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Abstract—We investigate channel-coded physical-layer net-
work coding in a two-way relaying scenario, where the end
nodes A and B choose their symbols, $ and Sg, from a small
non-binary field, F, and adopt a non-binary PSK modulation.
The relay then directly decodes the network-coded combination
aSa + bSp over IF from the noisy received superimposed channel-
encoded packets. The advantage of working over non-binary
fields is that it offers the opportunity to decode according to
multiple decoding coefficients(a, b). As only one of the network-
coded combinations needs to be successfully decoded, a ke
advantage is then a reduction in error probability by attempting
to decode against all choices ofa, b). In this paper, we compare
different mappings betweenF and the PSK constellation, and
prove that many have identical performance in terms of frame
error rate (FER). Moreover, we derive a lower bound on
the performance of decoding the network-coded combinations.
Simulation results show that if we adopt either i) concatenated
Reed-Solomon and convolutional coding or ii) low-density parity
check codes, our non-binary constellations can outperform the
binary case significantly in the sense of minimizing the FER
and, in particular, the ternary constellation has the best FER
performance among all considered cases.

Index Terms—Physical-layer network coding, non-binary con-
stellation mappers, outage probability, Reed Solomon Convolu-
tional code concatenation, low density parity check code.

I. INTRODUCTION
NTERFERENCE, traditionally considered to be destructi

to wireless communications, may in fact contain beneficial

information. This point of view suggests the use of deco

ing techniques to process interference in wireless netsyori

instead of treating it as a nuisance to be avoided [1].
Inspired by the network coding principle [2], [3], physical
layer network coding (PNC) is a technigue in which a
intermediate node relays a function of the decoded incomi
packets, usually linear combinations, rather than the gtack
individually. In PNC, the combinations are inferred ditgct

from the received signal of the intermediate node. The badig
idea of PNC has been proposed independently by sever

research groups in 2006: Zhang, Liew, and Lam [4], Popovs‘?j1
and Yomo [5], and Nazer and Gastpar [6]. Because of i
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simplicity and the substantial benefits foreseen in it [8], [
PNC has gained much attention since 2006. Many strategies
have been proposed for PNC, with a particular focus on bidi-
rectional relaying, where nodesand B exchange information
with the help of a relay nod&. In [4] and [5], three different
protocols for bidirectional relaying are presented. Coragddo

the 4- and 3-stage protocols, the 2-stage protocol can wepro
throughput because of its effective time usage. In this pape

e concentrate on the 2-stage relaying scheme consisting of
an uplink phase and a downlink phase. In the uplink phase,
termedmultiple access (MAC3tage, nodest and B transmit
packets to the relay node simultaneously. Relay node then
constructs a network-coded packet based on the overlapped
signals received from node$ and B. In the downlink phase,
termedbroadcast (BC}ktage, the relay: broadcasts the packet
to nodesA and B. Knowing its own informatiora priori, node
A (B) can decode the data from nodie(A), using the signal
broadcast from nod&.

The performance of a two way relaying system in 2-, 3-
and 4- stage scenarios is investigated in [9]. The authars, i
[9], showed that the two-stage PNC scheme offers a higher
maximum sum-rate, but a lower sum-bit error rate (BER), than
the 4-stage scheme for a number of practical scenarios. They
also showed that the 3-stage scheme offers a good compromise
between the 2- and 4- stage schemes, and also achieves the
best maximum sum-rate and/or sum-BER in certain practical

vgcenarios.

In [10], the authors investigated the use of structured and
attice codes in a scenario for two-way relaying. In [11], a
ompute-and-forward strategy is proposed where the relays
knowing the channel coefficients, decode linear functiohs o
transmitted messages. The authors used lattice codes whose
ﬁllgebraic structure ensures that integer combination®dé<

H\é)rds can be decoded reliably.

In [12], the authors considered the use of non-coherent
detection at the relay for a PNC scenario. The proposed non-
herent relay does not require phase synchronism.

Network coding at the relay nodR is challenging because
the fact that channel gains and noise at the MAC stage
gndomly perturb the received overlapped packets. In {th&],
authors introduce a modulation design method for dealirth wi
this randomness which improves the throughput signifigantl
Their scheme employs the use of unusual 5-ary modulation
in the BC stage while QPSK modulation is used in the MAC
stage. In their model, a denoise-and-forward (DF) scheme is
implemented at the relay node.

In [14], the overlapped BPSK-modulated signals in the relay
nodeR are transformed directly to the network-coded packets.



