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Abstract

We consider the problem of designing optimal probing signals for finite-hypothesis testing. Equiva-

lently, we cast the problem as the design of optimal channel input sequences for identifying a discrete

channel under observation from a finite set of known channels. The optimality criterion that we employ

is the exponent of the Bayesian probability of error. In our study, we consider a feed-forward scenario

where there is no feedback from the channel output to the signal selector at the channel input and a

feedback scenario where the past channel outputs are revealed to the signal selector.

In the feed-forward scenario, only the type of the input sequence matters and our main result is

an expression for the error exponent in terms of the limiting distribution of the input sequence. In the

feedback case, we show that when discriminating between two channels, the optimal scheme in the first

scenario is simultaneously the optimal time-invariant Markov feedback policy of any order.

Index Terms
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I. INTRODUCTION

In traditional hypothesis testing, we are given a set of hypotheses H. For each hypothesis h ∈ H,

we know the probability law for an observable variable Y , i.e., we know P h
Y [y]

4
= PY |H [y|h]. We make

n observations yn
1 = [y1, y2, . . . , yn] and based on these observations, we need to infer the hypothesis
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h ∈ H. This is a well known problem with well known solutions in the context of Bayesian and Neyman-

Pearson decision making [14]. Furthermore, the type-II error exponent (for Neyman-Pearson) or average

error exponent (for Bayesian) detection is well known and may be derived by the method of types [4],

[5] or large deviation theory [8].

Let us now suppose that the observable variable Y is obtained as the response to an input variable

X , which we control. In particular, each hypothesis h, drawn from a finite set of hypotheses H, may

be viewed as a memoryless channel P h
Y |X [y|x]

4
= PY |X,H [y|x, h]. We refer to this type of problem as

a finite-hypothesis channel identification or channel detection problem. The objective is to choose a set

of input signals xn
1 = [x1, x2, ..., xn] according to some policy. We will consider two broad classes of

policies.

Open loop policies: We transmit these n signals xn
1 and only after all signals are transmitted, we

observe the n responses yn
1 = [y1, ..., yn]. We make a decision on h ∈ H after we observe all outputs yn

1 .

Feedback policies: This case may be described as follows. At time t = 1 an input x1 is chosen

according to some policy and sent over the channel. Based on the observation of the response output

y1, a new input x2 is chosen. The signal x2 is transmitted and a response y2 is observed. Based on

knowledge of x1, x2, y1 and y2, an input x3 is generated and so on. Thus, after each observed output

yt−1, there is a chance to refine the transmitted input xt.

The objective of this paper is to determine policies for generating input sequences xn
1 that optimize

some measure of hypothesis detection error for the cases outlined above. The measure of error that we

use is the exponent of the average probability of error. In this light, our results are related to the error

exponent for Bayesian hypothesis testing (Chernoff’s theorem [4]).

We contrast this to the related, but different, problem of traditional channel identification. In traditional

channel identification, one is typically given a class of channels, parameterized by some continuous

vector (e.g., an unknown impulse response) (see [1], [11], [13]). There, the objective is to estimate these

parameters for a particular channel under observation.

We also contrast the second class of policies (feedback policies) with sequential detection [3]. In a

traditional sequential detection framework, one seeks to minimize the probing time for a given probability

of error by designing appropriate stopping rules. In this work, the probing time is fixed and we seek to

minimize the probability of error by appropriate design of probing signals. This may be more appropriate

in scenarios where the phenomenon we are probing is only available for a limited time beyond our control,

e.g., a hostile target. Furthermore, traditional sequential detection does not produce a signal selection

strategy. Nevertheless, Chernoff has suggested a signal selection strategy in the context of sequential
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detection [3], [12]. In the context of discriminating between two hypotheses h1 and h2, this strategy may

be described as follows. If at time t hypothesis h1 is more likely given the past observations, choose

the input xt that maximizes the Kullback-Leibler divergence D(P h1

Y |X [Y |xt]||P
h2

Y |X [Y |xt]). A similar

procedure is employed for h2. However, since this algorithm was not explicitly designed to minimize the

Bayesian error probability for a fixed probing time, it is unlikely to be optimal in the Bayesian setting.

In particular, for a fixed xt, the Kullback-Leibler divergence D(P h1

Y |X [Y |xt]||P
h2

Y |X [Y |xt]) is the optimal

error exponent for incorrectly detecting h1 given h2 is true in a setting where a small but non-zero

probability of error is tolerated for incorrectly detecting h2 given h1 is true.

To illustrate this point, we shall see by way of an example that in the context of Bayesian discrimination

between two hypotheses, Chernoff’s approach may be outperformed by a signal selection strategy that

effectively employs no feedback at all. This strategy is correctly predicted by our results.

Furthermore, while it may be argued that a Bayesian setting puts undue importance on the prior

probabilities of the hypotheses, this is in fact not the case with our formulation. While we assume the

existence of prior probabilities in our derivations, the exponents that we derive (and the policies that

achieve them) are in fact independent of the actual prior probabilities (provided none is zero).

This paper is structured as follows. In Section II we introduce the notation, review the method of

types and define the error exponents for our two problems. As we employ the method of types, our

results in the main body are directly applicable to discrete inputs and outputs only. In Section III, we

prove one of our main results, a theorem on the error exponent for the open loop case. We also provide

an efficient numerical algorithm for the computation of the exponent and the asymptotic sequences that

achieve these exponents. In Section IV we investigate the feedback error exponent and derive the exact

performance for a broad class of time-invariant Markov policies (this expression also applies to a class

of Markov hypotheses). We show that this expression is an upperbound for any time-invariant Markov

policy. We then show that in the case of two hypotheses, this expression is itself upperbounded by the

open loop exponent in Section III. For the case of distinguishing between two hypotheses, this bound

is achievable. In Section V we simulate a channel detection problem and note that the exponent of the

simulated probability of error agrees with our theoretical result. We also compare a simple two-hypotheses

scenario employing our strategy to that suggested by Chernoff; simulation results clearly show that our

scheme attains a better error exponent (without employing any feedback). Section VI provides some

closing remarks. Finally, the Appendix provides supporting lemmas of analytic nature relevant to the

derivation of the main results.
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II. PRELIMINARIES

We consider the inputs xn and outputs yn to belong to finite discrete sets X = { x(1), x(2), . . . , x(M)}

and Y = { y(1), y(2), . . . , y(N) }, respectively. We further assume that each channel is memoryless

and time-invariant, i.e., P h
Y |X [yn

1 |x
n
1 ] =

∏n
j=1 P h

Y |X [yj |xj ]. Also, we assume that P h
Y |X [y|x] > 0 for all

h ∈ H, y ∈ Y, x ∈ X , which for future reference we abbreviate as P h
Y |X > 0.

A. The Method of Types

Since sequence types will be of central importance in this paper, we now develop our notation for

them. We will be interested in two different kind of types: memoryless and Markov types.

We loosely follow the notation of [4]. Let EX be the space of all distributions on X (with topology

induced by the usual topology on Rn). We denote by Qxn
1

the memoryless type (empirical distribution)

of xn
1 , i.e.,

Qxn
1
[a]

4
=

1

n
|{i : xi = a}|. (1)

Also, Qn
X will denote the set of all types Qxn

1
. For QX ∈ Qn

X , let T (QX) = {xn
1 ∈ X n : Qxn

1
= QX}

denote the set of all sequences whose type is QX . We note that a memoryless type QX ∈ QX is also a

distribution on X , i.e., QX ∈ EX .

