratio (SER). We show that at low SNR, for moderate values
of the SER, water-filling based on erroneous channel estimates
can still achieve significant throughputs asymptotically.

Index Terms—Capacity scaling, Channel estimation error,
multiple-input multiple-output (MIMO), Massive MIMO.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology delivers
promising improvement to the data rate of wireless systems
as it enables simultaneous transmission of multiple streams
of data over independent paths [1]-[4]. MIMO channels with
a large number of antennas (also known as Massive MIMO)
and their capacity scaling results have been under extensive
investigation recently [5]-[7].

In [1, Section IV.A.], having n transmit and receive antennas
in a rich scattering environment, the capacity of a point-to-
point MIMO channel with perfect channel state information
at the transmitter (CSIT) and the mutual information with no
CSIT at all were found using water-filling power allocation and
equal power allocation respectively and were shown to scale
linearly with n. The constant multiplier associated with linear
scaling (the asymptotic growth rate) were derived by using
the limiting distribution of the eigenvalues of the channel gain
matrix as n grows large. It was shown in [1, Section IV.A.]
that at low signal to noise ratios (SNR), water-filling with
perfect CSIT provides significant throughput improvement
asymptotically over equal power allocation.

In practice, perfect CSIT is not generally available and
in addition, the transmitter may have no a priori reliable
knowledge of the quality of channel estimation either. Thus, it
is interesting to evaluate the performance loss in point-to-point
MIMO channels if the transmitter performs water-filling based
on erroneous channel estimates only and does not take the
quality of channel estimation into account. Hence, we derive
such water-filling throughput, show that it scales linearly with
n asymptotically at low SNR, and find its asymptotic growth
rate, R. Using the asymptotic growth rate for the capacity
with perfect CSIT, CP, as a baseline for comparison, we then
compare R with CP as a function of the signal to estimation
error ratio (SER).
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Our results indicate that at low SNR, for moderate values of
the SER, water-filling based on erroneous channel estimates
can still achieve significant throughputs asymptotically. In
particular, for SER values such as 5 dB, 0 dB, and −5 dB, R
is found to be 86%, 70%, and 52% of CP respectively.

Note that, in the high SNR regime, as shown in [1],
equal power allocation (which requires no CSIT) provides the
same asymptotic throughput as water-filling with perfect CSIT.
Hence, in that regime, equal power allocation can be employed
and thus studying the effect of channel estimation error on the
performance of water-filling at high SNR is of no interest.

The rest of this letter is organized as follows: Section II
introduces our channel model and Section III provides capacity
analysis of no CSIT and perfect CSIT scenarios. The water-
filling throughput with imperfect CSIT and its asymptotic
growth rate, R, are derived in sections IV and V respectively.
Section VI provides numerical results and compares R with
the asymptotic growth rate for the capacity with perfect CSIT.
Finally, Section VII concludes the letter.

II. CHANNEL MODEL

Consider a point-to-point MIMO channel between a trans-
mitter and a receiver each equipped with n antennas. This
channel has a discrete-time model y = Hx + w, where x
and y are n × 1 transmit and receive vectors respectively,
and w is the n × 1 additive white Gaussian noise vector. We
assume that the entries of w are i.i.d. and zero-mean circularly
symmetric complex Gaussian (ZMCSCG) with variance N
and for simplicity, we take N = 1. Furthermore, H is the
channel gain matrix whose entries are i.i.d. and ZMCSCG
with variance 2σ2, i.e., σ2 per real dimension. Throughout
the letter, we assume that the channel is quasi-static fading,
i.e., as far as the transmitter is concerned, H is fixed for the
duration of the transmission. In addition, denoting the total
transmit power over n antennas as P , we measure the SNR
as ρ = P/N = P .

III. ANALYSIS OF NO CSIT AND PERFECT CSIT CASES

A. No CSIT

In this scenario, since the transmitter has no knowledge
of H, we assume that it distributes the total transmit power
P equally over n transmit antennas. Therefore, assuming
{λ1, λ2, . . . , λn} as the eigenvalues of HH† (where (.)† refers
to conjugate transpose), the mutual information with equal
power allocation is 1 [1, Section III.B.]