The authors adopt a repeat accumulate (RA) channel code aiVe aim to compare cases when end nodes use constellations
the two end nodes and redesign the belief propagation decotlsize ¢ = 3,4,5 with the conventional binary case. Simu-
ing algorithm of the RA code to suit the PNC configurationlation results suggest that further increasing the colasiteh

In [15], the authors presented a new non-uniform higlsize is not beneficial since for a fixed transmission power,
order M-PAM constellation design that allows for a com-<constellation points get closer to each other and the pitityab

putationally efficient binary interleaved coded modulatfor

of error increases. When the end nodes employ channel cod-

PNC over a DF relaying channel. By comparison, in [16]ng, we find that non-binary constellations can outperfonm t
the authors considered a memoryless bidirectional retpyibinary case as decoding against all coefficidntd) provides
system where the signal transmitted by a relay depends oglgater benefit than the reduction in minimum distance costs
on its last received signal, i.e., the system is uncoded. Fine major contributions of this paper are summarized as
binary antipodal signaling, they considered so called kitsd follow:

(abs) based schemes. Moreover, they analyzed existing and
new relay strategies as well as optimized abs and non-abs
based schemes via functional analysis to minimize the geera
probability of error over all possible relay functions.

In [17], the authors have introduced two new PNC cate-
gories: PNCF (PNC over finite field) and PNCI (PNC over
infinite field) according to whether the network-code field *
adopted is finite or infinite. In their model, the source paske
are not channel-coded. However, the idea of adopting cltanne
coding schemes at the end nodes has been investigated jn [18]
[19]. Two comprehensive surveys about PNC can be found in®
[20], [21].

In this paper, the end nodesand B choose their symbols,
Sa and Sg, from a finite fieldF = GF(q). The symbols
are theng-PSK modulated(¢ = 2,3,4,5) and sent to the
relay. We propose a PNCF scheme for directly decoding a
network-coded combination, i.e.S 4 + bSp overF, from the
overlapped channel-coded signals received from the two end
nodes (plus noise). This can be seen as a compute-and-tbrwar
type approach since a linear function of the transmitted-mes
sages is inferred from the noisy linear combination prodide
by the channels. However, as opposed to lattice codes, the
linear coding schemes here are either a practical condaiana
of Reed-Solomon and convolutional codes (RS-CC) or a low
density parity check code (LDPC), over a small non-binary
field, and are suitable for both quasi-static and fast fading
channels. To the best of our knowledge, practical physical-*
layer network coding for fast fading channels has not been
studied in the literature. Fast fading channels are a goadkino
for frequency selective channels where orthogonal frequen
division multiplexing (OFDM) is applied with subcarrier-in
terleaving. Furthermore, due to the cyclic prefix of OFDM,
if the two transmissions from the end nodes are not perfectly
received in time at the relay, the timing error can be absbrbe
as part of the channel responses.

For the binary case, the only possible network-coded com-*
bination, S4 + Sg over the binary field, does not offer the
best performance in several channel conditions [13]. Since
unconventional non-binary constellations offer flexilyiin the
choice of decoding coefficients, b), the relay is capable of
attempting to decode multiple network-coded combinatidins
at least one of these network-coded combinations is decoded
successfully, a correct decision will be made at the relay,
i.e., attempting to decode against all combinatiéng) can

We utilize non-binary constellations and directly decode
network-coded combinations;S4 + bSp, over finite
fields from the superimposed channel-coded packets,
using either a practical RS-CC concatenation or LDPC
code.

Working over non-binary finite fields offers multiple
choices for decoding coefficients, and b. We benefit
from attempting to decode multiple network-coded com-
binations at the relay.

We show that for a finite field®, there are effectively
only |F| — 1 pairs of decoding coefficients that should be
attempted by the relay. There is no performance gain in
attempting more.

We investigate the performance of different mappings
from IF to the ¢—PSK constellation (called constellation
mappers, and of which there ag8 in terms of FER for

q < 5. We prove that the performance of all constellations
mappers iNnGF(3) is the same in terms of FER for
any code (linear or non-linear). However, i6'F(2%)

the performance of different constellation mappers is the
same only if a linear code is adopted at the end nodes.
For GF(5), if the code is linear, we show that there are
4 different classes of constellation mappers with possibly
different performances, which greatly reduces the search
space fromb! = 120 cases to 4.

We find a lower bound using Fano’s inequality on the
FER performance of decoding the network-coded combi-
nations at the relay.

« When using RS-CC, for quasi-static Rayleigh fading

channels, finite field&F(3), GF(2?) andGF(5) outper-
form the binary case. For Rayleigh fast fading channels,
finite fields GF(3) and GF(22) outperform the binary
case by attempting to decode multiple network-coded
combinations.

