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On Non-Binary Constellations for Channel-Coded
Physical-Layer Network Coding
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Abstract—We investigate channel-coded physical-layer net-
work coding in a two-way relaying scenario, where the end
nodesA and B choose their symbols, SA and SB , from a small
non-binary field, F, and adopt a non-binary PSK modulation.
The relay then directly decodes the network-coded combination
aSA + bSB over F from the noisy received superimposed channel-
encoded packets. The advantage of working over non-binary
fields is that it offers the opportunity to decode according to
multiple decoding coefficients(a, b). As only one of the network-
coded combinations needs to be successfully decoded, a key
advantage is then a reduction in error probability by attempting
to decode against all choices of(a, b). In this paper, we compare
different mappings betweenF and the PSK constellation, and
prove that many have identical performance in terms of frame
error rate (FER). Moreover, we derive a lower bound on
the performance of decoding the network-coded combinations.
Simulation results show that if we adopt either i) concatenated
Reed-Solomon and convolutional coding or ii) low-density parity
check codes, our non-binary constellations can outperform the
binary case significantly in the sense of minimizing the FER
and, in particular, the ternary constellation has the best FER
performance among all considered cases.

Index Terms—Physical-layer network coding, non-binary con-
stellation mappers, outage probability, Reed Solomon Convolu-
tional code concatenation, low density parity check code.

I. I NTRODUCTION

I NTERFERENCE, traditionally considered to be destructive
to wireless communications, may in fact contain beneficial

information. This point of view suggests the use of decod-
ing techniques to process interference in wireless networks,
instead of treating it as a nuisance to be avoided [1].

Inspired by the network coding principle [2], [3], physical-
layer network coding (PNC) is a technique in which an
intermediate node relays a function of the decoded incoming
packets, usually linear combinations, rather than the packets
individually. In PNC, the combinations are inferred directly
from the received signal of the intermediate node. The basic
idea of PNC has been proposed independently by several
research groups in 2006: Zhang, Liew, and Lam [4], Popovski
and Yomo [5], and Nazer and Gastpar [6]. Because of its
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simplicity and the substantial benefits foreseen in it [7], [8],
PNC has gained much attention since 2006. Many strategies
have been proposed for PNC, with a particular focus on bidi-
rectional relaying, where nodesA andB exchange information
with the help of a relay nodeR. In [4] and [5], three different
protocols for bidirectional relaying are presented. Compared to
the 4- and 3-stage protocols, the 2-stage protocol can improve
throughput because of its effective time usage. In this paper,
we concentrate on the 2-stage relaying scheme consisting of
an uplink phase and a downlink phase. In the uplink phase,
termedmultiple access (MAC)stage, nodesA andB transmit
packets to the relay nodeR simultaneously. Relay nodeR then
constructs a network-coded packet based on the overlapped
signals received from nodesA andB. In the downlink phase,
termedbroadcast (BC)stage, the relayR broadcasts the packet
to nodesA andB. Knowing its own informationa priori, node
A (B) can decode the data from nodeB (A), using the signal
broadcast from nodeR.

The performance of a two way relaying system in 2-, 3-
and 4- stage scenarios is investigated in [9]. The authors, in
[9], showed that the two-stage PNC scheme offers a higher
maximum sum-rate, but a lower sum-bit error rate (BER), than
the 4-stage scheme for a number of practical scenarios. They
also showed that the 3-stage scheme offers a good compromise
between the 2- and 4- stage schemes, and also achieves the
best maximum sum-rate and/or sum-BER in certain practical
scenarios.

In [10], the authors investigated the use of structured and
lattice codes in a scenario for two-way relaying. In [11], a
compute-and-forward strategy is proposed where the relays,
knowing the channel coefficients, decode linear functions of
transmitted messages. The authors used lattice codes whose
algebraic structure ensures that integer combinations of code-
words can be decoded reliably.

In [12], the authors considered the use of non-coherent
detection at the relay for a PNC scenario. The proposed non-
coherent relay does not require phase synchronism.

Network coding at the relay nodeR is challenging because
of the fact that channel gains and noise at the MAC stage
randomly perturb the received overlapped packets. In [13],the
authors introduce a modulation design method for dealing with
this randomness which improves the throughput significantly.
Their scheme employs the use of unusual 5-ary modulation
in the BC stage while QPSK modulation is used in the MAC
stage. In their model, a denoise-and-forward (DF) scheme is
implemented at the relay node.

In [14], the overlapped BPSK-modulated signals in the relay
nodeR are transformed directly to the network-coded packets.
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The authors adopt a repeat accumulate (RA) channel code at
the two end nodes and redesign the belief propagation decod-
ing algorithm of the RA code to suit the PNC configuration.