The entropy H(QX) of a distribution QX and the Kullback-Leibler divergence D(QX ||PX) between

two distributions QX and PX are defined as

H(QX)
4
= −

∑

x∈X

QX [x] log QX [x] (2)

D(QX ||PX)
4
=

∑

x∈X

QX [x] log
QX [x]

PX [x]
. (3)

The following theorem enumerates some of the key properties of memoryless types.

Theorem 1: Let QX ∈ Qn
X be the type of the length-n sequence xn

1 . Let PX [xn
1 ] be a memoryless

and time-invariant distribution on xn
1 , i.e., PX [xn

1 ] =
∏n

i=1 PX [xi]. Then,

1) |Qn
X | ≤ (n + 1)|X |

2) PX [xn
1 ] = 2−n[D(QX ||PX)+H(QX)]

3) 1
|Qn

X |2
nH(QX) ≤ |T (QX)| ≤ 2nH(QX)

Proof: The proof is given in [6].
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Similarly, we denote by QXY and EXY the joint type of two sequences (xn
1 , yn

1 ) and the space of joint

distributions on (X, Y ) respectively. Likewise, we define EY |X to be the space of conditional distributions

on Y given X and QY |X to be the conditional distribution on Y given X obtained from QXY . We shall

use notation like T (QY |X)(xn
1 ) = {yn

1 : (xn
1 , yn

1 ) ∈ T (QXY )} where the parent QXY of QY |X will

always be clear from the context.

The Kullback-Leibler divergence between a distribution QXY and a conditional distribution PY |X is

defined as

D(QXY ||PY |X)
4
=

∑

x∈X ,y∈Y

QXY [x, y] log
QXY [x, y]

PY |X [y|x]
∑

y′∈Y QXY [x, y′]
. (4)

If QXY has a known factorization QXY = QY |X×QX , this will frequently be written as D(QY |X ||PY |X |QX)
4
=

D(QXY ||PY |X).

The following theorem enumerates two key properties of joint types.

Theorem 2: Let QXY ∈ Qn
XY be the joint type of the length-n sequences xn

1 and yn
1 . Let PY |X [yn

1 |x
n
1 ]

be a memoryless and time-invariant distribution, i.e., PY |X [yn
1 |x

n
1 ] =

∏n
i=1 PY |X [yi|xi]. Then,

1) PY |X [yn
1 |x

n
1 ] = 2−n[D(QXY ||PY |X)+H(QY |X)]

2) 1
|Qn

X ||Qn
Y |2

nH(QY |X) ≤ |T (QY |X)| ≤ 2nH(QY |X),

where for notational convenience, we write H(QY |X) in place of H(QXY ) − H(QX).

Proof: The proof is given in [6].

In Section IV, we will also employ the notion of circular Markov types [7]. In particular, if we denote

by UX0,...,Xk
= UXk

0
the kth order circular Markov type 1 of a sequence xn

1 , then UXk
0

is a probability

mass function (PMF) defined by the relative frequencies,

UXk
0
[a0, . . . , ak] =

1

n
|{i : xi+k

i = ak
0, 1 ≤ i ≤ n}|, (5)

with the cyclic convention that xi+n = xi.

We denote by Un
Xk

0
the set of all kth order circular Markov types for X sequences of length n. Likewise,

T (UXk
0
) denotes the set of all length n sequences X whose Markov type is UXk

0
. Finally, we denote

by FXk
0

the space of all distributions FXk
0

on the tuple (X0, . . . , Xk) whose marginalization satisfies

FXk−1
0

[xk−1
0 ] = FXk

1
[xk−1

0 ] with topology induced by the usual topology on Rn. We immediately note

that UXk
0
∈ FXk

0
.

1Sometimes Markov types are referred to as higher order types. A k + 1 higher order type is a kth order Markov type. We

prefer the notation ‘kth order Markov type’ as it is the type of interest when the sequence is generated by a kth order Markov

chain.

September 28, 2005 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. YY, MONTH 2005 6

For any FXk
0

in the interior of (FXk
0
) (FXk

0
viewed as a subset of Rn), we have that FXk

0
> 0. Hence, the

corresponding FXk|X
k−1
0

> 0 and FXk|X
k−1
0

represents an irreducible (hence ergodic since the state space

is finite [2], [9]) kth order Markov chain. Conversely, for any ergodic Markov chain FXk|X
k−1
0

there is a

unique invariant distribution FXk−1
0

. Hence, each interior point of FXk
0

is in one-to-one correspondence

with an ergodic Markov chain FXk|X
k−1
0

. Furthermore, for any ergodic Markov chain FXk|X
k−1
0

, we may

associate a unique FXk
0
∈ FXk

0
(which need not be in the interior).

If ΓXk|X
k−1
0

[xk|x
k−1
0 ] = 0 for some xk

0 implies that UXk
0
[xk

0] = 0, we shall denote this by the shorthand

notation UXk
0
� ΓXk|X

k−1
0

.

Bounds on the number of Markov types have been proven for first order Markov types [7]. As stated in

Csiszár [5], these readily generalize to any order. We now state the relevant bounds for arbitrary orders,

the proof of which is a simple extension of the first order results in [7].

Theorem 3: (Davisson, Longo and Sgarro) Let xn
1 be a sequence with kth order Markov type UXk

0
∈

Un
Xk

0
and P [xn

1 ] a probability mass function on X n defined by

P [xn
1 ] = µXk

1
[xk

1]

n
∏

m=k+1

ΓXk|X
k−1
0

[xm|xm−1
m−k]. (6)

with µXk
1

> 0 and ΓXk|X
k−1
0

> 0. Then, for some α > 0 and β > 0 (which depend on µXk
1

and ΓXk|X
k−1
0

respectively), the following hold,

1) |Un
Xk

0
| ≤ (n + 1)|X |k+1

2) n−|X |k(n + 1)−|X |k+1

2nH(Xk|X
k−1
0 ) ≤ |T (UXk

0
)| ≤ |X |k2nH(Xk|X

k−1
0 )

3) α2
−n[D(U

Xk
0
||Γ

Xk|X
k−1
0

)+H(Xk|X
k−1
0 )]

≤ P [xn
1 ] ≤ β−k2

−n[D(U
Xk

0
||Γ

Xk|X
k−1
0

)+H(Xk|X
k−1
0 )]

,

where for notational convenience, we write H(Xk|X
k−1
0 ) in place of H(UXk

0
) − H(UXk−1

0
) and UXk−1

0

is a marginalization of UXk
0
. Furthermore, if ΓXk|X

k−1
0

[xk|x
k−1
0 ] = 0 for some xk

0 , then the lower bound

in 3) still holds. Finally, if ΓXk|X
k−1
0

is irreducible and UXk
0
� ΓXk|X

k−1
0

, then the upperbound in 3 still

holds.

Unfortunately, Theorem 3 does not provide an upperbound on the probability of a sequence xn
1 when

ΓXk|X
k−1
0

is irreducible and UXk
0
, the type of xn

1 , does not satisfy UXk
0
� ΓXk|X

k−1
0

. The difficulty here

is that the sequence xn
1 (or its cyclic extension) contains transitions which are forbidden by ΓXk|X

k−1
0

.