When using LDPC codes, for quasi-static Rayleigh fading
and Rayleigh fast fading channels, the finite fields(3)

and G F(2?) outperform the binary case by attempting to
decode multiple network-coded combinations.

o GF(3) has the best performance in terms of FER among

all other fields, for both quasi-static Rayleigh and fast
fading Rayleigh channels, when RS-CC or LDPC channel
coding is adopted at the MAC stage.

The remainder of this paper is organized as follows: in

decrease the probability of error at the relay. Note thatesinsection II, we introduce the basic system model and invattig

a cyclic redundancy check (CRC) code oweris linear, a the
correctly decoded combination will pass a CRC test.

number of network-coded combinations that the relay

should attempt to decode. In section 11, we explain theesyst



model of channel-coded PNC. In section IV, we investigatoefficients lead to a new partitioning of constellationrpgei
the performance of different constellation mappers in gernand thus do not provide a new opportunity for successful
of FER. In section V, we derive a lower bound on the FERecoding at the relay. Those that generate the same pairiigio
performance of decoding at the relay. In section VI, simafat of points either all succeed or all fail when decoding a par-
results are presented. Finally, we conclude the paper tiosec ticular received transmission. The following theorem aades
VII. which of the coefficient pairs(a,b), are duplicates in this
sense.

Il. BIDIRECTIONAL RELAYING Theorem 1:The number of pairs of decoding coefficients

A. Multiple Access (MAC) Stage that provide distinct partitions iff| — 1. Picking the coeffi-

_ _ _ ~ cientsa =1 andb € F\{0} yields all the distinct partitions.
Let us assume that each node is equipped with a single

antenna and the channel is half dupleX. ThUS, transmission a Proof: The proof consists of two parts: 1) any pair

reception at a particular node must happen in different timg decoding coefficients,(a,b), where a,b € F\{0} and
slots. We also assume that there is no direct link betwegn. 1 yields the same partition as the pair, '), for some
nodesA and B. We denote bySa,Sp € F, whereF is a j/ ¢ \{0} and 2) there are no distinct pairs with an identical
finite f|e|d, the source data frod and B, reSpeCtiVer. We first coefficient that y|e|d the same partition_

let M : F — C denote —PSK constellation mapper used at part 1: The partition with(1,b), whereb € F\{0}, is the
the MAC stage. The signals transmitted from sourdeand same as that witlic, cb), wherec € F\{0}, since

BareX, = M(S4) andXp = M(Sg). We assume that the

constellation points have unit energy. The received sigal ~ ¢C1.0)(54,58) = ¢Sa + cbSp = Cie.er) (Sa,58), ()

the relay noder? is expressed as i.e., decoding coefficientl, b) and (¢, cb) produce the same
Yr = HaXa+ HpXp + Zg, (1) partitioning as they have the same Ieyel set_s.

Part 2: Assume that the partition with, b) is the same as
where H, and Hp are complex-valued channel gains fromhat with (a,?’). Denote byP ¢ F2 a common level set with
the end nodesA and B to the relay nodeR, respectively. imagek € F andk’ € F for (a,b) and (a,b’), respectively,
We assume thaZr is complex additive white Gaussian noise.e., for all (S4, Sg) € P,

(AWGN) with variances?. For a given constellation mapper
M and channel gain&/ 4 and H , we will call the following aSs +bSp =k
set thereceived constellatian aSa+bSp =k (4)

Mu(Ha, Hg) = {HAM(S4) + HpM(Sp)|Sa, Sp € F}. According to (4), (b — b)SB_ = _k — k' for a_II Sp in

o _ - - {S|(S4,S5) € P} = F. But, this will only hold if b = ¥’

For simplicity of analysis and exposition, we assume a timgnqr — &’ Therefore, there are no duplicate pairs with an
synchronous communication system. Again, this is a reasQfantical first coefficient. -
able assumption, as an OFDM-based bidirectional reIayingKnOng the channel gains, the relag performs soft-
system is_robust to time synchronization errors due to thcision decoding to estimat§y from the received signal,
cyclic prefix. Yr, using the probabilityPr (Yz|aSa + bSp = k, Ha, Hp)
for k € F, computed as follows

B. Physical Layer Network Coding Over Non-Binary Fields Pr(Yr|aSa +bSp = k, Ha, Hp) =

In network coding the critical issue is how the reldy v _ 2
makes use oFx to construct a packet to broadcast to the enell—2 Z exp ( Yr — HaM(S4) ~ HpM(Sp)l )
nodesA and B in the downlink phase. For binary, the most’™ " (Sa.55)

well-known network coding scheme is the XOR or modulo-2 ~ @94+bSs=k
addition:

o2

®)
In the BC stage, the end nodé knowing its own infor-
C(Sa,5B) = 54 ® Sp = Sa+ Sp (mod 2). (2)  mation and the channel gaiff 4 (obtained say, from pilot