In [15], the authors presented a new non-uniform high-
order M -PAM constellation design that allows for a com-
putationally efficient binary interleaved coded modulation for
PNC over a DF relaying channel. By comparison, in [16],
the authors considered a memoryless bidirectional relaying
system where the signal transmitted by a relay depends only
on its last received signal, i.e., the system is uncoded. For
binary antipodal signaling, they considered so called absoluted
(abs) based schemes. Moreover, they analyzed existing and
new relay strategies as well as optimized abs and non-abs
based schemes via functional analysis to minimize the average
probability of error over all possible relay functions.

In [17], the authors have introduced two new PNC cate-
gories: PNCF (PNC over finite field) and PNCI (PNC over
infinite field) according to whether the network-code field
adopted is finite or infinite. In their model, the source packets
are not channel-coded. However, the idea of adopting channel-
coding schemes at the end nodes has been investigated in [18],
[19]. Two comprehensive surveys about PNC can be found in
[20], [21].

In this paper, the end nodesA andB choose their symbols,
SA and SB , from a finite field F = GF (q). The symbols
are thenq-PSK modulated(q = 2, 3, 4, 5) and sent to the
relay. We propose a PNCF scheme for directly decoding a
network-coded combination, i.e.,aSA + bSB overF, from the
overlapped channel-coded signals received from the two end
nodes (plus noise). This can be seen as a compute-and-forward
type approach since a linear function of the transmitted mes-
sages is inferred from the noisy linear combination provided
by the channels. However, as opposed to lattice codes, the
linear coding schemes here are either a practical concatenation
of Reed-Solomon and convolutional codes (RS-CC) or a low
density parity check code (LDPC), over a small non-binary
field, and are suitable for both quasi-static and fast fading
channels. To the best of our knowledge, practical physical-
layer network coding for fast fading channels has not been
studied in the literature. Fast fading channels are a good model
for frequency selective channels where orthogonal frequency
division multiplexing (OFDM) is applied with subcarrier in-
terleaving. Furthermore, due to the cyclic prefix of OFDM,
if the two transmissions from the end nodes are not perfectly
received in time at the relay, the timing error can be absorbed
as part of the channel responses.

For the binary case, the only possible network-coded com-
bination, SA + SB over the binary field, does not offer the
best performance in several channel conditions [13]. Since
unconventional non-binary constellations offer flexibility in the
choice of decoding coefficients(a, b), the relay is capable of
attempting to decode multiple network-coded combinations. If
at least one of these network-coded combinations is decoded
successfully, a correct decision will be made at the relay,
i.e., attempting to decode against all combinations(a, b) can
decrease the probability of error at the relay. Note that since
a cyclic redundancy check (CRC) code overF is linear, a
correctly decoded combination will pass a CRC test.

We aim to compare cases when end nodes use constellations
of size q = 3, 4, 5 with the conventional binary case. Simu-
lation results suggest that further increasing the constellation
size is not beneficial since for a fixed transmission power,
constellation points get closer to each other and the probability
of error increases. When the end nodes employ channel cod-
ing, we find that non-binary constellations can outperform the
binary case as decoding against all coefficients(a, b) provides
greater benefit than the reduction in minimum distance costs.
The major contributions of this paper are summarized as
follow:

• We utilize non-binary constellations and directly decode
network-coded combinations,aSA + bSB , over finite
fields from the superimposed channel-coded packets,
using either a practical RS-CC concatenation or LDPC
code.

• Working over non-binary finite fields offers multiple
choices for decoding coefficients,a and b. We benefit
from attempting to decode multiple network-coded com-
binations at the relay.

• We show that for a finite fieldF, there are effectively
only |F|− 1 pairs of decoding coefficients that should be
attempted by the relay. There is no performance gain in
attempting more.

• We investigate the performance of different mappings
from F to the q−PSK constellation (called constellation
mappers, and of which there areq!) in terms of FER for
q ≤ 5. We prove that the performance of all constellations
mappers inGF (3) is the same in terms of FER for
any code (linear or non-linear). However, inGF (22)
the performance of different constellation mappers is the
same only if a linear code is adopted at the end nodes.
For GF (5), if the code is linear, we show that there are
4 different classes of constellation mappers with possibly
different performances, which greatly reduces the search
space from5! = 120 cases to 4.

• We find a lower bound using Fano’s inequality on the
FER performance of decoding the network-coded combi-
nations at the relay.

