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Abstract— In this paper we consider resource allocation for
an OFDMA-based cognitive radio point-to-multipoint network
with fixed users. Specifically, we assume that secondary users
are allowed to transmit on any subchannel provided that the
interference that is created to any primary users is below a
critical threshold. We focus on the downlink.

We formulate the joint subchannel, power and rate allocation
problem in the context of finite queue backlogs with a total power
constraint at the base station. Thus, users with small backlogs
are only allocated sufficient resources to support their backlogs
while users with large backlogs share the remaining resources in
a fair and efficient fashion.

Specifically, we formulate the problem as a max-min problem
that is queue-aware, i.e., on a frame basis, we maximize the
smallest rate of any user whose backlog cannot be fully transmit-
ted. While the problem is a large non-linear integer program, we
propose an iterative method that can solve it exactly as a sequence
of linear integer programs, which provides a benchmark against
which to compare fast heuristics.

We consider two classes of heuristics. The first is an adaptation
of a class of multi-step heuristics that decouples the power and
rate allocation problem from the subchannel allocation and is
commonly found in the literature. To make this class of heuristics
more efficient we propose an additional (final) step. The second is
a novel approach, called selective greedy, that does not perform
any decoupling. We find that while the multi-step heuristics does
well in the non-cognitive setting, this is not always the case in
the cognitive setting and the second heuristic shows significant
improvement at reduced complexity compared to the multi-step
approach.

Finally, we also study the influence of system parameters such
as number of primary users and critical interference threshold
on secondary network performance and provide some valuable
insights on the operation of such systems.

Index Terms— Cognitive radio, spectrum access, resource al-
location, OFDMA.

I. I NTRODUCTION

In part due to the fact that spectrum utilization in many
bands is very low [1], there has recently been a large research
effort in the study of secondary spectrum radio systems [3]-[7].
These systems are often called cognitive due to the sensing and
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advanced decision making abilities required to take advantage
of licensed spectrum in a non-disruptive manner to primary
users.

In this paper, we consider a downlink resource allocation
(RA) problem for a point-to-multipoint cognitive wirelessnet-
work. Specifically, we consider an OFDMA-based cognitive
network with one base station and multiple secondary users
that communicate with the base station in a single hop.

The OFDMA system consists of orthogonal subchannels,
where a subchannel can be thought of as a contiguous group
of subcarriers, though this is not explicitly assumed. The
secondary system may transmit on any of the orthogonal
subchannels provided that the interference created to a primary
user, should there be one operating on a subchannel, is below
a critical thresholdω chosen to guarantee that no harmful
interference is created to the primary user.

We assume that perfect distributed sensing is performed
by the base station and secondary users at the beginning of
every frame. As a result, for each subchannel, a transmit
power constraint is determined at the secondary base station
that ensures that no harmful interference is created to any
primary user by the secondary base station transmitting on that
subchannel. These constraints are valid for the duration ofthe
frame. We denote this collection of per subchannel transmit
power constraints as vectorT . In this paper we focus on
studying resource allocation methods in this cognitive setting
where the resources available for the secondary network evolve
with time based on the activities of the primary users.

More precisely, we are interested in joint subchannel, rate
and power allocation for the downlink of the secondary net-
work. As opposed to some existing work on OFDMA resource
allocation where the allocation is performed over a single time
slot of a frame and then repeated for each time slot of the
frame and infinite queue backlogs are usually assumed [11]-
[15], we consider a general resource allocation over multiple
time slots in a frame with finite queue backlog for each user
to avoid over-allocation of radio resources.

Specifically, we assume that time is slotted and divided
into frames ofL time slots. The resource allocation (RA)
problem is computed at the beginning of each frame and the
corresponding resource allocation map is sent to the users
so that they can tune their radio parameters to the right
subchannels on a time-slot basis. The computation is done
based on the channel gains measured by each user and reported
to the base station, the power constraints given by vectorT
that depend on the activity of the primary network as well
as the current queue backlogs. Hence the RA problem is
clearly dynamic since from one frame to the next, new gains,
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Fig. 1. Resource allocation timeline.

new power constraints and new packets arrivals will be taken
into account. The evolution of user queue backlogs depends
on traffic characteristics (i.e., the arrivals of packets) and on
the departure of packets which depend on the available radio
resources and the resource allocation strategy. We assume that
the frame lengthL is small enough that the channel gains and
the vectorT remain unchanged over a frame and that the new
arrivals of data packets at the base station can only be taken
into account at the beginning of a frame.

Fig. 1 shows the timeline of the process including the under-
lying signalling protocol. Specifically prior to the beginning
of framet, each useri transmits to the base station its sensing
information vectormi(t) as well as its latest channel gain
vectorgi(t) which was obtained based on pilot symbols. Based
on this information and the current backlog for each user,
the base station performs resource allocation for framet. The
resource allocation map is then sent to the users and is valid
for the remainder of the frame. Any new packet arrivals at
the base station must await the beginning of the next frame
before they can be scheduled. Thus, if useri has a queue
backlogqi(t) at the base station at the beginning of framet,
is allocatedxi(t) packets during framet (i.e., the base station
will send xi(t) packets toi) and ai(t) new packets arrive at
the base station for useri during framet, then the new backlog
at the beginning of framet + 1 is

qi(t + 1) = max{qi(t) − xi(t), 0} + ai(t). (1)

The time to compute the RA solution should be significantly
smaller than the duration of a frame which imposes stringent
time constraints on the RA algorithm. Note that the constraint
on time is critical in that the secondary network has to respond
quickly to changes in primary subchannel usage to protect the
primary users. This makes this problem fundamentally differ-
ent from a pure OFDMA RA where insufficient responsiveness
merely results in a suboptimal allocation.