As explained in [13], the channel gains do not always fav§¥MPOIS), can obtain its intended datéz, using the signal
such a simple XOR code. Hence, decoding multiple networRroadcast form nod&. Similarly, the end nodé3 can extract
coded combinations can be helpful, since for successful d&4 from Sk-
tection at the relay only one of these combinations needs
to be successfully decoded. Working over non-binary fields !!l- CHANNEL-CODED BIDIRECTIONAL RELAYING
gives the relay node? the opportunity to map the received Given that the relay node? attempts to decode against
signal, Y, into multiple network-coded combinations; i.e.multiple pairs of decoding coefficientéq, b), in this section,
Sr =aSa +bSp over F, wherea,b € F\{0}. Decoding we now explain the channel-coded PNC system model. We
according to a fixed choicéa,b) partitions theq? received let 7 : F¥ — F" denote a linear channel encoder. Denote
constellation pointsM (H 4, Hg), into ¢ sets according to by S, S € F* the un-encoded data to be transmitted from
the level sets of the functiol, ;)(S4,Sp) := aSa +bSp A and B. The end nodes employ a coding scheme of rate
of S4 and Sp. However, not all of these pairs of decoding = k/n. The encoded packets are then modulatedAdy:



F* — C", where the PSK constellation mappkt : F — C we investigate the permutations of an arbitrary consiehat
is applied element by element, as c; that result in the same FER performancecas rotation,
reflection, and multiplication by non-zero field elements.
Xa = M(T(S4)) P g

Xp = M (T(Sg)). (6)
Let Uy = 7(S4) andUp = T(Sp) denote the encoded”- Rotation

packets from the end nodes. In the MAC stage, the receivedyoyy, consider they — 1 constellations obtained by rotating
signal at the relay nod& during the j-th symbol is written (o constellation points o€, by 2kr/q for k € Z,\{0}.
as If instead of M the constellation mappem’ : F — C
Yr(j) = Ha()Xa(G) + Hz()XB(G) + Zr(j), (7) Fhat is equwale_nt to &km/q rotation of the constellgtmn
. _ _ induced by M is used, then the received constellation at
where Z(j) is complex-valued circularly symmetric AWGNthe j-th time instantM . (HA(j), Hg(j)) is identical to
with variances? and H;(j) for i € {A, B} is a complex- M (Ha(j)e2k™/9. Hp (j)ei2k7/4). Since for Rayleigh fad-
valued channel gain from the end noddo the relay node ing the effect of the channel includes a random rotation
R. In this paper, we first consider quasi-static Rayleighrfgdi uniform on [0, 27), the sets of possible received constella-
chan_nels, Wher_eHj,(g) is a constant for allj e'Zn. When we tions M v(HA(j), Hz(j)) and M (HA(j), Hg(j)) have
consider Rayleigh fast fading channels, ftigj) are assumed the same distribution. Therefore, any rotatiofic; of ¢; has

to be i.i.d. for allj € Z,. the same FER as, (herery is the rotation permutation).
We aim to directly decodeS, +bSg overF, using the fact

that7 : F* — F” is a linear code. The linearity of the code

guarantees B. Reflection
T(aSa +bSp) = a7 (Sa) + b7 (Sp). (8) Also consider the constellation obtained by reflecting the
If from Yp we can obtain the soft metricsconstellation points of; on the x-axis. Let us denote by
Pr(YR(j)\aSA(j)/ + bSy(j) = k,Ha(j),Hgp(j)) for M’ . F — C the constellation mapper that is equivalent to the

j € Z, andk € F and if the linear code allows for SOf»[_inputreflection of the constellation induced byt on the x-axis.
decoding, themS, + bSp can be directly decoded WithOUtTh/en at thej-th time iUStflmM'(SA(j)) = M(Sa(j))* and
first decodingSs and Sz. According to Theorem1, the M'(SB(j)) = M(Ss(j))" and therefore

relay is not required to attempt to decode all network-coded ) )

combinationsaSy + bSg, as there are onlyF| — 1 effective M’ (Ha(5), Hp(j))

distinct sets of pairs of decoding coefficierits b). In section ={Ha(j)M'(Sa(j)) + Hg(j)M'(S5(4))Sa(4),SB(j) € F}
V and thereafter all channel codes are assumed to be linear { ;7 , (/)M (S4(j))* + Hp (/)M (S5(}))*[Sa(j), Sp(j) € F}