• When using RS-CC, for quasi-static Rayleigh fading
channels, finite fieldsGF (3), GF (22) andGF (5) outper-
form the binary case. For Rayleigh fast fading channels,
finite fields GF (3) and GF (22) outperform the binary
case by attempting to decode multiple network-coded
combinations.

• When using LDPC codes, for quasi-static Rayleigh fading
and Rayleigh fast fading channels, the finite fieldsGF (3)
andGF (22) outperform the binary case by attempting to
decode multiple network-coded combinations.

• GF (3) has the best performance in terms of FER among
all other fields, for both quasi-static Rayleigh and fast
fading Rayleigh channels, when RS-CC or LDPC channel
coding is adopted at the MAC stage.

The remainder of this paper is organized as follows: in
section II, we introduce the basic system model and investigate
the number of network-coded combinations that the relay
should attempt to decode. In section III, we explain the system
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model of channel-coded PNC. In section IV, we investigate
the performance of different constellation mappers in terms
of FER. In section V, we derive a lower bound on the FER
performance of decoding at the relay. In section VI, simulation
results are presented. Finally, we conclude the paper in section
VII.

II. B IDIRECTIONAL RELAYING

A. Multiple Access (MAC) Stage

Let us assume that each node is equipped with a single
antenna and the channel is half duplex. Thus, transmission and
reception at a particular node must happen in different time
slots. We also assume that there is no direct link between
nodesA and B. We denote bySA, SB ∈ F, where F is a
finite field, the source data fromA and B, respectively. We
let M : F → C denote aq−PSK constellation mapper used at
the MAC stage. The signals transmitted from sourcesA and
B areXA = M(SA) andXB = M(SB). We assume that the
constellation points have unit energy. The received signalat
the relay nodeR is expressed as

YR = HAXA + HBXB + ZR, (1)

where HA and HB are complex-valued channel gains from
the end nodesA and B to the relay nodeR, respectively.
We assume thatZR is complex additive white Gaussian noise
(AWGN) with varianceσ2. For a given constellation mapper
M and channel gainsHA andHB , we will call the following
set thereceived constellation:

MM(HA,HB) = {HAM(SA) + HBM(SB)|SA, SB ∈ F}.

For simplicity of analysis and exposition, we assume a time-
synchronous communication system. Again, this is a reason-
able assumption, as an OFDM-based bidirectional relaying
system is robust to time synchronization errors due to the
cyclic prefix.

B. Physical Layer Network Coding Over Non-Binary Fields

In network coding the critical issue is how the relayR
makes use ofYR to construct a packet to broadcast to the end
nodesA and B in the downlink phase. For binary, the most
well-known network coding scheme is the XOR or modulo-2
addition:

C(SA, SB) = SA ⊕ SB = SA + SB (mod 2) . (2)

As explained in [13], the channel gains do not always favor
such a simple XOR code. Hence, decoding multiple network-
coded combinations can be helpful, since for successful de-
tection at the relay only one of these combinations needs
to be successfully decoded. Working over non-binary fields
gives the relay nodeR the opportunity to map the received
signal, YR, into multiple network-coded combinations; i.e.,
SR = aSA + bSB over F, where a, b ∈ F\{0}. Decoding
according to a fixed choice(a, b) partitions theq2 received
constellation points,MM(HA,HB), into q sets according to
the level sets of the functionC(a,b)(SA, SB) := aSA + bSB

of SA and SB . However, not all of these pairs of decoding

coefficients lead to a new partitioning of constellation points
and thus do not provide a new opportunity for successful
decoding at the relay. Those that generate the same partitioning
of points either all succeed or all fail when decoding a par-
ticular received transmission. The following theorem indicates
which of the coefficient pairs,(a, b), are duplicates in this
sense.

Theorem 1:The number of pairs of decoding coefficients
that provide distinct partitions is|F| − 1. Picking the coeffi-
cientsa = 1 and b ∈ F\{0} yields all the distinct partitions.

Proof: The proof consists of two parts: 1) any pair
of decoding coefficients,(a, b), where a, b ∈ F\{0} and
a 6= 1 yields the same partition as the pair(1, b′), for some
b′ ∈ F\{0} and 2) there are no distinct pairs with an identical
first coefficient that yield the same partition.

Part 1: The partition with(1, b), where b ∈ F\{0}, is the
same as that with(c, cb), wherec ∈ F\{0}, since

cC(1,b)(SA, SB) = cSA + cbSB = C(c,cb)(SA, SB), (3)

i.e., decoding coefficients(1, b) and (c, cb) produce the same
partitioning as they have the same level sets.