There are two scenarios in which these may occur. First, a forbidden transition may occur in the sequence

xn
1 and is not due to the cyclic extension by which UXk

0
is derived. In this case, the upperbound in part

3 of Theorem 3 is still valid since P [xn
1 ] = 0. In the case that the only forbidden transitions in UXk

0
are

due to the cyclic extension, clearly we have P [xn
1 ] > 0, yet the right-hand side in part 3 of Theorem 3

is 0.
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Despite this, it is noted in [7] that for such a type UXk
0

we may find another type U ′
Xk

0
with no

forbidden transitions and for which U ′
Xk

0
is sufficiently “close” to UXk

0
that the probability of a sequence

of type U ′
Xk

0
is “close” to the probability of xn

1 . In particular, for any irreducible Markov chain with

K = |X |k states, there is a sequence of at most K allowable transitions between any two states. Hence,

by replacing the (at most) last K transitions of xn
1 appropriately and possibly shortening the sequence by

up to K terms, we may eliminate the forbidden transitions entirely. Furthermore, since we only replaced

(and removed) up to a fixed number K of terms in the sequence, we can upperbound the ratio between

the probability of the sequence xn
1 to that of a sequence of type U ′

Xk
0
. We may thus complement the

upperbound in Theorem 3 with

Theorem 4: Let xn
1 be a sequence of type UXk

0
and P [xn

1 ] a probability mass function on X n defined

by

P [xn
1 ] = µXk

1
[xk

1]
n

∏

m=k+1

ΓXk|X
k−1
0

[xm|xm−1
m−k]. (7)

with µXk
1

> 0 and ΓXk|X
k−1
0

irreducible. Let K = |X |k. Then there exists a type U ′
Xk

0
∈ Un

Xk
0

⋃

· · ·
⋃

Un−K
Xk

0

which depends only on UXk
0

and the forbidden transitions of ΓXk|X
k−1
0

such that

1) |T (UXk
0
)| ≤ 2nρn2nH(Xk|X

k−1
0 )|U′

2) P [xn
1 ] ≤ 2nσn2

−n[D(U ′

Xk
0

||Γ
Xk|X

k−1
0

)+H(Xk|X
k−1
0 )|U′ ]

,

with ρn → 0 and σn → 0 as n → ∞ and these do not depend on UXk
0
.

Proof:

1) Follows from the fact that we have only changed (at most) K terms in the sequence xn
1 . Hence,

by the triangle inequality ||UXk
0
− U ′

Xk
0
|| ≤ 2(K + k)/n + K/n, and the result follows by the uniform

continuity of H(Xk|X
k−1
0 ) on FXk

0
.

2) If the sequence xn
1 has a forbidden transition that is not due to the cyclic extension of xn

1 , then

the statement is clearly true for any U ′
Xk

0
since P [xn

1 ] = 0. If UXk
0
� ΓXk|X

k−1
0

then we may take

U ′
Xk

0
= UXk

0
and by Theorem 3, the bound holds.

If the only forbidden transitions are due to the cyclic extension of xn
1 , then by replacing up to the last K

transitions of the cyclic sequence xn
1 , to form a new cyclic sequence x̂n̂

1 with no forbidden transitions, we

have P [xn
1 ] ≤ α−1β−(K+k)P [x̂n̂

1 ] (α is the smallest term in µXk
1

and β is the smallest non-zero transition

probability of ΓXk|X
k−1
0

). The type U ′
Xk

0
of the sequence x̂n̂

1 thus derived depends only on the sequence

xn
1 and the forbidden transitions of ΓXk|X

k−1
0

, not just its type UXk
0
. However, due to the choice of α and

β, the bound derived for a particular xn
1 holds for all xn

1 ∈ T (UXk
0
). Finally, since U ′

Xk
0
� ΓXk|X

k−1
0

, the

fact that n̂ may be up to K terms smaller than n can be universally absorbed by the constants σn since
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the exponent in the upperbound of 2) is continuous over such U ′
Xk

0
and the set of such U ′

Xk
0

is compact.

Finally, we have the following result, which is a direct extension of Natarajan’s result for 1st order

Markov types [10].

Lemma 1: (Natarajan) Given any FXk
0
∈ FXk

0
, there exists a sequence of kth order Markov types

Un
Xk

0
∈ Un

Xk
0

such that Un
Xk

0
→ FXk

0
as n → ∞.

Proof: It suffices to prove the result for FXk
0
∈ i(FXk

0
), the interior of FXk

0
. Since the latter is

associated with an ergodic Markov chain FXk|X
k−1
0

, by the law of large numbers, a sequence of types

Un
Xk

0
∈ Un

Xk
0

convergent to FXk
0

must exist.

B. Error Exponents and Definitions

If a sequence xn
1 is known to generate yn

1 , then the maximum a posteriori (MAP) detector (which maxi-

mizes the probability of correct detection) chooses the hypothesis ĥ(xn
1 , yn

1 )
4
= arg maxh P [h|xn

1 , yn
1 ]. This

may be evaluated using Bayes’ rule. The probability of correct detection is then P [H = ĥ(xn
1 , yn

1 )|xn
1 , yn

1 ].

If the input sequence xn
1 is not randomized (i.e., it is fixed in advance), then, it is clear that the average

probability of correct detection for that sequence using Bayes’ rule is

Pn
c (xn

1 )
4
= EY n

1
P [H = ĥ(xn

1 , Y n
1 )|xn

1 , Y n
1 ].

Furthermore, by the memoryless channel assumption, P n
c (xn

1 ) depends only on the type of the sequence

xn
1 . If we randomize the sequence Xn

1 , then we average the performance over several types. Clearly, by

the memoryless and time-invariant assumptions, it is best to choose the input sequence xn
1 from the best

sequence type.

We are now in a position to define our error exponents. We have the following definitions.

Definition 1: Let Qn ∈ Qn
X , n = 1, . . . ,∞, be a sequence of types for X with Qn → Q ∈ EX as

n → ∞.

1) The type error exponent of Q is defined to be Et(Q) = limn→∞− 1
n

log (1 − P n
c (xn

1 ))
∣

∣

xn
1∈T (Qn)

.

2) The optimal type error exponent is Et = maxQ∈EX
Et(Q).

We note that the type error exponent is defined for any distribution Q ∈ EX . This should not be

interpreted as implying that the input xn
1 is chosen randomly according to Q. As the definition says, we

choose sequences xn
1 such that as n → ∞, the type of xn

1 converges to Q. Thus, for all but a special set

of Q ∈ EX , this sequence must be generated by a time-varying (and open loop) signal selection rule.
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In the feedback case, each successive input xt is allowed to depend on all previous inputs xt−1
1 and

outputs yt−1
1 up to that time. In general, such a policy is given by the time varying conditional probabilities

{Qt[Xt|X
t−1
1 , Y t−1

1 ]}. Employing such a policy, if a decision is made at time n, the probability of correct

detection is then

Pn
c,f

4
= EXn

1 ,Y n
1

P [H = ĥ(Xn
1 , Y n

1 )|Xn
1 , Y n

1 ], (8)

where each successive xt is chosen according to Qt[Xt|X
t−1
1 , Y t−1

1 ].

Definition 2: The feedback error exponent of a policy {Qt} is defined to be

Ef ({Qt}) = lim
n→∞

−
1

n
log(1 − P n

c,f ), (9)

should the limit exist. The policies for which the limit exists will be called error exponent stable.

We note that it is rather easy to construct a policy which is not error exponent stable by cycling

between “good” and “bad” policies.

Finally, in Sections III and IV, we will find it convenient to generalize the usual max and min operators.

Definition 3: (minN, maxN) Consider an M -tuple of real numbers (a1, . . . , aM ) which may be (not

necessarily uniquely) ordered as ai1 ≤ ai2 ≤ · · · ≤ aiM
. Let N be an integer between 1 and M . Then,

we define

minN{a1, . . . , aM}
4
= aiN

(10)

maxN{a1, . . . , aM}
4
= aiM−N+1

. (11)

We note that if the numbers a1, . . . , aM are all distinct, then the minN and maxN operators may be

interpreted as evaluating the N th smallest and N th largest number, respectively.