V. o PSK ONSTELLATION MAPPERS ={(HA () M(Sa())+ Hp () M(S5(0))) 15(7). S5(i) €F}

= M (Ha(5)", Hz(5)")", 9
Generally, in a field of sizg, there arg;! different constel- s (Ha(l) (7)) ©
lation mappers that place the constellation points unigaela \yhere for a setdA  C. A* — {z*|z € A}. Since the

¢-PSK constellation. However, due to symmetric properties gqgeqd noise is complex-valued circularly symmetric AWGN
the constellation and the fact that linear codes are emgloygnq for Rayleigh fading the probability distributions  (5)

at the end nodes, the number of constellation mappers that H;(j)*, for i € {A, B}, are the same, a reflection (flip)
result in different performance in terms of FER, calltidtinct 7#C, of ¢, has the same FER as (herer is the reflection
mapperdor short, is less. Consider a constellation mappér permutation).

that generates the constellation= (c11, c12, ..., ¢14), Where
c1; € F, c1; # ¢q5 fori # j andi,j € {1,2,...,q}, with a
given FER; without loss of generality, let; be located at the
right corner of the;-PSK constellation, followed byis, ..., ci4
in a counter-clockwise order. The constellatmncan be trans-  Knowing thatS, andSg are selected uniformly and iid on
formed to another constellation callegd = (c21, cao, ..., c24), F¥, encoding and transmittingS, and cSg for ¢ € F\{0}
wherecy; € F, co; # co; fOr i # j andi, j € {1,2,...,q}, by has the same FER performance as encoding and transmitting
applying a permutation such as rotation, or reflection, le¢¢. S, and Sp if a linear code is used. This is because for
us denote by = {p;|1 <i < ¢!} the group of ally! permuta- ¢ = 1, nothing has changed, while ferc F\{0, 1}, we still
tions. Without loss of generality assume that the elemeinis ohave independent uniform distributions &4. But compared

are ordered agéy, &2, ...&,}. Denote byC = {c¢;|]1 <i < ¢!} toc = 1, the effect of usinge € F\{0,1} is as if we

the set of all constellations created by applying the elémeh encoded usingg = 1, and adopted the constellatian =
Ptocr = (&1, &, ..., &), anidentity constellationSince there c¢¢; = (cer1, cera, ..., cc14) = CiTx. iNStead ofc, at the relay.

is a one-to-one correspondence between the elementsio Therefore, any constellation resulting from multiplicati of
those ofP, there exists an isomorphism betweBrandC and ¢; by ¢ € F\{0} has the same FER a3 (heren. is the
henceC can be seen to have group structure. In the followingyultiplication by ¢ permutation).

C. Multiplication by Non-Zero Field Elements



D. Number of Distinct Mappers As the source messages are selected according to a uniform

Let H, C P be the set of permutations correspondingStioution,
to rotations and reflections of the constellation (these ar%rlog (q) = log (qk)
left permutations); andH, C P the set of permutations 2 2

corresponding to multiplications by non-zero field elensent = h(Sap)

(these are right permutations). For, ¢, € C, if h1C hy = Ca, = h(Sap|Ha, Hp)

whereh, € H, andhy € Hs, thenc; andc, have the same = I(Sap;YRr|Ha,Hg) + h(Sap|YRr, Ha, Hp)
performance in terms of FER and we say they are equivalent. < T4+ Porl 1 12
The groupC is thus divided into distinct classes of equivalent < I+ Penrlogy(q) + (12)
elements. Ifc € C, we are interested in the double cosets =T +nex, 13)

HicHs with r H, and H. follow! . .
1652 espect toff, and H;, as follows where (12) follows from Fano’s inequality, and, — 0

HyCHy = {hyChy|hy € Hy, hy € Hy}. (10) @as the probability of errorP, — 0. According to (13)
the probability ofZ being less thamrlog,(q) is an indi-
Thus, double cosets off; and H, partition C, where cator of the probability of error, callethformation outage
each partition consists of constellations with equivaleBR. probability. We denote the information outage probability by
The following theorem from [22] indicates the number o’ = Pr{Z < nrlog,(q)}.
members in each partition, which in turn specifies the numberFor a linear code, there is a one-to-one relation between

of partitions and distinct mappers. Sap andU 4, and thusZ = I(Y g;Uap|Ha, Hp). For sim-
Theorem 2:For a double coseH cH, andc € C, the plicity, in the following, we denot&’z(j), Saz(j), Uan(j),
number of members in the partition withis equal to Ua(j), andUg(j) for a time instanj € Z,, by Yr, Ha, Hp,
Sap, Uap, Ua, andUg, respectively.
#(H\cH,) = M’ (11) Now, assume a code of rate= k/n and, without loss of
|HicN CHy| generality, that the firsk symbols are systematic. Then the

where|.| indicates the size of the enclosed set. In the foIIO\/\lE1 Ztn%;:n?ént]ﬁgllsagui Zr)]/(rjnLtj)glsa:)?‘L? epe;rze(;];;:nélif |:§t
ing, we investigate the number of distinct mappersda (3), the first k. Let us denote the first symbols of the received