To help achieve this responsiveness, instead of optimizing
the resource allocation over allL time slots of the frame,
an allocation over1 ≤ F ≤ L time slots is computed and
then repeatedk := L/F (F is assumed to divideL) times in
each frame. Note that allocation overF = 1 time slot is less
computationally heavy than over multiple time slots but the
caseF > 1 captures a practical implementation aspect since
it not only improves the granularity of the resource sharing, but
is necessary when the number of subchannels is smaller than
the number of users or most subchannels are used by primary
users with very strict power constraints on the secondary user.

The contributions of our paper are as follows:

• We formulate a resource allocation problem with finite
queue backlogs over multiple time slots for the downlink
of an OFDMA-based cognitive radio network. This is a
non-linear problem with integer variables and thus very
difficult to solve in general. We propose an iterative
procedure to solve it exactly using a commercial integer
program solver. Compared to much of the OFDMA RA
literature where the optimal solution is rarely computed
for large networks, we show that the problem can be
solved exactly by a commercial solver for relatively large
systems, clearly at the expense of significant computation
time. This is important since it provides the optimal per-
formance (i.e., a benchmark) against which the heuristics
may be evaluated.

• On the modeling front, we have introduced the vector
T that allows us to decouple the RA problem from
distributed sensing and allow for interference control by
the means of a critical interference threshold parameter
ω.

• For online implementation, i.e., to compute the allocation
in a time significantly lower than the duration of a
frame, we look at two types of heuristics. The first is an
adaptation of a class of decoupling heuristics common in
the literature. The second is a novel multi-option greedy
heuristic called selective greedy in the following. We
find that the first heuristic, while it performs well in
the non-cognitive setting, is clearly outperformed in the
cognitive setting by the lower complexity selective greedy
approach.

• On the engineering front, we find that taking queues into
consideration has the potential to significantly increase
the rate offered to highly backlogged users by not wasting
resources on lightly-loaded users. Our study allows us
to quantify this increase. We also quantify the perfor-
mance improvement by performing resource allocation
over multiple time slots and find it to be significant even
for small values ofF . Finally, we study the effect of
the critical interference thresholdω to protect primary
users and find that most of the gain can be achieved at
surprisinglyreasonable values.

The remainder of this paper is organized as follows. In Section
II we review some related work while in Section III the system
model is described and the resource allocation problem is
formulated. In Section IV an exact iterative solution approach
is presented and in Section V we describe the heuristics.
Complexity analysis is performed in Section VI, numerical
results are presented in Section VII and conclusions are stated
in Section VIII.

II. RELATED WORK

A good survey of different spectrum access models and
regulatory policies can be found in [9] while [3] considers
secondary spectrum access from an information theoretic point
of view.

In [8] the problem of optimal channel sensing and access
for opportunistic spectrum access is formulated as a partially-
observable Markov decision process. In [5], the joint admis-
sion control and power allocation problem for CDMA-based
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spectrum sharing under the spectrum underlay paradigm is
considered.

Closely related to this work is [6] where optimal power al-
location for a single user under continuous rate assumptionfor
an OFDM-based cognitive radio is handled. Our current paper
considers a more general multi-user scenario with max-min
rate sharing among secondary users for a downlink OFDMA-
based cognitive radio network with discrete subcarrier rate
assignments.

In [7], an efficient dynamic frequency hopping strategy
for multi-cell IEEE 802.22 is proposed and evaluated. The
proposed strategy provides a conflict-free channel allocation
for 802.22-based multi-cell cognitive radio networks. In addi-
tion, it shows how out-of-band spectrum sensing can be done
such that interruption of data transmission required by in-band
spectrum sensing can be avoided. In [19], the limitation of the
current MAC of the IEEE 802.22 standard with the hidden
incumbent problem is described and solved. A distributed
sensing approach is proposed in [4] and a sensing approach
based on the cyclostationary properties of primary signals
is presented in [18]. In [20], the performance gains due to
spectrum agility, where secondary users can track available
channels, are compared to the case with no agility where
secondary users keep sensing and accessing a fixed channel.
In [10], a physical layer implementation for an OFDMA-
based cognitive radio was proposed and its performance is
investigated.

Resource allocation in traditional OFDMA-based wireless
networks has been an active research topic. For the downlink
case, there are several important resource allocation problems.
The first one is to minimize the total transmission power while
providing certain required transmission rates for different users
[11], [12]. The second problem optimizes a given function of
the transmission rates of the different users under a total power
constraint at the base station [13]-[17]. These problems are
referred to respectively as margin adaptive and rate adaptive
in the literature [13]. In [11], the authors propose an iterative
algorithm to solve the margin adaptive problem that may not
be suitable for highly dynamic wireless systems requiring
fast solutions. In contrast, [12] proposes fast but suboptimal
algorithms where the number of subcarriers allocated to each
user is first calculated and then the subcarrier allocation for
all the users is performed.

The OFDMA resource allocation problem investigated in
this paper is fundamentally different from existing work in
the literature in the following respects. First, except for[6]
which is a single user, continuous rate allocation problem,
there are extra power constraints given by the vectorT as a
result of distributed spectrum sensing which are not present in
the existing literature. This new set of power constraints limits
the transmit power on each allocated subchannel and renders
many techniques unapplicable.

For example, in [12] and [21] a multi-step allocation ap-
proach is proposed that first computes the number of channels
that should be allocated to each user. This computation is
based on the average channel gain of each user and implicitly
assumes that other than for differing subchannel gains, all
subchannels are equally good, while this is clearly not the

case in the cognitive setting as some subchannels may have
stringent transmit power constraints while others are freeof
any primary user.