IN
n =

∑n

i=1
log(1 + Pλi/n). (1)

1Throughout this letter, logarithms are with respect to base 2.
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B. Perfect CSIT (best-case scenario)

In this scenario, since H is perfectly known at the transmit-
ter, water-filling power allocation is optimal [4], [1, Section
III.A.]. Thus, the capacity of the MIMO channel with perfect
CSIT is

CP
n =

∑n

i=1
(log (λiµ))+, (2)

where (x)+ = max(0, x) and the water-filling level µ satisfies∑n

i=1
(µ − 1/λi)

+ = P. (3)

IV. WATER-FILLING THROUGHPUT WITH IMPERFECT CSIT

A more realistic scenario is when the channel gains are
not perfectly known at the transmitter. This happens due to
channel estimation errors which are nonzero. With Maximum
Likelihood Estimation (MLE), the estimated channel gain
matrix Ĥ is expressed as

Ĥ = H + E, (4)

where E is the channel estimation error matrix that has
i.i.d. and ZMCSCG entries with variance 2σ2

e (Gaussian-
distributed model for the estimated channel gains is reasonable
in estimation methods such as MLE [8]). Furthermore, E and
H are independent. Throughout the letter, we refer to the ratio
ζ = σ2/σ2

e as the signal to estimation error ratio (SER).
From (4), the entries of Ĥ are i.i.d. and ZMCSCG with

variance 2σ2 + 2σ2
e . Thus, the entries of Ĥ and H are joint

complex Gaussian distributed and the channel gain matrix H
can be written as [9]

H = ηĤ + X, (5)

where η = ζ/(1+ζ), Ĥ and X are independent, and the entries
of X are i.i.d. and ZMCSCG with variance 2σ2/(1 + ζ).

When only the channel estimate Ĥ is known at the trans-
mitter, water-filling power allocation provides the throughput

Rn = log det
[
In + HQH†], (6)

in which In denotes the n × n identity matrix, Q = VQ̃V†

is the transmit covariance matrix where V is obtained from
the singular value decomposition (SVD) Ĥ = UΣ̂

1/2
V† with

Σ̂ = diag
(
λ̂1, λ̂2, . . . , λ̂n

)
, and Q̃ is an n×n diagonal matrix

with the ith diagonal entry

Q̃i = (µ̂ − 1/λ̂i)+, (7)

as the power allocated to the ith stream [4]. Furthermore, the
water-filling level µ̂ in (7) satisfies∑n

i=1
(µ̂ − 1/λ̂i)+ = P. (8)

Using (5) and replacing Q = VQ̃V† and Ĥ = UΣ̂
1/2

V† in
(6), we find

Rn = log det

»

In +
“

ηĤ + X
”

Q
“

ηĤ + X
”†

–

= log det
h

In + η2Σ̂Q̃ + ηKQ̃Σ̂
1/2

+ηΣ̂
1/2

Q̃K† + KQ̃K†
i

, (9)

where K = U†XV. Equation (9) can be written as

Rn = log detY + log det
h

In + Y−1/2 (L + T)Y−1/2
i

, (10)

where

Y = In + η2Σ̂Q̃, (11)

L = ηKQ̃Σ̂
1/2

+ ηΣ̂
1/2

Q̃K†, (12)

T = KQ̃K†. (13)

V. ASYMPTOTIC GROWTH RATES

The throughputs IN
n , CP

n, and Rn presented in sections III
and IV, are random variables. In [1, Sectin IV.A], the almost-
sure convergence of scaled throughputs IN

n/n and CP
n/n is

shown as n → ∞. Furthermore, the asymptotic growth rates
IN and CP, for no CSIT and perfect CSIT respectively, were
found in [1] for the special case that the entries of H have
unit variance (2σ2 = 1).

In this section, we first state the result of Theorem IV.1 in
[1] for arbitrary σ and σe. Subsequently, we show the almost-
sure convergence of the scaled water-filling throughput with
imperfect CSIT, Rn/n, as n → ∞ at low SNR and derive the
asymptotic growth rate for the throughput, R.

Let G be an n × n matrix that has i.i.d. and ZMCSCG
entries with unit variance. According to Theorem IV.1 in [1],
the scaled (by 1/n) empirical eigenvalue distribution of GG†,
converges almost surely to a limit which has the density

g(λ) =



π−1
p

1/λ − 1/4 0 ≤ λ ≤ 4
0 else.