GF(2?), andGF(5) fields, in detail. : (1,k) (k+1,n)
For the case thal = GF(3), the groupC has 6 elements signal, byY'; ™" and the last — k by Y . We ,?f{fg}e

and as|H;| = 6, C has 1 partition. Thus even for non-1€ Iasktn — k symbols of the encoded packets by,

+1,n . . .
linear coding schemes aB! constellations have the samednd UY+™. The informationZ can then be rewritten as
performance in terms of FER. _
If F = GF(22), we have|Hy| = 8, |Ha| = 3, and [Hycr £ = MY rIHa, Hp) = h(Yr[Uap, Ha, Hp)
CH,| =1 for all ¢ € C, and thus the groug will consist of <nh(Yr|Ha,Hp) — h(YS%”“HUAB,HA,HB)
one partition of size 24. Hence all constellations have the h(Y%c+1,n)|YS%1,k)7 Unap, Ha, Hy)

same performance in terms of FER if a linear coding scheme

is employed at the end nodes. If the code is non-linear, ther™ nh(Yr|Ha, Hp) — kh(Yr|Uap, Ha, Hp) (14)
the number of distinct mappers equals|f6,| = 3. — (Y R gy U B, Hp)
Finally, if F = GF(5), we have|H;| = 10, |Hz| =4, and  _ nh(Yg|Ha, Hp) — kh(Yg|Uap, Ha, Hp)

HicnNcHy| =1 or 2 depending orc € C. Thus the group n n n

|C will be p<'|;1rtitioned into 4 groups: two of size 20, and two — h(Y%ﬁL )|Yg’k)vUABng+l’ ),Uf“’ )aHAaHB)

of size 40, which means that there are 4 distinct mappers if= nh(Yr|Ha, Hg) — kh(Yr|Uap, Ha, Hg) — (n — k)h(ZR)
a linear code is employed at the end nodes. As a result, it= ;1 (Vy; Uysp|Ha) + (n — k)I(Yg;Ua,Ug|Hp).  (15)
linear coding is employed at the end nodes, only four distinc

mappers should be considered as all others have identicabn the other hand, the informatich can also be bounded
performance in terms of FER. Fig. 1 depicts one member pj

each group. Note that Fig. 1(a) and (b) show constellations

that belong to partitions of size 20, while Fig. 1(c) and (d) Z < I(Uap;YRr,Ua|Ha, Hp) (16)
show constellations that belong to partitions of size 40. = I(Uap;Yr|Ua, Ha, Hp)
=h(YRr|Ua, Ha, Hg) — M(YRr|UaB,Ua, Ha, Hp)
V. A LoweRBOUND ON THE FER RERFORMANCE < nh(Yr|Ua, Ha, Hg) — nh(Zg)
In this section, we find a lower bound on the FER perfor- = nl(Yr;Up|Ua, Ha, Hp) (17)

mance for quasi-static Rayleigh fading channels. We dempte

Sup = aSa +bSg and byU 4 = aU4 +bUp. Let us denote Similarly,

byZ = I(Y r;Sap|Ha, Hp), the mutual information between I <nl(Y;Ua|Up,Ha,Hp). (18)
the superimposed received signals at the relay node and the

decoded network-coding combination, given the channelggai Thus from (15), (17), and (18), the information outage
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Fig. 1. The four distinct constellations: (a) belongs to #ipan of size 20, (b) belongs to a partition of size 20, (€ldngs to a partition of size 40, and
(d) belongs to a partition of size 40.

probability is lower bounded by 10°
P, > Pr{min{
TI(YR; UAB|HA, HB) + (1 — T’)I(YR; UA, UB‘HA, HB),
I(Yr;Up|Ua, Ha, Hp),
I(Yr;Ua|Up,Ha,Hp)} < rlogy(q)}. (19)
Knowing that the steps in (14) and (16) are potentially lpose
we expect the final bound (19) to be unrealizable, i.e., we
do not expect any actual code to meet it in terms of FER
performance. The bound (19), is depicted in Fig. 4. Alsognot 6|

that the bound in (19) is valid for each of tiieF'(5) distinct
constellations shown in Fig. 1.