In Section V-A, we will adapt a common multi-step ap-
proach (see for example [14]) to the problem at hand and find
by numerical computations that the adapted method can have
poor performance in a cognitive setting, thus motivating the
study of new methods.

In addition, we explicitly consider buffer dynamics due
to finite bursty traffic patterns. While buffer dynamics have
been considered before (e.g., [23]) we believe this to be the
first setting in which max-min fairness and buffer dynamics
are jointly considered. By considering buffer dynamics, the
proposed algorithms in this paper can avoid allocating too
much radio resources to lightly loaded queues as done in
much existing work. In addition, we allocate resources over
multiple time slots which improves the granularity of the radio
resources allocation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an OFDMA downlink resource allocation
problem with M subchannels,N secondary users and one
secondary base station (referred to as the base station in the
following). Any one ofz̄ transmissions modes (corresponding
to a particular choice of coding and modulation schemes) can
be used on any subchannel where schemez results in rate
Rz on a subchannel, i.e.,Rz packets can be transmitted in
one time slot over the subchannel. Without loss of generality,
0 < R1 < R2 < . . . < Rz̄ and we denoteR1 as the lowest
rate transmission mode. Finally, to employ schemez on a
subchannel requires that the Signal to Noise Ratio (SNR) on
the subchannel be at least above a thresholdγz to provide
some desired block error rate.

The base station has a maximum transmit power budget of
P̄max in every time slot and in the absence of primary users,
can allocate any portionPj of this power budget to subchannel
j, provided

∑

j Pj ≤ P̄max.
Due to distributed sensing, a vectorT of power constraints

P̄j on each subchannel is available at the base station at the
beginning of a framet (for ease of notation we omit the index
t in the following), i.e., the base station must further limit
Pj ≤ P̄j to protect primary users whereT = {P̄j} (recall that
since we focus on the downlink case only the base station can
transmit).P̄j is a function, among other things, of the critical
interference thresholdω. In the case that there is no primary
user on subchannelj, thenP̄j = ∞ as there is no primary to
protect, though the sum power constraint will provide a limit
to Pj .

We let gij denote the channel gain from the base station
to secondary useri over subchannelj at the beginning of
the frame under consideration, andfij(z) be the minimum
power required to transmit from the base station to useri on
subchannelj using transmission modez. fij(z) is a function
of the corresponding channel gaingij , the SNR threshold
γz, the noise power at the receiver and the interference from
primary users, if any, on subchannelj.

We assume that packets to be transmitted are buffered at
the base station and we denote byqi the number of packets



4

waiting for transmission to secondary useri at the beginning of
the frame. Given the backlog information, whenever possible
the radio resources should be allocated to each user in such
a way that the corresponding allocated aggregate (over all
subchannels) rate is just sufficient to support the current
backlog. A user that receives enough resources in the current
frame to take care of its backlog (i.e., the base station can
transmit all the queued packets of this user in the current
frame) is said to be satisfied while one that is not is said
to be highly backlogged.

We are interested in finding the joint subchannel, rate, and
power allocation for allN secondary users which maximizes
the minimum aggregated rate among highly backlogged sec-
ondary users and hence provide some form of fairness among
these users. While there many different notions of fairness
that can be used, here max-min resource allocation is selected
because in a system with fixed users, no user should be treated
differently based on its relative position to the base station.
Recall that the frame length isL and for efficiency reasons the
resource allocation is performed over1 ≤ F ≤ L consecutive
time slots and repeatedk = L/F times to fill the frame.

A resource allocation is then specified by the set of binary
variables

S = {sijzf ∈ {0, 1}| i = 1, . . . , N ; j = 1, . . . ,M ;

z = 1, . . . , z̄; f = 1, . . . , F}, (2)

wheresijzf = 1 iff subchannelj is allocated to useri with rate
Rz in time slotf of the block. The setS ⊂ {0, 1}N×M×z̄×F

of feasible resource allocations is given by thoseS ∈ S for
which

N
∑

i=1

z̄
∑

z=1

sijzf ≤ 1, ∀j, f (3)

fij(z)sijzf ≤ P̄j , ∀i, j, z, f (4)
N

∑

i=1

M
∑

j=1

z̄
∑

z=1

fij(z)sijzf ≤ P̄max, ∀f (5)

Eq. (3) implies that a given subchannel and time slot cannot
be allocated to more than one pair(i, z). Eq. (4) ensures that
the choice of coding and modulation schemes does not require
a transmission power that would harm a primary user, if any.
Finally, eq. (5) is the per time slot constraint on the total
transmit power of the base station.

Given the set of feasible resource allocationsS, we wish to
determine an allocationS ∈ S which optimizes the utility of
the secondary network. In the absence of queue information,
or equivalently if all users are infinitely backlogged (i.e., no
users can be satisfied in a frame), the utility that we consider
in this paper is max-min which provides fairness in the sense
that this optimizes the smallest rate of any user. Specifically,
given an allocationS, secondary useri is provided over the
frame with the rate

xi(S) := (L/F )

M
∑

j=1

z̄
∑

z=1

F
∑

f=1

Rzsijzf (6)

over the duration of the frame and the optimal network utility
under the assumption of infinite backlogs is then

λ∞
opt = max

S∈S
min

i
xi(S). (7)

To formulate the problem with queue backlogs (so as to
avoid over-allocating resources) is somewhat less straightfor-
ward. Specifically, consider a useri who has the smallest back-
log qi = a at the beginning of the frame under consideration.
Then it would seem that a resource allocation that does not
result in an over-allocated ratexi > a would limit the (max-
min) network utility to at mostqi = a which is not desirable.
We would like to satisfy as many users with small backlogs
as possible and make sure that those with large backlogs
receive a fair share of the resources. We aim at allocating
each highly backlogged user a rate which is at least as much
as any satisfied users and is max-min over all unsatisfied ones.
Hence, we define a max-min utility over only the unsatisfied
users. We first define the set

Ω(S) := {i|xi(S) ≥ qi} (8)

of users for which the allocationS satisfies their queue and
Ω(S) is the complement ofΩ(S) and thus the set of users that
have not had their queues satisfied. The optimal utility of the
secondary network is then defined by

λopt := max
S∈S

min
i∈Ω(S)

xi(S), (9)

where we follow the usual mathematical convention that the
min over an empty set is∞. Thus, an optimal resource allo-
cation will satisfy each user’s queue if possible. If not, over-
providing a satisfied user’s queue will not provide additional
utility.