III. THE TYPE ERROR EXPONENT

In this section we evaluate the type error exponent and we also provide a numerical method to determine

these exponents (and hence the optimal exponent).

A. The type error exponent Et(Q)

Theorem 5: For any Q ∈ EX , the type error exponent is given by

Et(Q) = min
h,h′∈H

h6=h′

min
QY |X∈EY |X

max{D(QY |X ||P h
Y |X |Q), D(QY |X ||P h′

Y |X |Q)},
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where P h
Y |X [y|x] is the channel under hypothesis h ∈ H. Furthermore, the minimizing QY |X results in

equality of the two terms inside the max.

Proof: The proof is divided into two parts. In the first part, we show that an alternate expression

for Et(Q) is given by

Et(Q) = min
QY |X∈EY |X

min2
h∈H

{D(QY |X ||P h
Y |X |Q)},

where the min2 operator was defined in section II-B. In the second part, we extend this expression to

the desired result. We also argue that the minimizing QY |X results in equality of the two terms inside

the max.

Part 1: We first expand the expression for P n
c using Bayes’ rule. We assume that for all n, xn

1 ∈ T (Qn),

Pn
c

4
= EY n

1
[max
h∈H

P [H = h|xn
1 , Y n

1 ]] (12)

=
∑

yn
1

max
h

{

P h
Y |X [yn

1 |x
n
1 ]P [H = h]

}

. (13)

Hence, using part 1 of Theorem 2 and the fact that

1 =
∑

h∈H

∑

yn
1

P h
Y |X [yn

1 |x
n
1 ]P [H = h] (14)

=

|H|
∑

N=1

∑

yn
1

maxN
h

{P h
Y |X [yn

1 |x
n
1 ]P [H = h]}, (15)

we obtain

1 − P n
c =

|H|
∑

N=2

∑

yn
1

maxN
h

{

P h
Y |X [yn

1 |x
n
1 ]P [H = h]

}

(16)

=

|H|
∑

N=2







∑

QXY ∈Qn
XY

:QX=Qn

|T (QY |X)|maxN
h

{

P [H = h]2−n[D(QXY ||P h
Y |X)+H(QY |X)]

}






. (17)

We now proceed to lowerbound the exponent. By applying part 2 of Theorem 2 we get

1 − P n
c ≤

∑

QXY ∈Qn
XY

:QX=Qn

|H||T (QY |X)|max2
h

{

2−n[D(QXY ||P h
Y |X)+H(QY |X)]

}

(18)

≤
∑

QXY ∈Qn
XY

:QX=Qn

|H|max2
h

{

2−nD(QXY ||P h
Y |X)

}

(19)

≤ |H||Qn
XY | max

QXY ∈EXY
:QX=Qn

max2
h

{

2−nD(QXY ||P h
Y |X)

}

. (20)
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Hence,

−
1

n
log(1 − P n

c ) ≥ −
1

n
log (|H||Qn

XY |) + min
QXY ∈EXY
:QX=Qn

min2
h

{

D(QXY ||P
h
Y |X)

}

(21)

By part 1 of Theorem 1, |H||Qn
XY | is polynomial in n and the first term in (21) vanishes as n → ∞.

Hence, from (21),

Et(Q) ≥ lim
n→∞

min
QY |X∈EY |X

min2
h

{

D(QY |X ||P h
Y |X |Qn)

}

= min
QY |X∈EY |X

min2
h

{

D(QY |X ||P h
Y |X |Q)

}

, (22)

where we have used Lemma 2 (see Appendix) with V = EY |X , U = EX , un = Qn, u = Q, v = QY |X

and f(u, v) = max2
h

{

D(QY |X ||P h
Y |X |Q)

}

to obtain (22).

We now upperbound the exponent. Starting from (17), we observe that for any sequence of joint types

Qn
XY ∈ Qn

XY whose marginalization satisfies Qn
X = Qn, and using part 2 of Theorem 2,

1 − P n
c ≥ |T (Qn

Y |X)| max2
h

{

P [H = h]2−n[D(Qn
XY ||P h

Y |X)+H(Qn
Y |X)]

}

≥ |Qn
X |−1|Qn

Y |
−1 max2

h

{

P [H = h]2−nD(Qn
XY ||P h

Y |X)
}

Hence,

−
1

n
log(1 − P n

c ) ≤
1

n
log |Qn

X ||Qn
Y | + min2

h

{

−
log P [H = h]

n
+ D(Qn

XY ||P
h
Y |X)

}

(23)

Furthermore, by Lemma 3 (see Appendix), for any QY |X ∈ EY |X and sequence of types Qn ∈ Qn
X such

that Qn → Q ∈ EX , we have a sequence of joint types Qn
XY in Qn

XY such that Qn
XY → QY |XQX and

the X marginal of Qn
XY is Qn. Evaluating (23) for such a sequence, the two terms with 1

n
vanish and

since D(Qn
XY ||P

h
Y |X) is continuous in Qn

XY (since P h
Y |X [y|x] > 0), we may bring the limit n → ∞ into

the argument of the divergence, from which we conclude that for all QY |X ,

Et(Q) ≤ min2
h

{

D(QY |X ||P h
Y |X |Q)

}

.

Part 2: We observe the following chain of equalities,

Et(Q) = min
QY |X∈EY |X

min2
h∈H

{

D(QY |X ||P h
Y |X |Q)

}

(24)

= min
QY |X∈EY |X

min
h,h′∈H

h6=h′

max
{

D(QY |X ||P h
Y |X |Q), D(QY |X ||P h′

Y |X |Q)
}

(25)

= min
h,h′∈H

h6=h′

min
QY |X∈EY |X

max
{

D(QY |X ||P h
Y |X |Q), D(QY |X ||P h′

Y |X |Q)
}

(26)
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Finally, by Lemma 4 (see Appendix), we have that the minimizing QY |X results in equality of the two

terms inside the max.

Corollary 1: In the case of a binary hypotheses scenario, the optimal error exponent Et = max
QX∈EX

Et(QX)

is achieved by a vertex of the simplex EX , (i.e., the optimal input sequence is constant).

Proof: In the case of detection with only two hypotheses with H = {a, b},

Et(QX) = min
QY |X∈EY |X

max{D(QY |X ||P a
Y |X |QX), D(QY |X ||P b

Y |X |QX)}. (27)

Let Vi be the vertices of the simplex EX . Then, based on (27) and the fact that the minimizing QY |X

results in equality of the two terms inside the max, we have for each x(i) a minimizing Q∗
Y |x(i) .

For any convex combination QX =
∑

i λiVi, we also have the following chain of inequalities,
∑

i λiEt(Vi) = D(Q∗
Y |X ||P a

Y |X |QX) = D(Q∗
Y |X ||P b

Y |X |QX) ≥ Et(QX), where the last inequality is

because the minimizing QY |X in Et(QX) also results in equality of the two terms inside the max of

(27). Hence, by the relation
∑

i λiEt(Vi) ≥ Et(QX), it follows that the optimal exponent is achieved by

a vertex.