(14)

Since H is equal in distribution with
√

2σG, the eigenvalues
of HH† are scaled versions (by 2σ2) of the eigenvalues of
GG†. Thus, the scaled empirical eigenvalue distribution of
HH† converges to a limit with density

h(λ) =



`
√

2σπ
´−1 p

1/λ − 1/8σ2 0 ≤ λ ≤ 8σ2

0 else.
(15)

Similarly, the scaled empirical eigenvalue distribution of ĤĤ†

converges to a limit with density

ĥ(λ) =

(

1√
2(σ2+σ2

e)π

q

1
λ
− 1

8(σ2+σ2
e)

0 ≤ λ ≤ 8(σ2 + σ2
e)

0 else.
(16)

A. No CSIT
Since the empirical distribution of λi/n in (1) converges to

a limit with density as in (15), as n → ∞, using the law of
large numbers (LLN), we have [1, Section IV.A.]

IN
n

n
=

1

n

Xn

i=1
log (1 + Pλi/n) → IN, (17)

where the convergence is almost sure [1]. Denoting E[.] as the
expectation of a random variable,

IN = E [log (1 + Pλ)] =

Z 8σ2

0

log(1 + Pλ)h(λ)dλ. (18)

As P → 0, following the same approach as in [1], a first-order
approximation gives2

IN ≈ P log e

Z 8σ2

0

λh(λ)dλ = 2Pσ2 log e. (19)

2Note that the result in equation (12) of [1] is obtained in nats as opposed
to (19) which is in bits/sec/Hz.
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B. Perfect CSIT (best-case scenario)
As in [1, Section IV.A.], by relabeling µ as µn/n in (2) and

(3) respectively, and using the LLN along with (15), we find

CP
n

n
=

1

n

n
X

i=1

(log (µnλi/n))+ → CP =

Z 8σ2

0

(log (µ?λ))
+

h(λ)dλ,

(20)

and

1

n

n
X

i=1

`

µn − (λi/n)−1´+ →
Z 8σ2

0

(µ? − 1/λ)
+

h(λ)dλ = P, (21)

as n → ∞ where µ? = limn→∞ µn is the asymptotic scaled
water-filling level and the convergence is almost sure. In (20)
and (21), following the same approach as in [1], we can find
dCP/dP = log e/µ? and µ? → 1/8σ2 as P → 0 respectively,
and thus obtain the first-order approximation3

CP ≈ 8σ2P log e. (22)

Hence, as previously shown in [1], at low SNR, availability of
perfect CSIT provides significant performance improvement
for the MIMO channel asymptotically compared to the no
CSIT scenario since CP/IN ≈ 4.

C. Imperfect CSIT
By relabeling µ̂ as µ̂n/n in (8), and using the LLN along

with (16), as n → ∞, we obtain

1

n

Xn

i=1
(µ̂n − (λ̂i/n)−1)+ →

Z 8(σ2+σ2
e)

0

(µ̂? − 1/λ)+ĥ(λ)dλ = P,

(23)

where the convergence is almost sure. Note that µ̂? in (23) is
the asymptotic scaled water-filling level.

Since Σ̂ and Q̃ are diagonal with the ith diagonal entry
respectively as λ̂i and (7), the matrix Y in (11) is diagonal
and the first term in (10) is thus

log detY =
Xn

i=1
log(1 + η2(λ̂iµ̂ − 1)+). (24)

Relabeling µ̂ as µ̂n/n in (24), we get the scaled result

1

n
log detY =

1

n

n
X

i=1

log(1 + η2(µ̂nλ̂i/n − 1)+). (25)

Since {λ̂1, λ̂2, . . . , λ̂n} are the eigenvalues of ĤĤ†, as n →
∞, the empirical distribution of λ̂i/n converges to a limit with
density as in (16). Thus, using the LLN,

1

n
log detY →

Z 8(σ2+σ2
e)

0

log(1 + η2(µ̂?λ − 1)+)ĥ(λ)dλ, (26)

as n → ∞, where µ̂? satisfies (23).
Denoting Li,j as the entry in the ith row and the jth column

of the matrix L, for i, j = 1, . . . , n, we find from (12)

Li,j = η

q

λ̂jQ̃jKi,j + η

q

λ̂iQ̃iK
∗
j,i, (27)

where K∗
j,i is the complex conjugate of Kj,i. Using (7),

Li,j = η

q

λ̂j(µ̂ − 1/λ̂j)
+Ki,j + η

q

λ̂i(µ̂ − 1/λ̂i)
+K∗

j,i,

3The corresponding result in [1] is obtained in nats as opposed to (22)
which is in bits/sec/Hz.