The problem formulated in (9) and (3) – (5) is avery
large non-linear problem with integer variables due to the
dependency ofΩ in S. It is very general and captures sev-
eral important resource allocation problems. For a traditional
OFDMA resource allocation problem, constraints (4) should
be removed while the case for which all users are infinitely
backlogged is obtained by settingqi = ∞ since then (9)
degenerates to (7) as no user has its queue satisfied.

Finally, while the optimization given by (7) and (3) – (5)
can be formulated as a linear integer program and thus solved
by an IP solver, this is not the case for the optimization
given by (9) and (3) – (5) as the set of users over which the
minimization is performed depends on the choice of allocation
S ∈ S.

Clearly, one cannot hope to solve problem (9) and (3) – (5)
exactly and fast enough (i.e., at the beginning of each frame).
However, it is important to obtain exact (benchmark) results
for practical scenarios (i.e., of reasonable size) so that one can
i) better understand the importance of some of the parameters;
ii) validate the (fast) heuristics that will be developed. Thus
in Section IV, an iterative solution to numerically solve the
optimization problem is presented since no commercial solver
can directly solve a non-linear integer program.
Note: It may be tempting to try to solve these two problems by
selectingF = 1 and relaxing thesijzf to real numbers in the
interval [0, 1]. While the corresponding relaxed solution could



5

be used to create a schedule, this schedule is not guaranteed
to meet the required power constraints in each time slot, but
only on average over the entire schedule. Thus, there is no
assurance of protecting the primary users in each time slot.
Moreover, in the case of the problem given by (9) and (3) –
(5), this does not change the non-linear nature of the problem
due to the utility in (9).

IV. I TERATIVE SOLUTION USING AN INTEGERPROGRAM

SOLVER

In this section, we show how the problem given by (9) and
(3) – (5) can be solved exactly by solving a sequence of linear
IP problems.

We start by considering a modification to the objective
function in (9) as

λ̄opt := max
S∈S

min
i

[xi(S) + µ(xi(S), qi)] , (10)

whereµ(x, q) is a function which is defined as

µ(x, q) :=

{

0, if x < q
Λ, if x ≥ q

(11)

whereΛ is a sufficiently large number.

This transformation can be interpreted as follows. For a
secondary useri such thatxi(S) ≥ qi, µ(xi(S), qi) is large
enough that this secondary user will not be a bottleneck for
the min operation. Therefore, themin in the objective function
is only applied to secondary users with queue backlogs that
are not met and the optimal resource allocation for (9) and (3)
– (5) is the same as that for (10) and (3) – (5).

This transformation allows us to remove the dependency in
S of the set over which the minimum is taken. However the
problem is still not suitable for a linear IP solver. We now
discuss how to obtain the optimal solution from an iterative
procedure that invokes a linear integer program solver. This
procedure works by solving a modified problem where each
user is required to have either a rateλnew or its queue satisfied.
λnew is then iteratively increased until it reaches a maximum
that we denoteλ∗.

SolveCognitiveRA

Init : λnew = 0
: λold = −1

1) WHILE λnew 6= λold

a) Use a linear IP solver to find the optimal solution

of

λ∗ = max
S={sijzf}

min
i

{xi(S) + µ(λnew, qi)} (12)

subject to
N

∑

i=1

z̄
∑

z=1

sijzf ≤ 1, ∀j, f (13)

fij(z)sijzf ≤ P̄j , ∀i, j, z, f (14)
N

∑

i=1

M
∑

j=1

z̄
∑

z=1

fij(z)sijzf ≤ P̄max, ∀f (15)

M
∑

j=1

z̄
∑

z=1

F
∑

f=1

Rzsijzf ≥ qi, ∀i s.t. qi ≤ λnew

(16)

b) Update:λold = λnew

c) Update:λnew = λ∗

END WHILE
We now show that this iterative procedure will find the

optimal solution for our resource allocation problem.
Proposition 1: The algorithmSolveCognitiveRA con-

verges to an optimal solution of the resource allocation prob-
lem formulated in (10) and (3) – (5).

Proof: Sinceµ(λ, q) is non-decreasing inλ, at every iter-
ation,λ∗, the optimal value of the objective, is non-decreasing.
Since the number of subchannels and the maximum rate on
each subchannel are both finite, the algorithm must converge
to some valueλ′.

Now, we show that the converged valueλ′ is an optimal
solution for the problem formulated in (9) and (3) – (5).

Let λopt be the optimal objective value of (9) and (3) – (5).
Also, suppose that the algorithm converges toλ′ < λopt. This
means that substituting eitherλnew = λ

′

or λnew = λopt into
(12)–(16) yields a feasible solution. However, sinceλopt > λ′

is the optimal solution, there is an allocation such that any
secondary useri with qi ≤ λ′ will receive a rate at least
equal to its queue backlog while other secondary users (i.e.,
those withqi > λ′) can be supported at rates strictly larger
thanλ′. This is a contradiction because the solution in the last
iteration of the algorithm provides rates of at mostλ′ for a
secondary useri with qi > λ′. Hence, the iterative algorithm
must converge to the optimal solution.