Part 2: Assume that the partition with(a, b) is the same as
that with (a, b′). Denote byP ⊂ F

2 a common level set with
imagek ∈ F and k′ ∈ F for (a, b) and (a, b′), respectively,
i.e., for all (SA, SB) ∈ P ,

aSA + bSB = k

aSA + b′SB = k′. (4)

According to (4), (b′ − b)SB = k − k′ for all SB in
{S|(SA, S) ∈ P} = F. But, this will only hold if b = b′

and k = k′. Therefore, there are no duplicate pairs with an
identical first coefficient.

Knowing the channel gains, the relayR performs soft-
decision decoding to estimateSR from the received signal,
YR, using the probabilityPr (YR|aSA + bSB = k,HA,HB)
for k ∈ F, computed as follows

Pr (YR|aSA + bSB = k,HA,HB) =

1

qπσ2

∑

(SA,SB)
aSA+bSB=k

exp

(

−|YR − HAM (SA) − HBM(SB)|2

σ2

)

.

(5)

In the BC stage, the end nodeA, knowing its own infor-
mation and the channel gainHA (obtained say, from pilot
symbols), can obtain its intended data,SB , using the signal
broadcast form nodeR. Similarly, the end nodeB can extract
SA from SR.

III. CHANNEL-CODED BIDIRECTIONAL RELAYING

Given that the relay nodeR attempts to decode against
multiple pairs of decoding coefficients,(a, b), in this section,
we now explain the channel-coded PNC system model. We
let T : F

k → F
n denote a linear channel encoder. Denote

by SA, SB ∈ F
k the un-encoded data to be transmitted from

A and B. The end nodes employ a coding scheme of rate
r = k/n. The encoded packets are then modulated byM :
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F
n → C

n, where the PSK constellation mapperM : F → C

is applied element by element, as

XA = M (T (SA))

XB = M (T (SB)). (6)

Let UA = T (SA) and UB = T (SB) denote the encoded
packets from the end nodes. In the MAC stage, the received
signal at the relay nodeR during thej-th symbol is written
as

YR(j) = HA(j)XA(j) + HB(j)XB(j) + ZR(j), (7)

whereZR(j) is complex-valued circularly symmetric AWGN
with varianceσ2 and Hi(j) for i ∈ {A,B} is a complex-
valued channel gain from the end nodei to the relay node
R. In this paper, we first consider quasi-static Rayleigh fading
channels, whereHi(j) is a constant for allj ∈ Zn. When we
consider Rayleigh fast fading channels, theHi(j) are assumed
to be i.i.d. for allj ∈ Zn.

We aim to directly decodeaSA +bSB overF, using the fact
that T : F

k → F
n is a linear code. The linearity of the code

guarantees

T (aSA + bSB) = aT (SA) + bT (SB). (8)

If from YR we can obtain the soft metrics
Pr(YR(j)|aSA(j) + bSb(j) = k,HA(j),HB(j)) for
j ∈ Zn andk ∈ F and if the linear code allows for soft-input
decoding, thenaSA + bSB can be directly decoded without
first decoding SA and SB . According to Theorem 1, the
relay is not required to attempt to decode all network-coded
combinations,aSA + bSB , as there are only|F| − 1 effective
distinct sets of pairs of decoding coefficients(a, b). In section
V and thereafter all channel codes are assumed to be linear.

IV. q−PSK CONSTELLATION MAPPERS

Generally, in a field of sizeq, there areq! different constel-
lation mappers that place the constellation points uniquely on a
q-PSK constellation. However, due to symmetric properties of
the constellation and the fact that linear codes are employed
at the end nodes, the number of constellation mappers that
result in different performance in terms of FER, calleddistinct
mappersfor short, is less. Consider a constellation mapperM
that generates the constellationc1 = (c11, c12, ..., c1q), where
c1i ∈ F, c1i 6= c1j for i 6= j and i, j ∈ {1, 2, ..., q}, with a
given FER; without loss of generality, letc11 be located at the
right corner of theq-PSK constellation, followed byc12, ..., c1q

in a counter-clockwise order. The constellationc1 can be trans-
formed to another constellation calledc2 = (c21, c22, ..., c2q),
wherec2i ∈ F, c2i 6= c2j for i 6= j and i, j ∈ {1, 2, ..., q}, by
applying a permutation such as rotation, or reflection, etc.Let
us denote byP = {pi|1 ≤ i ≤ q!} the group of allq! permuta-
tions. Without loss of generality assume that the elements of F

are ordered as{ξ1, ξ2, ...ξq}. Denote byC = {ci|1 ≤ i ≤ q!}
the set of all constellations created by applying the elements of
P to cI = (ξ1, ξ2, ..., ξq), an identity constellation. Since there
is a one-to-one correspondence between the elements ofC and
those ofP, there exists an isomorphism betweenP andC and
henceC can be seen to have group structure. In the following,

we investigate the permutations of an arbitrary constellation
c1 that result in the same FER performance asc1: rotation,
reflection, and multiplication by non-zero field elements.