and relabeling µ̂ as µ̂n/n, we find

Li,j = η

q

λ̂j/n(µ̂n − (λ̂j/n)−1)+Ki,j/
√

n

+ η

q

λ̂i/n(µ̂n − (λ̂i/n)−1)+K∗
j,i/

√
n. (28)

The empirical distribution of λ̂j/n for any j = 1, 2, . . . , n,
converges to a limit with density as in (16) as n → ∞. Thus,
λ̂j/n in (28) does not scale with n for any j. In addition,
(µ̂n − (λ̂j/n)−1)+ does not scale with n either. Moreover,
the entries of K = U†XV are i.i.d. and ZMCSCG with finite
variance 2σ2/(1 + ζ). This is because U and V are unitary
matrices obtained from the SVD of Ĥ and the entries of X
are i.i.d. and ZMCSCG with variance 2σ2/(1+ ζ). Therefore,
having the

√
n term in the denominator of Li,j in (28), for any

i, j = 1, 2, . . . , n, Li,j → 0 as n → ∞. It is worth noting that
the lower the SNR, the smaller the term (µ̂n − (λ̂j/n)−1)+

in (28), and thus the faster the convergence.
For the matrix T in (13), we have

Ti,j =
Xn

l=1
(µ̂ − 1/λ̂l)

+Ki,lK
∗
j,l

=
1

n

Xn

l=1
(µ̂n − (λ̂l/n)−1)+Ki,lK

∗
j,l, (29)

which is obtained by relabeling µ̂ as µ̂n/n. Using the LLN,
as n → ∞, Ti,j converges to

Ti,j → E[(µ̂? − 1/λ̂)+Ki,lK
∗
j,l]. (30)

Since Ĥ → (U,V) → K is a Markov chain, thus K and Ĥ
are independent given U and V. Therefore, we can write

E[(µ̂? − 1/λ̂)+Ki,lK
∗
j,l]

= E[E[(µ̂? − 1/λ̂)+Ki,lK
∗
j,l|U,V]]

= E[E[(µ̂? − 1/λ̂)+|U,V]E[Ki,lK
∗
j,l|U,V]]. (31)

The water-filling level µ̂? was chosen in (8) such that (8) holds
for each realization of Ĥ. Thus,

E[(µ̂? − 1/λ̂)+|U,V] = P . (32)

Hence, from (30), (31), and (32) we obtain

Ti,i → PE[|Ki,l|2] = 2Pσ2/(1 + ζ),

for i = 1, 2, . . . , n, and

Ti,j → PE[Ki,l]E[K∗
j,l] = 0,

for i, j = 1, 2, . . . , n, and i 6= j.
Although, elementwise, off-diagonal entries Zi,j of Z =

In + Y−1/2 (L + T)Y−1/2 for i, j = 1. . . . , n, i 6= j are
such that Zi,j → 0 as n → ∞, this does not necessarily
imply that detZ →

∏n
i=1 Zi,i as n → ∞. This is because

the effect of off-diagonal entries of Z may not necessarily be
neglected since the number of these entries are increasing with
n. However, for a fixed n, as P → 0, the off-diagonal entries of
Z vanish and thus detZ →

∏n
i=1 Zi,i. For example, it is easy

to verify by cofactor expansion for an n × n matrix A with
constant entries and ε → 0 that det[In + εA] =

∏n
i=1(1 +

εAi,i) + O(ε2). Therefore, in the low SNR regime, detZ ≈∏n
i=1 Zi,i = det[In +(2Pσ2/(1+ ζ))Y−1] as n → ∞. Thus,

knowing Y from (11) and using the LLN, we can write

1

n
log detZ →

Z 8(σ2+σ2
e)

0

log

„

1 +
2Pσ2/(1 + ζ)

1 + η2(λµ̂? − 1)+

«

ĥ(λ)dλ.