B. Evaluating Et(Q)

In this section, we propose a method to efficiently evaluate Et(Q) numerically. The method is based

on Lagrange multipliers, a mathematical tool which is well known to yield the Bayesian error exponent

in traditional hypothesis testing [4]. The maximizing Q may then be found using standard numerical

techniques. Given two distinct hypotheses h1, h2 ∈ H, it will suffice to be able to efficiently evaluate

Dh1,h2
, defined as follows

Dh1,h2
(QX)

4
= min

QY |X∈EY |X

max{D(QY |X ||P h1

Y |X |QX), D(QY |X ||P h2

Y |X |QX)}. (28)

Theorem 6: If D(P h2

Y |X ||P h1

Y |X |QX) = 0 then QY |X = P h2

Y |X is a global minimizer of (28). Otherwise,

the global minimizing QY |X in (28) has the form

Q
(λ)
Y |X [y|x] =

P h1

Y |X [y|x]λP h2

Y |X [y|x]1−λ

∑

y′ P
h1

Y |X [y′|x]λP h2

Y |X [y′|x]1−λ
, (29)

for some λ = λ∗. Furthermore, this λ∗ is the unique zero of M(λ) = D(Q
(λ)
Y |X ||P h1

Y |X |QX) − D(Q
(λ)
Y |X ||P h2

Y |X |QX)

in the interval [0.0, 1.0]. Hence, λ∗ may be computed efficiently using the bisection method.

Proof: By Theorem 5, we know that the minimizing QY |X results in equality between D(QY |X ||P h1

Y |X |QX)

and D(QY |X ||P h2

Y |X |QX). This suggests the use of the Lagrangian (where λ and γx are the multipliers),

J(QY |X) = D(QY |X ||P h2

Y |X |QX) + λ[D(QY |X ||P h2

Y |X |QX) − D(QY |X ||P h1

Y |X |QX)]
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+
∑

x

γx

∑

y

(QY |X(y|x) − 1). (30)

It is now straightforward to verify that the minimizing QY |X has the form specified in (29). Furthermore,

the difference M(λ) may be expanded as,

M(λ) =
∑

x

QX [x]
∑

y

P h1

Y |X [y|x]λP h2

Y |X [y|x]1−λ

∑

y′ P
h1

Y |X [y′|x]λP h2

Y |X [y′|x]1−λ
log

P h2

Y |X [y|x]

P h1

Y |X [y|x]
. (31)

Then M(0) = D(P h2

Y |X ||P h1

Y |X |QX) ≥ 0. If equality holds, then it is easy to see that QY |X = P h2

Y |X is a

global minimizer of the right side of (28).

Now, assume that M(0) > 0. Then M(1) = −D(P h1

Y |X ||P h2

Y |X |QX) < 0 and by continuity, there is a

λ∗ in (0.0, 1.0) such that M(λ∗) = 0. Furthermore, with the substitutions

a(y|x)
4
=

P h1

Y |X [y|x]

P h2

Y |X [y|x]
(32)

c(y|x)
4
= P h2

Y |X [y|x], (33)

we may rewrite the difference M(λ) as,

M(λ) =
∑

x

QX [x]
∑

y

−c(y|x)a(y|x)λ

∑

y′ c(y′|x)a(y′|x)λ
log a(y|x). (34)

The derivative of the inner summation with respect to λ is then

−
[

∑

y c(y|x)a(y|x)λ(log a(y|x))2
] [

∑

y′ c(y′|x)a(y′|x)λ
]

(
∑

y′ c(y′|x)a(y′|x)λ)2
+

[

∑

y c(y|x)a(y|x)λ log a(y|x)
]2

(
∑

y′ c(y′|x)a(y′|x)λ)2
(35)

We note that the denominator is always strictly greater than 0, hence, the sign of the overall expression

equals to the sign of the numerator

−

[

∑

y

c(y|x)a(y|x)λ(log a(y|x))2

] [

∑

y

c(y|x)a(y|x)λ

]

+

[

∑

y

c(y|x)a(y|x)λ log a(y|x)

]2

. (36)

However, by the Cauchy-Schwartz inequality, the latter is always ≤ 0. Equality holds, provided there is

a constant k(x) (dependent on x) such that

c(y|x)a(y|x)λ = k(x)c(y|x)a(y|x)λ(log a(y|x))2 (37)

for all y. However, if equality (37) were true for some λ and all x such that QX [x] > 0, then it would be

true for all λ and such x. It follows that M(λ) would be constant in λ, contradicting M(0) > 0 > M(1).

Hence, dM(λ)/dλ < 0 and λ∗ is unique and the global minimizing QY |X = Q
(λ∗)
Y |X .
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IV. BAYESIAN HYPOTHESIS TESTING WITH MARKOV FEEDBACK

In this section, we derive the exact exponent for a particular class of feedback policies. In particular,

for any integer k ≥ 0, we shall consider Markov policies, i.e., policies {Qt} for which

QXt|X
t−1
1 ,Y t−1

1
[xt|x

t−1
1 , yt−1

1 ] > 0 (38)

when t ≤ k and

QXt|X
t−1
1 ,Y t−1

1
[xt|x

t−1
1 , yt−1

1 ] = QXk|X
k−1
0 ,Y k−1

0
[xt|x

t−1
t−k, y

t−1
t−k] (39)

otherwise. We note that this includes deterministic policies of the form xt = ξ(xt−1
t−k, y

t−1
t−k) as a special

subset. Hence, by studying the class of k-memory Markov policies, we are studying all deterministic

input policies which employ an arbitrarily large (but finite) amount of memory.

For notational purposes, we abbreviate the feedback exponent Ef (QXk|X
k−1
0 ,Y k−1

0
) of such policy by

Ef (Q). For the moment, we further restrict ourselves to policies QXt|X
t−1
t−k ,Y t−1

t−k
for which W h

(X,Y )k|(X,Y )k−1
0

4
= P h

Yk|Xk
QXk|X

k−1
0 ,Y k−1

0
is irreducible (policies for which this is not the case are discussed in the second

remark following Theorem 8). We note that since for all h we have that P h
Yk|Xk

> 0 it follows that if

W h
(X,Y )k|(X,Y )k−1

0

is irreducible for a particular h, then it is for every h ∈ H. Furthermore, all W h have

the same state transitions; they differ only in the probabilities of these transitions. Because of this, we

label such a policy QXk|X
k−1
0 ,Y k−1

0
as irreducible even though strictly speaking it is the W h

(X,Y )k|(X,Y )k−1
0

that are irreducible.

Although each successive input is based on the previous k inputs and outputs only, the MAP decision

is based on the entire realizations of xn
1 and yn

1 . We now state and prove the following theorem.

Theorem 7: For a given k-memory time-invariant irreducible policy QXk|X
k−1
0 ,Y k−1

0
, and channels

P h
Yk|Xk

> 0, define

E∗
f (Q)

4
= min

Q(X,Y )k
0
∈F(X,Y )k

0

min2
h

{D(Q(X,Y )k
0
||W h

(X,Y )k|(X,Y )k−1
0

)}. (40)

Then, the error exponent Ef (Q) = E∗
f (Q). Furthermore, the minimizing Q(X,Y )k

0
results in equality

between min
h

{D(Q(X,Y )k
0
||W h

(X,Y )k|(X,Y )k−1
0

)} and min2
h

{D(Q(X,Y )k
0
||W h

(X,Y )k|(X,Y )k−1
0

)}.

Proof: We note that by Lemma 5 (see Appendix), the minimizing Q(X,Y )k
0

must result in equality

of min
h

{D(Q(X,Y )k
0
||W h

(X,Y )k|(X,Y )k−1
0

)} and min2
h

{D(Q(X,Y )k
0
||W h

(X,Y )k|(X,Y )k−1
0

)} since otherwise one

could find a Q(X,Y )k
0

that did better (in the minimization of (40)).

If we let Zi = (Xi, Yi), then Zi is a Markov chain of order k.
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Case 1: We will first consider the case QXk|X
k−1
0 ,Y k−1

0
is irreducible and show that Ef (Q) ≥ E∗

f (Q).