A. Rotation

Now, consider theq − 1 constellations obtained by rotating
the constellation points ofc1 by 2kπ/q for k ∈ Zq\{0}.
If instead of M the constellation mapperM′ : F → C

that is equivalent to a2kπ/q rotation of the constellation
induced byM is used, then the received constellation at
the j-th time instantMM′(HA(j),HB(j)) is identical to
MM(HA(j)ei2kπ/q,HB(j)ei2kπ/q). Since for Rayleigh fad-
ing the effect of the channel includes a random rotation
uniform on [0, 2π), the sets of possible received constella-
tions MM(HA(j),HB(j)) and MM′(HA(j),HB(j)) have
the same distribution. Therefore, any rotationπk

Rc1 of c1 has
the same FER asc1 (hereπR is the rotation permutation).

B. Reflection

Also consider the constellation obtained by reflecting the
constellation points ofc1 on the x-axis. Let us denote by
M′ : F → C the constellation mapper that is equivalent to the
reflection of the constellation induced byM on the x-axis.
Then at thej-th time instant,M′(SA(j)) = M(SA(j))∗ and
M′(SB(j)) = M(SB(j))∗ and therefore

MM′ (HA(j),HB(j))

={HA(j)M′(SA(j)) + HB(j)M′(SB(j))|SA(j), SB(j) ∈ F}

={HA(j)M(SA(j))∗ + HB(j)M(SB(j))∗|SA(j), SB(j) ∈ F}

={(HA(j)∗M(SA(j))+HB(j)∗M(SB(j)))∗|SA(j), SB(j)∈F}

= MM (HA(j)∗,HB(j)∗)
∗
, (9)

where for a setA ⊂ C, A∗ = {x∗|x ∈ A}. Since the
added noise is complex-valued circularly symmetric AWGN
and for Rayleigh fading the probability distributions ofHi(j)
and Hi(j)

∗, for i ∈ {A,B}, are the same, a reflection (flip)
πF c1 of c1 has the same FER asc1 (hereπF is the reflection
permutation).

C. Multiplication by Non-Zero Field Elements

Knowing thatSA andSB are selected uniformly and iid on
F

k, encoding and transmittingcSA and cSB for c ∈ F\{0}
has the same FER performance as encoding and transmitting
SA and SB if a linear code is used. This is because for
c = 1, nothing has changed, while forc ∈ F\{0, 1}, we still
have independent uniform distributions onF

k. But compared
to c = 1, the effect of usingc ∈ F\{0, 1} is as if we
encoded usingc = 1, and adopted the constellationc2 =
cc1 = (cc11, cc12, ..., cc1q) = c1π×c instead ofc1 at the relay.
Therefore, any constellation resulting from multiplication of
c1 by c ∈ F\{0} has the same FER asc1 (here π×c is the
multiplication byc permutation).
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D. Number of Distinct Mappers

Let H1 ⊂ P be the set of permutations corresponding
to rotations and reflections of the constellation (these are
left permutations); andH2 ⊂ P the set of permutations
corresponding to multiplications by non-zero field elements
(these are right permutations). Forc1, c2 ∈ C, if h1c1h2 = c2,
whereh1 ∈ H1 andh2 ∈ H2, thenc1 and c2 have the same
performance in terms of FER and we say they are equivalent.
The groupC is thus divided into distinct classes of equivalent
elements. Ifc ∈ C, we are interested in the double cosets
H1cH2 with respect toH1 andH2, as follows

H1cH2 = {h1ch2|h1 ∈ H1, h2 ∈ H2}. (10)

Thus, double cosets ofH1 and H2 partition C, where
each partition consists of constellations with equivalentFER.
The following theorem from [22] indicates the number of
members in each partition, which in turn specifies the number
of partitions and distinct mappers.

Theorem 2:For a double cosetH1cH2 and c ∈ C, the
number of members in the partition withc is equal to

#(H1cH2) =
|H1||H2|

|H1c∩ cH2|
, (11)

where|.| indicates the size of the enclosed set. In the follow-
ing, we investigate the number of distinct mappers forGF (3),
GF (22), andGF (5) fields, in detail.