V. HEURISTICS

In this section, we consider two heuristics for the resource
allocation problem. The first is an adaptation of the multi-step
decoupling heuristic of [14]. While the approach works well
in the absence of primary users, the adaptation to the cognitive
case does not work well in the presence of a large number of
primary users in spite of adding an additional step. Thus, we
also consider a second heuristic which does not decouple the
allocation in sub-problems. This heuristic is called selective
greedy.

A. Multi-Step Approach

The multi-step heuristic has four steps. The first three are
adapted from the three proposed in [14] and the last one is



6

novel and is called the perturbation step in the following. The
details can be found in [22] and we restrict the description in
this paper to the broad concepts.

Specifically, in Step 1, we perform power allocation over
the subchannels by sharinḡPmax as uniformly as possible
considering the power constraints in vectorT (i.e., there is no
point allocating more than̄Pj to subchannelj). This results
in a subchannel being allocated either a powerPj = P̄j or the
same power as any subchannel which is not at its limitP̄j .
This power allocation is used in each of theF time slots.

With the power allocation of Step 1 now fixed, we perform
subchannel-time slot pair allocation in Step 2. Specifically,
subchannel-time slot pairs are allocated to the secondary users
sequentially where in each allocation iteration, a secondary
user with the smallest rate is allocated one available pair
achieving the highest rate subject to the power allocation in
Step 1. Ties in the subchannel-time slot pairs are broken in
favor of a pair with the highest channel gain.

When a secondary useri has received enough resources to
satisfy its queue, i.e., it has received an allocation of at leastqi

packets, it is removed from the list of non-satisfied secondary
users, and thus not allocated any more resources. If the “best”
subchannel-time slot pair in any allocation iteration doesnot
improve the rate of the secondary user under consideration,
then we cannot improve the utility function and we allocate all
remaining available pairs to secondary users whose queues are
not yet fully satisfied in a round robin fashion in preparation
for the next step. Finally, the power allocated to a subchannel
in Step 1 is usually larger than the power required to deliver
the assigned rate once it has been allocated to a secondary user.
Therefore, after each subchannel-time slot allocation iteration,
the residual power on the selected pair is calculated and
allocated to the set of remaining subchannels in the time slot
as evenly as possible considering the power limits due toT .

Given the subchannel allocation solution from Step 2, there
is a potential max-min rate improvement by redoing rate and
power allocation. This is done in Step 3. Specifically, we se-
quentially increment the transmission mode of the most power-
efficient subchannel-time slot pair that would not violate the
primary protection constraint̄Pj for the current minimum
rate secondary user in each rate update operation. This is
an adapted version of the multi-user bit-loading algorithm.
In addition, as soon as the rate of a secondary user becomes
greater than or equal to its queue backlog, the secondary user is
removed from the list of active secondaries for all subsequent
rate updates.

At this point, the allocation is feasible and if we stop the
heuristic here, we denote it by Step 3.

When Step 3 terminates, the total consumed power in any
of the F time slots may be still well below the maximum
power budget of the base station (i.e.,P < P̄max). To exploit
the remaining base station power, in Step 4 we perform
limited perturbation on the subchannel allocation to improve
the minimum rate among all secondaries whose queue is not
satisfied. Specifically, for each bottleneck secondary user(i.e.,
a secondary user which among all those whose queue is
not satisfied, has a minimum rate), we attempt to take one
subchannel-time slot pair from a non-bottleneck secondary

user, allocate it to the bottleneck secondary user and use
single-user bit-loading to calculate the rates for both bottleneck
and granting secondaries. The subchannel-time slot reassign-
ment is only performed if the rate of the bottleneck secondary
user is improved while not reducing the rate of the granting
secondary user below or at the former rate of the bottleneck
secondary.

Finally, if the perturbation at the end of Step 4 is successful
in increasing the rate ofall the bottleneck secondaries from
Step 3, we can proceed to a new round of rate and power
allocation (i.e., a new Step 3) followed by perturbation (i.e., a
new Step 4). This may be repeated a fixed number of times, or
until perturbation fails to increase the rate of all the bottleneck
secondaries, though in practice, beyond two iterations the
perturbation step was never observed to produce additional
gain.

B. Selective Greedy Approach

A major drawback of the multi-step approach is that due to
the decoupling of the subchannel-time slot allocation fromrate
and power allocation, the overall allocation may be far from
optimal while the final perturbation step has limited ability to
rectify the allocation.

The broad structure of the selective greedy approach is
that at every iteration we attempt to increase a lowest rate
secondary user whose queue is not satisfied and do so in the
most efficient manner where efficiency is based on the ratio
of power increase to rate increase. Three potential methodsof
increasing a user’s rate are computed and the most efficient
as measured by this ratio is selected. In each of the three
methods (the methods are described below), if it is not feasible
to increase the user’s rate, then the power cost is said to be
infinite which effectively eliminates the option.

The first method, calledNewChannel, is to simply assign
to the useri under consideration a subchannel-time slot pair
among all the free subchannel-time slot pairs with the lowest
rate modulation schemeR1 (provided this does not violate the
primary protection constraint̄Pj) at the lowest power cost.
Hence the input to this module is the user indexi and the
outputs are the power increase∆P1, the rate increase∆R1

and a listRA1 comprising the (single) assigned subchannel-
time slot pair(f∗, j∗).

Note that∆P1 is a vector of lengthF and(∆P1)ℓ denotes
its ℓth component.

NewChannel(useri)

Init: Let ∆P1 = 0 ∈ R
F .