(33)
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Hence, from (26) and (33), we find Rn/n → R as n → ∞.
Therefore, at low SNR, Rn scales linearly with n as n → ∞
with a proportionality constant (the asymptotic growth rate)
that is not random and is given by R as

R ≈
Z 8σ2(1+1/ζ)

0

log
`

1 +
`

ζ2/(1 + ζ)2
´

(λµ̂? − 1)+
´

ĥ(λ)dλ

+

Z 8σ2(1+1/ζ)

0

log

„

1 +
2Pσ2/ (ζ + 1)

1 + (ζ2/(1 + ζ)2) (λµ̂? − 1)+

«

ĥ(λ)dλ,

(34)

where µ̂? satisfies (23). Using (34), one can evaluate the effect
of channel estimation error on the performance of water-filling
power allocation at low SNR. Note that for a fixed σ, when
ζ = ∞ dB (high SER), the second term in (34) is zero and

R =

Z 8σ2

0

(log (λµ̂?))
+

h(λ)dλ = CP,

which is the asymptotic growth rate for water-filling with
perfect CSIT as found in (20). Furthermore, for a fixed σ
and ζ = −∞ dB (low SER), the first term in (34) is zero and
as P → 0 we have

R ≈
Z ∞

0

log
`

1 + 2Pσ2´

ĥ(λ)dλ ≈ 2Pσ2 log e

Z ∞

0

ĥ(λ)dλ

= 2Pσ2 log e,

which is equal to IN in (19). This result implies that, at
low SER, water-filling based on erroneous channel estimates
achieves the same throughput as equal power allocation
asymptotically in the low SNR regime.

VI. NUMERICAL RESULTS

In this section, we provide numerical results when σ = 1
and P = −20 dB. Fig. 1 shows the convergence of the actual
scaled throughputs (averaged over multiple realizations) IN

n/n,
CP

n/n, and Rn/n to the asymptotic (analytic) results IN, CP,
and R presented in (18), (20), and (34) respectively, as n
increases. For n = 50, Fig. 2 plots the actual (averaged over
multiple realizations) and the asymptotic scaled throughputs
versus the SER. Based on the figures, water-filling with im-
perfect CSIT monotonically interpolates between water-filling
with perfect CSIT and equal power allocation. Furthermore,
one can compare the result for water-filling with imperfect
CSIT with the result for water-filling with perfect CSIT as a
function of the SER. Particularly, with imperfect CSIT and for
SER values such as 5 dB, 0 dB, and −5 dB, R is 86%, 70%,
and 52% of CP respectively. In other words, at low SNR,
water-filling based on erroneous channel estimates can still
achieve significant throughputs asymptotically for moderate
values of the SER. For imperfect CSIT, the gap between the
actual and the asymptotic (analytic) results in the figures is
very small. When P is above −15 dB, the approximation in
(34) starts to deviate notably. However, numerically, we find
that at higher SNR values, the same conclusion holds that
moderate SER of 5 dB provides performance close to CP.

VII. CONCLUDING REMARKS

We have derived the water-filling throughput of a point-
to-point MIMO channel in the presence of imperfect CSIT.
Consequently, we have found the asymptotic growth rate for
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Fig. 2. Scaled throughputs when P = −20 dB, σ = 1, and n = 50.

the throughput with imperfect CSIT at low SNR and compared
it with the asymptotic growth rate for the capacity with perfect
CSIT as a function of the SER. We have shown that at
low SNR and for moderate values of the SER, water-filling
even based on erroneous channel estimates can still achieve
significant throughputs asymptotically.

REFERENCES

[1] C. N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity
scaling in MIMO wireless systems under correlated fading,” IEEE Trans.
Inform. Theory, vol. 48, pp. 637-650, Mar. 2002.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communication in
a fading environment when using multiple antennas,” Wireless Personal
Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.

[3] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits
of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 51, no. 6, pp.
684-702, Jun. 2003.

[4] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, pp. 585-598, Nov. 1999.

[5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Proces. Mag., vol. 30, no. 1, pp. 40-46,
Jan. 2013.

[6] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of cellular networks: How many antennas do we need?” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160-171, Feb. 2013.

[7] J. Hoydis, K. Hosseini, S. ten Brink, and M. Debbah, “Making smart use
of excess antennas: Massive MIMO, small cells, and TDD,” Bell Labs
Tech. Journal, vol. 18, no. 2, pp. 5-21, Sep. 2013.

[8] H.L. Van Trees, Detection, Estimation, and Modulation Theory, Part I.,
New York: John Wiley and Sons, 1968.

[9] D. Gu and C. Leung, “Performance analysis of transmit diversity scheme
with imperfect channel estimation,” Elect. Lett., vol. 39, pp. 402-403, Feb.
2003.