For the case thatF = GF (3), the groupC has 6 elements
and as |H1| = 6, C has 1 partition. Thus even for non-
linear coding schemes all3! constellations have the same
performance in terms of FER.

If F = GF (22), we have|H1| = 8, |H2| = 3, and |H1c∩
cH2| = 1 for all c ∈ C, and thus the groupC will consist of
one partition of size 24. Hence all4! constellations have the
same performance in terms of FER if a linear coding scheme
is employed at the end nodes. If the code is non-linear, then
the number of distinct mappers equals to|H2| = 3.

Finally, if F = GF (5), we have|H1| = 10, |H2| = 4, and
|H1c ∩ cH2| = 1 or 2 depending onc ∈ C. Thus the group
C will be partitioned into 4 groups: two of size 20, and two
of size 40, which means that there are 4 distinct mappers if
a linear code is employed at the end nodes. As a result, if
linear coding is employed at the end nodes, only four distinct
mappers should be considered as all others have identical
performance in terms of FER. Fig. 1 depicts one member of
each group. Note that Fig. 1(a) and (b) show constellations
that belong to partitions of size 20, while Fig. 1(c) and (d)
show constellations that belong to partitions of size 40.

V. A L OWER BOUND ON THE FER PERFORMANCE

In this section, we find a lower bound on the FER perfor-
mance for quasi-static Rayleigh fading channels. We denoteby
SAB = aSA + bSB and byUAB = aUA + bUB . Let us denote
by I = I(YR; SAB |HA,HB), the mutual information between
the superimposed received signals at the relay node and the
decoded network-coding combination, given the channel gains.

As the source messages are selected according to a uniform
distribution,

nr log2(q) = log2(q
k)

= h(SAB)

= h(SAB |HA,HB)

= I(SAB ; YR|HA,HB) + h(SAB |YR,HA,HB)

≤ I + Penr log2(q) + 1 (12)

= I + nǫn, (13)

where (12) follows from Fano’s inequality, andǫn → 0
as the probability of errorPe → 0. According to (13)
the probability of I being less thannr log2(q) is an indi-
cator of the probability of error, calledinformation outage
probability. We denote the information outage probability by
Po = Pr{I ≤ nr log2(q)}.

For a linear code, there is a one-to-one relation between
SAB andUAB , and thusI = I(YR; UAB |HA,HB). For sim-
plicity, in the following, we denoteYR(j), SAB(j), UAB(j),
UA(j), andUB(j) for a time instantj ∈ Zn by YR, HA, HB ,
SAB , UAB , UA, andUB , respectively.

Now, assume a code of rater = k/n and, without loss of
generality, that the firstk symbols are systematic. Then the
last n − k symbols ofUA andUB are dependent on the first
k and hence the lastn− k symbols ofUAB are dependent to
the first k. Let us denote the firstk symbols of the received
signal, byY(1,k)

R and the lastn − k by Y(k+1,n)
R . We denote

the lastn − k symbols of the encoded packets byU
(k+1,n)
A

andU
(k+1,n)
B . The informationI can then be rewritten as

I = h(YR|HA,HB) − h(YR|UAB ,HA,HB)

≤ nh(YR|HA,HB) − h(Y(1,k)
R |UAB ,HA,HB)

− h(Y(k+1,n)
R |Y(1,k)

R , UAB ,HA,HB)

≤ nh(YR|HA,HB) − kh(YR|UAB ,HA,HB) (14)

− h(Y(k+1,n)
R |Y(1,k)

R , UAB , U(k+1,n)
A ,HA,HB)

= nh(YR|HA,HB) − kh(YR|UAB ,HA,HB)

− h(Y(k+1,n)
R |Y(1,k)

R , UAB , U(k+1,n)
B , U(k+1,n)

A ,HA,HB)

= nh(YR|HA,HB) − kh(YR|UAB ,HA,HB) − (n − k)h(ZR)

= kI(YR;UAB |HA) + (n − k)I(YR;UA, UB |HB). (15)

On the other hand, the informationI can also be bounded
by

I ≤ I(UAB ; YR, UA|HA,HB) (16)

= I(UAB ; YR|UA,HA,HB)

= h(YR|UA,HA,HB) − h(YR|UAB , UA,HA,HB)

≤ nh(YR|UA,HA,HB) − nh(ZR)

= nI(YR;UB |UA,HA,HB) (17)

Similarly,

I ≤ nI(Y ;UA|UB ,HA,HB). (18)

Thus from (15), (17), and (18), the information outage
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(a) (b) (c) (d) 

Fig. 1. The four distinct constellations: (a) belongs to a partition of size 20, (b) belongs to a partition of size 20, (c) belongs to a partition of size 40, and
(d) belongs to a partition of size 40.