== Shannon limit
=—=LDPC code

Bit Error Rate
R

-1 0.5 0 0.5 1
Eb/No, dB
VI. SIMULATION RESULTS
In this section, we compare the performance of non-binaﬂﬂ- 2. Bit error rate of LDPC code and the Shannon limit at e 0.4
constellations in a PNC scenario with that of the binary case
using a practical concatenation of RS and convolutionaéspd

and LDPC codes. non-zero elements in each column is 3, and that in each row

fF(t)rta fa|fr tc;]ompanscl)nt.ln tTrmz of c;)m;?(ljeﬁty, the ngmbtij equal to 5. The BER performance of this code0i8dB
ot states of the convolutional coges should be approxima way from the Shannon bound at rate 0-422dB). Fig. 2

3
Zr;e sadm5e2. fWch?OQOSGG ;tl% nlg}bzg of s;age; EOQPeI?:j ' illustrates the BER performance of the LDPC code for the
» &ando® 1or (2), (_ ), (2°), an _ (5) fields, binary field over an AWGN channel. In Fig. 2, even at BER
respectively. The convolutional code rate lig2. The best

segrc():rr:]. ;?:tlﬁel ;széfstglisnfoaegiﬁgrsr?;yTgn;]flse' the salon-zero entries in the binary matrix are randomly switched
P u v A% on-zero elements of the higher order field, and in this way

input and output packet lengths, as well as the same rat\% . . . L
truct all the LDP ty check mat th
Here, we assume that the RS code rat8.# Therefore, the & construct all the C parity check matrices in this paper

concatenated RS-CC code rate(i8 x 0.5 = 0.4. Table | F'g'c?’ |IIust(;at§§ thsl\?grformanpe c:cf the b|n.ar}[/ f[a.ntherTa}ryh
also provides the Reed-Solomon parameters used in this,pape’. encoded in scenarios for quasi-stalic Rayleig

where a RS(n, k,m) encodesk, m-symbol blocks inton ading channels. As can be seen from Fig. 3, attempting to
blocks of sizem éymbols ’ decode against all choices of coefficielitsb) decreases the

frame error rate in a manner equivalent to a gain of approx-

TABLE | imately 1dB in E;/N,. Similarly for other fields, decoding
CONCATENATED RS-CC RRAMETERS FORDIFFERENTFIELDS against all choices of coefficients decreases the FER. This
[Field | CCgen. poly. | RS @ k. m) | decreasg in FER f(?r higher order fields, i:é}F(QQ) and .
GFQ) @To0Lo0ID 63,51, 6) GF(5_)_, s greater since the numbe_r of ch0|ce_s of_ decoding
GF(3) | (2011,2227) (59, 47, 4) coefficients(a, b) increases as the size of the field increases,
GF(2%) (111,1a1) (63, 51, 3) according toTheoremL.
GF(5) (I13,241) (55, 45, 3)

In the following, all FER are obtained by attempting to
decode according to all choices of valid coefficiefitsb). As

A girth-12 LDPC code that has a parity check matrix ofan be seen from Fig. 4, thanks to the RS-CC error correcting
size 4395 x 7325 is used for the binary case. The number ofode, higher order fields outperform the binary caselhyp
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Fig. 3. Frame error rate for PNC configuration with RS-CC emtbpackets
over field GF(3) when the relay attempts to decode against all decodi

coefficients, i.e., (1,1) and (1,2) for quasi-static Rayhefading channels. rﬁg. 5. The frame error rate for PNC configuration with LDPC edgackets

for quasi-static Rayleigh fading channels

constellation mappers of Fig. 1(c) and (d) themselves apipea
have identical FER performance. Fig. 5 also indicates that t
non-binary fieldsG F(3) and GF(2?), outperform the binary
case by0.3dB and0.1dB in E;,/Ny, respectively. However,
3 ; the binary case has abdut dB performance gain compared to
® GF(2) R, N the fieldGF (5). It should also be noted that field&F'(3) and
* GFG3) g, GF(22) can only outperform the binary case by attempting to
decode according to all coefficients, b), i.e., for a specific
pair of decoding coefficient&s, b), binary coding leads to the
best performance. Fiel@F'(5), however, performs worse than
the binary case even after attempting to decode againsilal v
coefficients.