Expanding the expression for the probability of correct detection yields,

Pn
c =

∑

(xn
1 ,yn

1 )

∑

h

P h[xn
1 , yn

1 ]P [h] max
h′

{

P h′

[xn
1 , yn

1 ]P [h′]
∑

h′′ P h′′ [xn
1 , yn

1 ]P [h′′]

}

(41)

=
∑

zn
1 ∈Z

n

max
h

{W h[zn
1 ]P [h]}, (42)

where the summation in (41) is over all sequences zn
1 = (xn

1 , yn
1 ) with strictly positive probability under

W h. In (42), we may sum over all sequences zn
1 since those with probability 0 contribute nothing.

Employing Theorem 4, the probability of error may be upperbounded as,

1 − P n
c ≤ |H|

∑

zn
1

max2{W h[zn
1 ]P [h]} (43)

≤ |H|2nσn

∑

U
Zk
0
∈Un

Zk
0

|T (UZk
0
)|max2

h

{

2
−n[D(U ′

Zk
0

||W h

Zk|Z
k−1
0

)+H(Zk|Z
k−1
0 )|U′ ]

}

, (44)

where we have employed part 2 of Theorem 4 and U ′
Zk

0
is an implicit function of UZk

0
as discussed in

Theorem 4. Continuing and using part 1 of Theorem 4,

1 − P n
c ≤ |H|2n(σn+ρn)

∑

U
Zk
0
∈Un

Zk
0

max2
h

{2
−nD(U ′

Zk
0

||W h

Zk|Z
k−1
0

)
} (45)

≤ |H|2n(σn+ρn)|Un
Zk

0
| max
U

Zk
0
∈F

Zk
0

max2
h

{2
−nD(U

Zk
0
||W h

Zk|Z
k−1
0

)
}, (46)

where the last inequality follows for the fact that U ′
Zk

0
∈ FZk

0
. Furthermore, we are justified in writting

max as opposed to sup since on the subset A of FZk
0

defined by UZk
0

� W h
Zk|Z

k−1
0

, the function

D(UZk
0
||W h

Zk|Z
k−1
0

) is continuous and the subset A is compact while on FZk
0
\A, we have D(UZk

0
||W h

Zk|Z
k−1
0

) =

∞. Hence, since σn → 0 and ρn → 0,

Ef (Q) ≥ min
U

Zk
0
∈F

Zk
0

min2
h

{D(UZk
0
||W h

Zk|Z
k−1
0

)}. (47)

Finally, from (47), this shows that (40) is a lowerbound to Ef (Q).

Case 2: We consider QXk|X
k−1
0 ,Y k−1

0
> 0 and show that Ef (Q) ≤ E∗

f (Q). From (42), we may lowerbound

the probability of error as

Pn
e

4
= 1 − P n

c ≥
∑

zn
1

max2
h

{W h[zn
1 ]P [h]} (48)

≥ α
∑

U
Zk
0
∈Un

Zk
0

|T (UZk
0
)|max2{2

−n[D(U
Zk
0
||W h

Zk|Z
k−1
0

)+H(Zk|Z
k−1
0 )]

} (49)
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≥ αn−|Z|k(n + 1)−|Z|k+1

max
U

Zk
0
∈Un

Zk
0

max2{2
−nD(U

Zk
0
||W h

Zk|Z
k−1
0

)
}, (50)

where (49) follows from part 3 of Theorem 3 and (50) follows from part 2 of Theorem 3. One then

obtains

Ef (Q) ≤ lim
n→∞

min
U

Zk
0
∈Un

Zk
0

min2
h

{D(UZk
0
||W h

Zk|Z
k−1
0

)} (51)

= min
U

Zk
0
∈F

Zk
0

min2
h

{D(UZk
0
||W h

Zk|Z
k−1
0

)} (52)

where the last equality follows from Lemma 1 and the continuity of D(UZk
0
||W h

Zk|Z
k−1
0

) in UZk
0
. Again,

(52) shows that (40) is an upperbound to Ef (Q).

Comment: The proofs in case 1 and case 2 combine to show that Ef (Q) = E∗
f (Q) if QXk|X

k−1
0 ,Y k−1

0
> 0.

Now we look at the case QXk|X
k−1
0 ,Y k−1

0
≯ 0.

Case 3: In this case W h
Zk|Z

k−1
0

[zk|z
k−1
0 ] = 0 for some zk

0 , but W h
Zk|Z

k−1
0

is assumed irreducible (and

hence ergodic [2], [9]). Then the expression in (51) is still valid but insufficient to derive (52). We

note that since we are performing MAP detection, P n
e = max{P n

e , . . . , Pn+K
e }, K = |Z|k. It then

follows that (51) is still valid if we minimize over UZk
0
∈ Un

Zk
0
∪ · · · ∪ Un+K

Zk
0

instead. We will show

that evaluation yields (52). This is not entirely trivial as D(UZk
0
||W h

Zk|Z
k−1
0

) is not continuous on FZk
0
.

In particular, since all W h
Zk|Z

k−1
0

[zk|z
k−1
0 ] have the same allowable state transitions (i.e., transitions with

strictly positive probability), evaluation of (52) for any UZk
0

associated with a UZk|Z
k−1
0

with exactly the

same allowable state transitions as W h
Zk|Z

k−1
0

will result in a finite bound on Ef (Q). Consider U ′
Zk

0
to be

any such distribution.

Now, let U∗
Zk

0
be a minimizer in (52). U ∗

Zk
0

is not necessarily associated with an irreducible U ∗
Zk|Z

k−1
0

.

However by convexity of divergence, for 0 ≤ λ ≤ 1, the distribution Uλ
Zk

0
= (1 − λ)U∗

Zk
0

+ λU ′
Zk

0
results

in a continuous (in λ) valuation of the expression D(Uλ
Zk

0
||W h

Zk|Z
k−1
0

).

Now, by employing methods similar to Lemma 1 and appropriately changing (and removing) up to

the last K terms of any generated sequence with forbidden transitions in its cyclic extension, for each

λ > 0, we can find a sequence of circular types Un
Zk

0
∈ Un

Zk
0
∪· · ·∪Un+K

Zk
0

which converges to Uλ
Zk

0
and for

which (for all n greater than some N ) both Un
Zk

0
and Uλ

Zk
0

share exactly the same allowable transitions.

Hence, for each λ > 0, Ef (Q) ≤ min2h{D(Uλ
Zk

0
||W h

Zk|Z
k−1
0

} and (52) follows by continuity in λ.

Remark: If the channels were Markov of order at most k, Theorem 7 would still apply as Zi = (Xi, Yi)

is then still a Markov chain of order k.

Remark: Since every finite state time-invariant Markov chain can be decomposed into ergodic classes,

by suitably redefining our notion of state, we may evaluate the error exponent associated with each class.
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It is then clear that an optimal policy Q can always be reduced to one class (the best class if there is

more than one class) and all other states transit to the class in at most a finite number of transitions,

all of which are deterministic. In this latter case, direct evaluation of E∗
f (Q) still provides the exponent

of the class and hence the policy. If a policy Q∗ has several classes, then direct evaluation of E∗
f (Q∗)

provides a lower bound to the exponent of any of its classes. This fact will be employed to derive the

structure on an optimal Markov policy in Theorem 8.

Proposition 1: For any Q ∈ EX we have that

min
QY |X∈EY |X

min2
h

{D(QY |XQ||P h
Y |X)} ≥ min

QXY ∈EXY

min2
h

{D(QXY ||P
h
Y |XQ)}

Proof: Obvious.

Theorem 8: In the case of discriminating between two hypotheses, the optimal k-memory Markov pol-

icy has its error exponent upperbounded by the optimal open loop exponent of Corollary 1. Furthermore,

the bound is tight and the optimal Markov policy of any order consists of repeating the same input,

regardless of past outputs.