probability is lower bounded by

Po > Pr{min{

rI(YR;UAB |HA,HB) + (1 − r)I(YR;UA, UB |HA,HB),

I(YR;UB |UA,HA,HB),

I(YR;UA|UB ,HA,HB)} ≤ r log2(q)}. (19)

Knowing that the steps in (14) and (16) are potentially loose,
we expect the final bound (19) to be unrealizable, i.e., we
do not expect any actual code to meet it in terms of FER
performance. The bound (19), is depicted in Fig. 4. Also, note
that the bound in (19) is valid for each of theGF (5) distinct
constellations shown in Fig. 1.

VI. SIMULATION RESULTS

In this section, we compare the performance of non-binary
constellations in a PNC scenario with that of the binary case,
using a practical concatenation of RS and convolutional codes,
and LDPC codes.

For a fair comparison in terms of complexity, the number
of states of the convolutional codes should be approximately
the same. We choose the number of states to be25, 33,
42, and 52 for GF (2), GF (3), GF (22), and GF (5) fields,
respectively. The convolutional code rate is1/2. The best
generator polynomial for each field was found by exhaustive
search. Table I shows these generator polynomials.

Comparable Reed-Solomon codes should have the same
input and output packet lengths, as well as the same rates.
Here, we assume that the RS code rate is0.8. Therefore, the
concatenated RS-CC code rate is0.8 × 0.5 = 0.4. Table I
also provides the Reed-Solomon parameters used in this paper,
where a RS(n, k,m) encodesk, m-symbol blocks inton
blocks of sizem symbols.

TABLE I
CONCATENATED RS-CC PARAMETERS FORDIFFERENTFIELDS

Field CC gen. poly. RS (n, k, m)

GF (2) (1 0 1, 0 1 1) (63, 51, 6)
GF (3) (2 0 1 1, 2 2 2 1) (59, 47, 4)
GF (22) (1 1 1, 1α 1) (63, 51, 3)
GF (5) (1 1 3, 2 4 1) (55, 45, 3)

A girth-12 LDPC code that has a parity check matrix of
size4395 × 7325 is used for the binary case. The number of
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Fig. 2. Bit error rate of LDPC code and the Shannon limit at the rate0.4

non-zero elements in each column is 3, and that in each row
is equal to 5. The BER performance of this code is0.8dB
away from the Shannon bound at rate 0.4 (−0.22dB). Fig. 2
illustrates the BER performance of the LDPC code for the
binary field over an AWGN channel. In Fig. 2, even at BER
of 10−7 no error floor is observed, which is an indicator of a
good parity check matrix design. For higher order fields, all
non-zero entries in the binary matrix are randomly switched
to non-zero elements of the higher order field, and in this way
we construct all the LDPC parity check matrices in this paper.

Fig. 3 illustrates the performance of the binary and ternary
RS-CC encoded in PNC scenarios for quasi-static Rayleigh
fading channels. As can be seen from Fig. 3, attempting to
decode against all choices of coefficients(a, b) decreases the
frame error rate in a manner equivalent to a gain of approx-
imately 1dB in Eb/N0. Similarly for other fields, decoding
against all choices of coefficients decreases the FER. This
decrease in FER for higher order fields, i.e.,GF (22) and
GF (5), is greater since the number of choices of decoding
coefficients(a, b) increases as the size of the field increases,
according toTheorem1.

In the following, all FER are obtained by attempting to
decode according to all choices of valid coefficients(a, b). As
can be seen from Fig. 4, thanks to the RS-CC error correcting
code, higher order fields outperform the binary case by1 to
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Fig. 3. Frame error rate for PNC configuration with RS-CC encoded packets
over field GF (3) when the relay attempts to decode against all decoding
coefficients, i.e., (1,1) and (1,2) for quasi-static Rayleigh fading channels.
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Fig. 4. The frame error rate for PNC configuration with RS-CC coded
packets for quasi-static Rayleigh fading channels

3dB at FER of10−2, for quasi-static Rayleigh fading channels,
with GF (3) providing the best performance. The performance
of RS-CC coded curves are approximately2.5 to 4dB away
from the lower bounds (19). For the selected RS-CC coding
scheme, the four distinct constellations shown in Fig. 1 for
GF (5) have the same FER performance, hence their curves
overlap in Fig. 4. Also from Fig. 4, theGF (3) curve is the
closest to its correspondence lower bound. As RS-CC coding
results in a significant gap from the lower bounds, we also
consider LDPC codes.