Let δP(f,j) = ∞ ∀f, j

1) FOR each yet unallocated subchannel-time slot pair
(f, j)

a) IF lowest rate on(f, j) for useri does not violate
P̄j

THEN δP(f,j) = power for lowest rate on sub-
channelj for useri.

2) END FOR
3) Let (f∗, j∗) = arg min δ(f,j).
4) Let (∆P1)f∗ = δP(f∗,j∗), ∆R1 = R1.
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5) Let RA1 = {(f∗, j∗)}.

The second method, calledIncrementChannel, is to
increment the rate of an already allocated subchannel-time
slot pair to the secondary useri under consideration, again
provided this does not violate the primary protection constraint
P̄j . For each subchannel-time slot pair already allocated to
i, we compute the lowest power necessary to increase the
rate to the next lowest value, and among all these potential
solutions we select the one that has the best efficiency (as
defined above). Hence the input to this module is the user
index i and the outputs are the power increase∆P2, the
rate increase∆R2, and a listRA2 comprising the (single)
selected subchannel-time slot pair(f∗, j∗) whose rate is to be
incremented. Note that a division by 0 in line 3 is treated as
∞.

IncrementChannel(useri)
Init: Let ∆P2 = 0 ∈ R

F .
Let δP(f,j) = ∞ ∀f, j
Let δR(f,j) = 0 ∀f, j

1) FOR each allocated subchannel-time slot pair(f, j) to
useri

a) IF rate on(f, j) is less thanRz̄, consider the lowest
non-zero rate incrementδR. It requires a power
increase ofδP . If this power increase does not
violate P̄j

THEN (δP(f,j), δR(f,j)) = (δP, δR)

2) END FOR
3) Let (f∗, j∗) = arg min δP(f,j)/δR(f,j).
4) Let (∆P2)f∗ = δP(f∗,j∗), ∆R2 = δR(f∗,j∗).
5) Let RA2 = {(f∗, j∗)}.

The third method, calledSwapChannel, is for the sec-
ondary useri under consideration to take a subchannel already
allocated to another user, sayi′, and to use the lowest
modulation scheme on this subchannel. Since the secondary
user i′ from which the subchannel was taken has now had
its rate decreased, we must compensate by increasing the
rate on its remaining assigned subchannels by assigning more
power. Hence the input to this module is the useri and the
outputs are the power increase∆P3, the rate increase∆R3

and a listRA3 comprising multiple subchannel-time slot pairs,
where the first pair is the one donated to useri (its rate
being R1), and the other pairs are those whose rate must be
incremented by the smallest amount compared to their current
setting to compensate the donating useri′. A subchannel-time
slot pair that appears twice in the increment list sees its rate
incremented twice.

Here ∆P(f,j) is a vector of lengthF that tracks the
power required by the method in each of theF time slots if
subchannel-time slot pair(f, j) is given to useri. The notation
(∆P(f,j))ℓ denotes theℓth component of the vector of length
F .

SwapChannel(useri)
Init: Let ∆P(f,j) = ∞ ∈ R

F ∀f, j
Let RA(f, j) be empty lists of allocations for allf, j.

1) Save current resource allocation in variableCRA.

2) FOR each allocated subchannel-time slot pair(f, j) to
a useri′ 6= i

a) Restore resource allocationCRA.
b) Let r be the allocated rate of useri′

c) IF lowest rate on(f, j) for useri violatesP̄j then
set∆P(f,j) = ∞ ∈ R

F .
d) ELSE ∆P(f,j) = change in power (in each time

slot) due to reassignment of(f, j) to useri.
e) WHILE rate of user i′ is less than r and

Σℓ(∆P(f,j))ℓ < ∞

i) (∆P,∆Rinc, RAinc) =
IncrementChannel(i′)

ii) Update rate of useri′ and resource allocation
based onRAinc.

iii) ∆P(f,j) = ∆P(f,j) + ∆P

iv) RA(f, j) = RA(f, j) + RAinc.

f) END WHILE

3) END FOR
4) Let (f∗, j∗) = arg min Σℓ(∆P(f,j))ℓ.
5) Let ∆P3 = ∆P(f∗,j∗), ∆R3 = R1.
6) Let RA3 = {(f∗, j∗)} + RA(f∗, j∗).

The iterative selective greedy algorithm which sequentially
increments the user’s rates is as follows. In a given iteration,
the method with the highest efficiency that does not violate
the per time slotsum power constraint is selected. It stops
when no finite ratios are found.

SelectiveGreedyRA(F )

Init: Let P = 0 ∈ R
F .

Let ∆Pk ∈ R
F , k = 1, 2, 3.

Let ∆Rk ∈ R, k = 1, 2, 3.
Let RA1, RA2 and RA3 be the output lists of the
three methods.
Let bContinue = true.

1) REPEAT

a) Find useri with unsatisfied queue and lowest rate.
b) Let (∆P1,∆R1, RA1) = NewChannel(i).
c) Let (∆P2,∆R2, RA2) =

IncrementChannel(i).
d) Let (∆P3,∆R3, RA3) = SwapChannel(i).
e) Let ξk =

∑

ℓ(∆Pk)ℓ/∆Rk, for k = 1, 2, 3.
f) Let T be the set ofk such that a change in

power ∆Pk would not violate the per time-slot
sum power constraints.

g) Let k∗ = arg mink∈T ξk.
h) IF ξk∗ < ∞, then apply allocations in listRAk∗ .
i) ELSE bContinue = false.

2) WHILE bContinue = true.

VI. COMPLEXITY

We now analyze the complexity of the heuristics in terms
of the number of operations overF time slots. The analysis
does not depend on the particular choice of queue lengths
other than the assumption that there is always at least one
user whose queue cannot be satisfied.