._
o.
:

Frame Error Rate

Eb/No, dB

Fig. 4. The frame error rate for PNC configuration with RS-CQlex

packets for quasi-static Rayleigh fading channels Fig. 6 illustrates the performance of the binary and non-

binary RS-CC and LDPC codes in PNC scenarios for fast
fading Rayleigh channels. For ease of presentation, we tlo no

) ) ) ) show the performance by decoding against one set of decoding
3dB at FER ofl0~, for quasi-static Rayleigh fading channelsgqefficients in Fig. 6 and only the final FER achieved by
with GF'(3) providing the best performance. The performancgiempting to decode against all valid coefficients aredegi
of RS-CC coded curves are approximately to 4dB away ag can be seen form Fig. 6, using RS-CC coding, fi€ld%(3)
from the lower bounds (19). For the selected RS-CC coding, GF(2?) outperformGF(2) by 0.8dB and0.5dB at FER
scheme, the four distinct constellations shown in Fig. 1 foff 194 pyt only by taking advantage of decoding against all
GF(5) have the same FER performance, hence their CUNSSssible coefficientéa, b). Using LDPC coding, field&F(3),
overlap in .Fig. 4. Also from Fig. 4, thé&/F'(3) curve is the GF(22) outperforms the binary case byrdB at FER ofL0~,
closest to its correspondence lower bound. As RS-CC codifgy only by taking advantage of attempting to decode against
results in a significant gap from the lower bounds, we alsg| possible coefficients. However, in both coding schemes,
consider LDPC codes. _ _ the binary case outperforms th@&F (5) case. For fast fading

Fig. 5 illustrates the performance of binary and non-binagayieigh channels, attempting to decode against all chaite
LDPC coding in PNC scenarios for quasi-static Rayleighyefficients(a, b) also significantly decreases the frame error

fading channels. Attempting to decode against all choides Qe providing a gain equivalent toto 2dB in E,/N, at FER
coefficients(a, b) decreases the frame error rate ®dB in -4

Ey/Ny. Also, with LDPC coding at the end nodes, the FER

performance is found to be onlydB away from the bound Finally, Figs. 5, 4, and 6 show that field F'(3) has the
(19). For the selected LDPC coding scheme, the constallatioest frame error rate performance among all consideredsfield
mappers shown in Fig. 1(a) and (b) have the same performafi@eboth quasi-static Rayleigh fading and fast fading Riayle

in terms of FER and they outperform the constellation mapperhannels, employing either RS-CC or LDPC coding at the end
shown in Fig. 1(c) and (d) by abowt1dB in E;,/Ny. The nodes.
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Fig. 6. The frame error rate for PNC configuration for fast fagRayleigh
channels

(6]

[7]
VIl. CONCLUSION

In this paper, we have considered a problem of two-wa)(s]
wireless relaying, for which network coding is employed at
the physical layer. The end nodes pick their symbols from a
field F and transmit channel-coded PSK-modulated signals ]
the relay simultaneously. The relay node receives the saper
posed channel-coded packets and directly decodes a network
coded combination of the source packets. The channel cod[ﬁ?ﬂ
schemes employed are either a practical concatenation -of RS
CC codes or LDPC codes. Working over non-binary field$1]

allows the relay to attempt to decode different networkezbd

combinations,aS4 + bSp over F, wherea,b € F\{0}. We [12]
have shown that for a finite fiel, there are effectivelyF|—1
unique network-coded combinations. We have investigdted 13]

performance of different constellation mappers for thetdini
field F in terms of FER. Exploiting the symmetric properties
of the problem and using group theory arguments, we h ]
shown that the number of constellation mappers with differe
performance is much less than the total constellation ntappe
|F|!. Therefore, we do not need to consider all differerit®
constellation mappers. We have found a lower bound using
Fano’s inequality that confines the FER performance of decddit]
ing the network-coded combinations at the relay. Simutatio
results indicate that finite field§'F'(3), GF(2%), andGF(5) [17]
outperform the binary case for quasi-static Rayleigh fgdin
channels if RS-CC channel coding is performed at the end
nodes. In addition, for Rayleigh fast fading channels, dinit1g
fields GF(3) and GF(22?) outperform the fieldGF(2) only
by taking advantage of decoding according to all choices
a andb. Using LDPC codes for quasi-static Rayleigh fading
and Rayleigh fast fading channels, finite field$'(3), and
GF(2%) outperform the binary case only by taking advantag[éO
of attempting to decode multiple network-coded combirretio
Finally, simulation results show that the finite figl¥'(3) has [21]
the best probability of error performance among all conside
fields.

As future work, it is of interest to consider non-binary
constellations for larger systems in which more than two end

(22]

nodes are communicating.
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