Fig. 5 illustrates the performance of binary and non-binary
LDPC coding in PNC scenarios for quasi-static Rayleigh
fading channels. Attempting to decode against all choices of
coefficients(a, b) decreases the frame error rate by0.2dB in
Eb/N0. Also, with LDPC coding at the end nodes, the FER
performance is found to be only1dB away from the bound
(19). For the selected LDPC coding scheme, the constellation
mappers shown in Fig. 1(a) and (b) have the same performance
in terms of FER and they outperform the constellation mappers
shown in Fig. 1(c) and (d) by about0.1dB in Eb/N0. The
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Fig. 5. The frame error rate for PNC configuration with LDPC coded packets
for quasi-static Rayleigh fading channels

constellation mappers of Fig. 1(c) and (d) themselves appear to
have identical FER performance. Fig. 5 also indicates that the
non-binary fields,GF (3) andGF (22), outperform the binary
case by0.3dB and 0.1dB in Eb/N0, respectively. However,
the binary case has about0.1dB performance gain compared to
the fieldGF (5). It should also be noted that fieldsGF (3) and
GF (22) can only outperform the binary case by attempting to
decode according to all coefficients(a, b), i.e., for a specific
pair of decoding coefficients(a, b), binary coding leads to the
best performance. FieldGF (5), however, performs worse than
the binary case even after attempting to decode against all valid
coefficients.

Fig. 6 illustrates the performance of the binary and non-
binary RS-CC and LDPC codes in PNC scenarios for fast
fading Rayleigh channels. For ease of presentation, we do not
show the performance by decoding against one set of decoding
coefficients in Fig. 6 and only the final FER achieved by
attempting to decode against all valid coefficients are depicted.
As can be seen form Fig. 6, using RS-CC coding, fieldsGF (3)
andGF (22) outperformGF (2) by 0.8dB and0.5dB at FER
of 10−4, but only by taking advantage of decoding against all
possible coefficients(a, b). Using LDPC coding, fieldsGF (3),
GF (22) outperforms the binary case by0.7dB at FER of10−4,
but only by taking advantage of attempting to decode against
all possible coefficients. However, in both coding schemes,
the binary case outperforms theGF (5) case. For fast fading
Rayleigh channels, attempting to decode against all choices of
coefficients(a, b) also significantly decreases the frame error
rate providing a gain equivalent to1 to 2dB in Eb/N0 at FER
10−4.

Finally, Figs. 5, 4, and 6 show that fieldGF (3) has the
best frame error rate performance among all considered fields,
for both quasi-static Rayleigh fading and fast fading Rayleigh
channels, employing either RS-CC or LDPC coding at the end
nodes.
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Fig. 6. The frame error rate for PNC configuration for fast fading Rayleigh
channels

VII. CONCLUSION

In this paper, we have considered a problem of two-way
wireless relaying, for which network coding is employed at
the physical layer. The end nodes pick their symbols from a
field F and transmit channel-coded PSK-modulated signals to
the relay simultaneously. The relay node receives the superim-
posed channel-coded packets and directly decodes a network-
coded combination of the source packets. The channel coding
schemes employed are either a practical concatenation of RS-
CC codes or LDPC codes. Working over non-binary fields
allows the relay to attempt to decode different network-coded
combinations,aSA + bSB over F, wherea, b ∈ F\{0}. We
have shown that for a finite fieldF, there are effectively|F|−1
unique network-coded combinations. We have investigated the
performance of different constellation mappers for the finite
field F in terms of FER. Exploiting the symmetric properties
of the problem and using group theory arguments, we have
shown that the number of constellation mappers with different
performance is much less than the total constellation mappers
|F|!. Therefore, we do not need to consider all different
constellation mappers. We have found a lower bound using
Fano’s inequality that confines the FER performance of decod-
ing the network-coded combinations at the relay. Simulation
results indicate that finite fieldsGF (3), GF (22), andGF (5)
outperform the binary case for quasi-static Rayleigh fading
channels if RS-CC channel coding is performed at the end
nodes. In addition, for Rayleigh fast fading channels, finite
fields GF (3) and GF (22) outperform the fieldGF (2) only
by taking advantage of decoding according to all choices of
a and b. Using LDPC codes for quasi-static Rayleigh fading
and Rayleigh fast fading channels, finite fieldsGF (3), and
GF (22) outperform the binary case only by taking advantage
of attempting to decode multiple network-coded combinations.
Finally, simulation results show that the finite fieldGF (3) has
the best probability of error performance among all considered
fields.

As future work, it is of interest to consider non-binary
constellations for larger systems in which more than two end

nodes are communicating.
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