8

A. Multi-step Approach

In Step 1, we have to repeatedly search for the smallestP̄j

among all subchannels that are not yet allocated power atP̄j .
Since there areM subchannels, this requires at mostO(M2)
operations

In Step 2, before each subchannel allocation, the minimum-
rate secondary user to which the allocation is performed must
be found. This requiresO(N) operations.

Given the selected secondary user, the subchannel achieving
maximum rate with least power will be chosen for allocation.
In fact, in thek-th allocation iteration, there remainsF ×M −
k+1 subchannels-time slot pairs. For each of these remaining
pairs, at most̄z comparisons are needed to find the maximum
achievable rate. The total number of comparisons needed for
this operation is

FM
∑

k=1

(FM − k + 1)z̄ = O(z̄F 2M2). (17)

In the worst case whereFM − k + 1 available subchannels
achieve the same rate,FM − k subchannel gain comparisons
are needed to find the one with least power. Therefore, the
total number of operations in the worst case is

FM
∑

k=1

(FM − k + 1)(FM − k) = O(F 3M3) (18)

Now, we analyze the complexity due to the redistribution of
residual power in each subchannel allocation iteration. For the
k-th allocation from a time slot, there are at mostM − k
subchannels to receive residual power. In the worst case, the
number of operations to perform is(M − k)(M − k − 1)/2.
Therefore, in the worst case, the number of operations needed
for the residual power allocation step is

F

M−1
∑

k=1

(M − k)(M − k − 1)

2
≤ O(FM3). (19)

Since in practicēz << M , the complexity for this step is
O(F 3M3).

Let Ci be the set of channel-time slot pairs allocated to
user i after Step 2. In Step 3, for secondary useri there are
at mostz̄ |Ci| rate updates for all the allocated subchannels.
In each rate update for secondary useri, there are at most
|Ci| feasible subchannels to choose. In the worst case, the
number of comparisons needed to find the most power-efficient
subchannel is|Ci| − 1. Therefore, the maximum number of
comparisons needed in the worst case for secondary useri
is z̄ |Ci| (|Ci| − 1). Considering all the secondary users, the
worst-case complexity occurs when only one secondary user
is allocated all the subchannels. In this case, the total number
of comparisons required in Step 3 is

N
∑

i=1

z̄ |Ci| (|Ci| − 1) = O(z̄F 2M2). (20)

We now analyze the complexity of one subchannel per-
turbation per bottleneck secondary user in Step 4. Consider
one subchannel reassignment from secondaryi to secondary
ī. There are|Ci| possible ways to choose one subchannel from

secondaryi. For each possible subchannel reassignment, we
have to redo rate and power allocation for secondaryī which
requires up tōz |Ci| (|Ci|−1) operations and̄z |Cī| (|Cī|−1)
for secondarȳi. The worst case complexity in the number of
operations is

z̄ |Ci| {|Ci| (|Ci| − 1) + |Cī| (|Cī| − 1)} . (21)

Let B be the set of bottleneck secondary users andB̄ be the
complement ofB. In the worst case we have to try all possible
secondary users in set̄B to find one granting secondary for
each bottleneck secondarȳi ∈ B. Hence, the worst case
complexity order for one iteration of perturbations in Step4
in terms of operations is

∑

j∈B

∑

ī∈B̄

z̄ |Ci| {|Ci| (|Ci| − 1) + |Cī| (|Cī| − 1)}

≤ 2z̄F 3M3N = O(z̄F 3M3N). (22)

We therefore find that the complexity of Steps 1-3 is
O(F 3M3) while that of Steps 1-4 is dominated by the last step
with a per iteration complexity ofO(z̄F 3M3N). It should be
noted that in practice the perturbation step was never applied
more than two times before it was unable to provide rate
improvement.

B. Selective Greedy Approach

We now analyze the complexity of the selective greedy
scheme in terms of the number of operations required.

First, we observe that in every loop that
CognitiveIncrementalRA executes, one user has
its rate incremented. Thus,CognitiveIncrementalRA
may loop no more than̄zFM times.

Second, in each loop, a lowest rate user must be found and
3 possible incremental allocations methods are evaluated.A
lowest rate user can be found inO(N) operations.

The first method attempts to assign an unallocated
subchannel-time slot to the user. Since there are at mostF×M
such subchannels, this method has a worst case complexity
O(FM).

The second method attempts to increment the rate of an
already assigned subchannel to the user. Again, since there
are at mostF ×M such subchannels, this method has a worst
case complexityO(FM).

The third method attempts to re-assign a subchannel from
another user to the user under consideration and then incre-
ment the rates on the donating user’s allocated subchannel-
time slot pairs by running the second method as needed. There
are at mostF ×M time slot-channel pairs that can be donated
and the number of times that the second method is run is at
most Rz̄/R1. If the rates are taken to be sequential integers
as in the next section, thenRz̄/R1 = z̄ and the complexity of
the third method is at mostO(z̄F 2M2).

Combining these, and assuming thatz̄F 2M2 >> N we
find that the complexity of the entire scheme is at most
O(z̄2F 3M3).

This compares favorably with the multi-step scheme which
has a complexity ofO(z̄F 3M3N) since in practicēz << N .
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Fig. 2. Sample placement of 20 primary and 20 secondary users.

VII. N UMERICAL RESULTS

A. Input Generation

To evaluate the performance of the proposed heuristics, we
now describe how we generate realistic values for the vector
T and thefij(z). The channel gain between the base station
and a receiveri (primary or secondary) at distancedi from
the base station on subchannelj is modeled as a combination
of path loss and fading. In particular, we model the received
power,PR, by PR = gijPT wherePT is the transmit power
and

gij = |hij |
2 (d0/di)

η
, (23)

wherehij is an independent Ricean fading gain characterized
by its K-factor,η is the path loss exponent andd0 the far-field
crossover distance.