Proof: First, we remark that

D(QZk
0
||W h

Zk|Z
k−1
0

) =
∑

zk−1
0

QZk−1
0

[zk−1
0 ]D

(

QZk|Z
k−1
0

[Zk|z
k−1
0 ]

∥

∥

∥
W h

Zk|Z
k−1
0

[Zk|z
k−1
0 ]

)

(53)

≤ max
zk−1
0

D
(

QZk|Z
k−1
0

[Zk|z
k−1
0 ]

∥

∥

∥
W h

Zk|Z
k−1
0

[Zk|z
k−1
0 ]

)

. (54)

For notational convenience, we shall denote by maxzk−1
0

D(QZk|Z
k−1
0

||W h
Zk|Z

k−1
0

) the right side of (54).

From the remark following Theorem 7, it suffices to consider policies with a single ergodic class. Staring

with the result of Theorem 7 and assuming H = {h1, h2}, we can bound the exponent Ef (Q) of such a

Markov policy QXk|X
k−1
0 ,Y k−1

0
by

Ef (Q) ≤ min
Q

Zk
0
∈Fn

Zk
0

max
h∈{h1,h2}

{D(QZk
0
||W h

Zk|Z
k−1
0

)} (55)

≤ min
Q

Zk
0
∈Fn

Zk
0

max
h∈{h1,h2}

{max
zk−1
0

D(QZk|Z
k−1
0

||W h
Zk|Z

k−1
0

)} (56)

= min
Q

Zk|Z
k−1
0

∈E
Zk|Z

k−1
0

max
h∈{h1,h2}

{max
zk−1
0

D(QZk|Z
k−1
0

||W h
Zk|Z

k−1
0

)} (57)

= min
Q

Zk|Z
k−1
0

∈E
Zk|Z

k−1
0

max
zk−1
0

max{D(QZk|Z
k−1
0

||W h1

Zk|Z
k−1
0

), D(QZk|Z
k−1
0

||W h2

Zk|Z
k−1
0

)}. (58)

We denote by ẑk−1
0 a maximizing zk−1

0 in (58), QZ = QZk|Z
k−1
0

(Zk|ẑ
k−1
0 ), W h

Z = W h
Zk|Z

k−1
0

(Zk|ẑ
k−1
0 )

and define Q′
X ∈ EX by the relation W h

Z = P h
Y |XQ′

X . Then, we can continue the chain of inequalities as

Ef (Q) ≤ min
QZ∈EZ

max{D(QZ ||W
h1

Z ), D(QZ ||W
h2

Z )} (59)
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= min
QZ∈EZ

max
h∈{h1,h2}

{D(QZ ||W
h
Z)} (60)

= min
QXY ∈EXY

max
h∈{h1,h2}

{D(QXY ||P
h
Y |XQ′

X)} (61)

≤ min
QY |X∈EY |X

max
h∈{h1,h2}

{D(QY |XQ′
X ||P h

Y |XQ′
X)} (62)

= Et(Q
′
X), (63)

where (62) follows from (61) by Proposition 1. Furthermore, in the case of two hypotheses, the optimal

input distribution Q′
X which maximizes Et(Q

′
X) is a vertex of the simplex EX and hence, a time-invariant

finite memory policy exists which achieves this exponent (all inequalities hold with equality).

We note that the sequence of inequalities leading to (61) shows that when discriminating between two

hypotheses, Markov policies of any order (deterministic or otherwise) perform no better than memoryless

policies.

V. AN EXAMPLE

In this section, we numerically study a binary channel hypothesis scenario. In particular, consider the

pair of channels illustrated in Fig. 1 with binary input and output alphabets.

Chernoff’s signal selection strategy [3] tells us that if, based on all observations at time t, we have that

the a posteriori probability of hypothesis h1 is greater than that of h2, we should select the next signal

xt+1 that maximizes D(P h1

Y |X [Y |xt+1]||P
h2

Y |X [Y |xt+1]). Table I lists these values in base 10 and we see

that in such a case, the best input is xt+1 = 0. Likewise, if the a posteriori probability of h2 is greater

than that of h1, one should select the next signal xt+1 that maximizes D(P h2

Y |X [Y |xt+1]||P
h1

Y |X [Y |xt+1]).

This yields xt+1 = 1. Thus, in this case, Chernoff’s strategy is likely to yield alternating input signals.

We compare this signal selection strategy with the following rule: for all time t, select the signal x

that maximizes

min
QY ∈EY

max{D(QY ||P
h1

Y |X [Y |x]), D(QY ||P
h2

Y |X [Y |x])}. (64)

In the example of Fig. 1, this rule says that a constant input x = 1 should be chosen for all time. We

have shown that this strategy is optimal in the following two ways:

1) From Theorem 5 and Corollary 1, it is the optimal (time-varying) open loop policy.

2) From Theorem 8, is the optimal (time-invariant) Markov feedback policy for any order of Markov

feedback.

Fig. 2 shows the average probability of decision error with these two schemes. In the solid curves, the

prior probabilities of the hypotheses were chosen to be the uniform distribution P [H = h1] = P [H =
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Fig. 1. The binary channels simulated in Fig. 2.

TABLE I

THE KULLBACK-LEIBLER DIVERGENCE [BASE 10] UNDER DIFFERENT INPUTS.

x = 0 x = 1 Best input x

D(P h1

Y |X(Y |x)||P h2

Y |X(Y |x)) 0.09938 0.09852 0

D(P h2

Y |X(Y |x)||P h1

Y |X(Y |x)) 0.08553 0.26215 1

h2] = 0.5, which essentially reflects no prior knowledge of the hypotheses. The dashed curves are with

P [H = h1] = 0.95 and P [H = h2] = 0.05. As expected the actual asymptotic behavior is independent

of the prior probabilities (provided neither is zero). From the figure, we clearly see that the Bayesian

constant signal selection scheme (which employs no feedback) outperforms the scheme proposed by

Chernoff [3] (which does employ feedback). This, however, is to be expected as Chernoff’s scheme was

not explicitly designed to be optimal in the Bayesian sense for fixed length tests. Based on Theorems 5

and 7, we expect our scheme to have an asymptotic exponent of 0.0411 decades/input which compares

well with an estimated exponent of 0.0416 decades/sample based on a window of samples from t = 100

to t = 160. By comparison, we measure an exponent of 0.0275 over the same window for Chernoff’s

scheme.

VI. CONCLUSION

We have derived the error exponent for open loop, finite hypothesis channel identification. This result

is related to the error exponent for Bayesian hypothesis testing. A somewhat surprising result has been

shown for the case of detection between two hypotheses — in particular, it was shown that there is

no advantage to mixing inputs: the input sequence distribution that maximizes the error exponent is

achieved by consistently repeating the same input. Also, a simple numerical approach to calculating the

error exponent for a given input distribution has been presented.
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Fig. 2. Comparison of average probability of error using Bayesian approach and Chernoff’s approach for binary channels in

Fig. 1. We observe that the prior probabilities do not affect the error exponent, i.e., the asymptotic slopes of the curves are equal

under both the equal and unequal prior scenarios.

In the second (feedback) case, we have considered time-invariant Markov feedback policies. We have

shown that regardless of the order k of the feedback policy, in the case of two hypotheses, the exponent

is upperbounded by an open loop exponent, Et(Q). Furthermore, for an optimal feedback policy, the

bound is tight and equals that of an optimal open loop exponent Et(Q).

In light of this, we suggested a simple signal selection strategy in a binary hypothesis scenario. The

scheme was shown to be optimal in two different ways: optimal time-varying open loop and optimal

time-invariant Markov of any order. Numerical results also show that the scheme outperforms an approach

suggested by Chernoff, which is not unexpected since Chernoff’s scheme was not designed to be optimal

in the Bayesian setting employed here.

APPENDIX

The appendix contains technical lemmas.

Lemma 2: Let U and V be two compact metric spaces and f : U ×V → R a continuous function. Let

u1, u2, ... be a sequence in U which converges to u. Then limn→∞ minv∈V f(un, v) = minv∈V f(u, v).
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Proof: Since U ×V is compact, f is uniformly continuous. Hence, for any ε > 0, u ∈ U and v ∈ V ,

one can find δ(ε) such that |f(u, v) − f(u′, v′)| < ε whenever d(u, u′) + d(v, v′) < δ(ε).

It will suffice to show that g(u) = minv∈V f(u, v) is continuous. Now, fix u and u′ such that d(u, u′) <

δ(ε) and let v∗ be a minimizer of f(u, b), i.e., v∗ = arg minv f(u, v). However, g(u′) = minv f(u′, v) ≤

f(u′, v∗) < f(u, v∗) + ε = g(u) + ε Hence g(u′)− g(u) < ε. By interchanging the role of u and u′, one

may obtain the complementary relation g(u) − g(u′) < ε.

Lemma 3: For any sequence of types Qn ∈ Qn
X such that Qn → Q ∈ EX and any QY |X ∈ EY |X ,

there exists a sequence of joint types Qn
XY ∈ Qn

XY with Qn
XY → QXY ∈ EXY such that the X marginal

of Qn
XY is Qn and QXY [x(i), y(j)] = QY |X [y(j)|x(i)]Q[x(i)].

Proof: We will show this by construction. First, pick a sequence xn
1 of type Qn. Let ki

n be the

number of occurrences of x(i) in xn
1 . If Q[x(i)] > 0, then we must have limn→∞ ki

n = ∞. Hence,

asymptotically, one can pair y(j)’s with the x(i)’s such that the relative frequency of y(j) with respect to

x(i) approaches any number between 0 and 1. Therefore, QXY [x(i), y(j)] = QY |X [y(j)|x(i)]Q[x(i)].

Now, assume that Q[x(i)] = 0. Since by design the type Qn
XY has X marginal Qn, we have that

Qn
XY [x(i), y(j)] ≤ Qn[x(i)]. Hence, it follows that QXY [x(i), y(j)] = 0 since limn→∞ Qn[x(i)] = 0.

Lemma 4: Let QV ∈ EV and QU |V , P 1
U |V , P 2

U |V ∈ EU |V with P 1
U |V > 0 and P 2

U |V > 0. If D(QU |V QV ||P
1
U |V ) >

D(QU |V QV ||P
2
U |V ), then there exists a Q∗

U |V such that D(QU |V QV ||P
1
U |V ) > D(Q∗

U |V QV ||P
1
U |V ) and

D(QU |V QV ||P
1
U |V ) > D(Q∗

U |V QV ||P
2
U |V ).

Proof: Consider the mixture QU |V (λ) = (1−λ)QU |V +λP 1
U |V on λ ∈ [0.0, 1.0]. Then both D1(λ)

4
=

D(QU |V (λ)QV ||P
1
U |V ) and D2(λ)

4
= D(QU |V (λ)QV ||P

2
U |V ) are continuous on [0.0, 1.0] and convex in

λ as KL-divergence D(Q||P ) is convex in Q. Furthermore, since D1(0) = D(QU |V QV ||P
1
U |V ) > 0 and

D1(1) = 0, we must have that D1(λ) is strictly decreasing for λ in some neighborhood of 0. Therefore,

by choosing λ > 0 sufficiently small and by continuity of D1 and D2, the desired Q∗
U |V may be found.

Lemma 5: Let QZk
0
∈ FZk

0
and consider two ergodic chains P 1

Zk|Z
k−1
0

and P 2
Zk|Z

k−1
0

with the same set

of allowable state transitions. If D(QZk
0
||P 1

Zk|Z
k−1
0

) > D(QZk
0
||P 2

Zk|Z
k−1
0

) then there exists a Q∗
Zk

0
such

that D(QZk
0
||P 1

Zk|Z
k−1
0

) > D(Q∗
Zk

0
||P 1

Zk|Z
k−1
0

) and D(QZk
0
||P 1

Zk|Z
k−1
0

) > D(Q∗
Zk

0
||P 2

Zk|Z
k−1
0

).

Proof: The proof is similar to that of Lemma 4. Because P 1
Zk|Z

k−1
0

is ergodic, there is a unique

invariant distribution P 1
Zk−1

0

such that P 1
Zk

0
= P 1

Zk|Z
k−1
0

P 1
Zk−1

0

∈ FZk
0
. Furthermore, consider the mixture

QZk
0
(λ) = (1 − λ)QZk

0
+ λP 1

Zk
0

for λ ∈ [0, 1]. Then clearly, for all such λ, QZk
0
(λ) ∈ FZk

0
. Similar to

the proof of Lemma 4, we have that D1(λ) = D(QZk
0
(λ)||P 1

Zk|Z
k−1
0

) is continuous and convex on [0, 1]
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with D1(0) > D2(0) = D(QZk
0
(λ)||P 2

Zk|Z
k−1
0

) ≥ 0 and D(1) = 0. Hence D1(λ) is strictly decreasing in

some neighborhood of 0 and choosing λ sufficiently small will produce the desired Q∗
Zk

0
.
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[2] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer, 1998.

[3] H. Chernoff, Sequential Analysis and Optimal Design. Philadelphia, PA: Society for Industrial and Applied Math, 1979.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.

[5] I. Csiszár, “The method of types,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2505–2523, Oct. 1998.

[6] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic,

1981.

[7] L. Davisson, G. Longo, and A. Sgarro, “The error exponent for the noiseless encoding of finite ergodic Markov sources,”

IEEE Trans. Inform. Theory, vol. 27, no. 4, pp. 431–438, 1981.

[8] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, 1998.

[9] K. Itô, Ed., Encyclopedic Dictionary of Mathematics, 2nd ed. Cambridge, MA: MIT Press, 1987.

[10] S. Natarajan, “Large deviations, hypothesis testing, and source coding for finite Markov chains,” IEEE Trans. Inform.

Theory, vol. 31, no. 3, pp. 360–365, May 1985.

[11] O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of minimum phase systems,” IEEE Trans. Inform.

Theory, vol. 36, no. 2, pp. 312–321, Mar. 1990.

[12] S. M. Sowelam and A. H. Tewfik, “Waveform selection in radar target classification,” IEEE Trans. Inform. Theory, vol. 46,

no. 3, pp. 1014–1029, May 2000.

[13] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization based on second-order statistics: A time domain

approach,” IEEE Trans. Inform. Theory, vol. 40, no. 2, pp. 340–349, Mar. 1994.

[14] H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 1. New York: Wiley, 1968.

PLACE

PHOTO

HERE

Patrick Mitran (S’01) received the Bachelor’s and Master’s degrees in electrical engineering, in 2001

and 2002, respectively, from McGill University, Montreal, PQ, Canada. He is currently working toward

the Ph.D. degree in the Division of Engineering and Applied Sciences, Harvard University, Cambridge,

MA. In 2005, he interned as a research scientist for Intel Corporation in the Radio Communications Lab.

His research interests include iterative decoding theory, joint source-channel coding, detection and

estimation theory as well as information theory.

September 28, 2005 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. YY, MONTH 2005 23

PLACE

PHOTO

HERE
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