We generate randomly and uniformly the positions ofN
secondary users in a disk of radiusr2 centered on the base
station whileNp primary receivers are placed uniformly and
randomly in a disk of radiusr1 > r2 centered on the base
station. We model the primary channel occupancy by randomly
and uniformly assigning one subchannel to each primary
receiver such that no two primary users occupy the same
subchannel. Denote the subchannel for primary receivern by
jn. Then, theP̄j are taken to be the largest feasible value such
that the received power from the base station to the primary
usern on channeljn is at mostωN0 whereN0 is the Gaussian
noise power andω is the critical interference threshold which
allows one to adjust the maximum amount of interference
that can be caused to a primary user. For simplicity we take
fij(z) = γzN0/gij though we could incorporate primary
interference to secondary users in a more complex model.

Using the method described above, all numerical results
that were generated share the following parameters. TheK-
factor is−10 dB which reflects scenarios with little to no line
of sight, η = 3, d0 = 50 m, r1 = 33 km, r2 = 60 km,
and N0 = −100 dB. Thus a device at a distance of33 km
from the base station will see an average (neglecting fading)

SNR of 15.4 dB if the base station uses a transmit power of
1 Watt. We use in all cases five transmission modes of rates
R1 = 1, R2 = 2, R3 = 3, R4 = 4 and R5 = 5 with SINR
thresholds ofγ1 = 10 dB, γ2 = 14.77 dB, γ3 = 18.45 dB,
γ4 = 21.76 dB andγ5 = 24.91 dB. Unless otherwise stated,
the critical interference thresholdω = 0 dB which corresponds
to allowing the secondary network to create an interferenceto
the primary users of at most the same level as the noise power.

To obtain the average max-min rate for a given scenario
characterized by(M,N,Np), we average the corresponding
results over 20 independent generations of node positions and
fading coefficients. In the test cases below, the number of
secondary users is chosen to be 40. Finite queue backlogs
at the beginning of a frame, if applicable, are selected such
that 5 users each have queue backlogs of90, 180, 270 and360
while the remaining 20 users have backlogs of900. We choose
L = 30 and considerF = 1 andF = 3. In the remainder we
will give results in terms of per frame performance.

B. Discussion

We start by considering the optimal theoretical performance
of the system given by (9) (i.e.,λopt) obtained by using the
iterative solution described in Section IV where we have used
CPLEX, a commercial integer program solver, in each step
to solve the linear IP. Note that in the figures, the label “No
Queue” indicates that the algorithm assumes that the users are
greedy while the label “Queues” indicates that the algorithms
take the value of the queue backlogs into account.

Fig. 3 showsλopt averaged over the 20 realizations as
a function of Pmax for F = 1 and F = 3, with and
without queues and without any primary users forM = 120
subchannels andN = 40 while Fig. 4 considers the case of
Np = 60 primary users, i.e., half of the 120 subchannels are
occupied by primaries.

Both figures show that increasing the power budget in-
creases the max-min rate but with diminishing returns and
quantify how much can be gained by taking queues into
account. Clearly taking queue backlogs into considerationcan
greatly improve performance.

¿From Fig. 3 we see that for a traditional allocation problem
(i.e., without primary users) and in the absence of queues,
there is little gain in principle in performing max-min rate
allocation over multiple time slots (in this caseF = 3) as
opposed to a single time slot (F = 1). When queues are taken
into account, this is no longer the case. Specifically, we seethat
for the parameters chosen, an average gap of 8% is noticed at
the maximum power setting, though in a more power limited
regime the gap is less.

¿From Fig. 4 we see that in the presence of primary users,
this is no longer the case. Specifically in the case that there
are no queues andF = 1, we see that the max-min rate of the
users has saturated while this is not the case whenF = 3. We
attribute this to the fact that resource allocation over multiple
time slots provides better granularity and thus is better able
to exploit subchannels occupied by primary users since these
subchannels can only be effectively used by users who are
near the base station due to the constraintsP̄j .
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In Fig. 5, the average max-min rate is shown versus the
power constraintPmax for the three choices of the interference
power control parameterω = -20dB, 0dB and 10dB. The
selection ofω = −20dB results in interference to primary
users that is at mostN0/100 and thus, has negligible impact
on the primary SINR, i.e., secondary users essentially avoid
creating interference to primary users. The selectionω = 0dB
result in interference that is at mostN0, and thus, the SINR of
primary users decreases by at most 3dB, while the selection
ω = 10dB decreases the SINR by approximately 10.4dB.
Interestingly, we find that the selectionω = 0dB results in
significant gain compared toω = −20 and in fact increasing
to ω = 10dB improves the average max-min rate by only 15%
in this case.

In Fig. 6, the average max-min rates of the users is shown
in the absence of primary users for optimal allocation as well
as the multi-step heuristic after Step 3 and Step 4 and the
selective greedy heuristic. We find that Step 3 of the multi-step
heuristic significantly under performs compared to the optimal
performance. By comparison, both the results of Step 4 as well
as the selective greedy heuristic are nearly optimal, both with
and without queues, though the selective greedy heuristic has
lower complexity.

In Fig. 7, the average max-min rates of the users is shown
in the presence of 60 primary users for optimal allocation as
well as the multi-step heuristic after Step 3 and Step 4 and
the selective greedy heuristic. Here, we see that without taking
queues into account, the selective greedy heuristic as wellas
Step 4 perform well while Step 3 shows a significant gap.
Interestingly, when queues are taken into account, none of
the heuristics performs close to optimal, though the selective
greedy approach shows the best performance.

Finally, in Fig. 8, we consider the case of Fig. 7, though
with F = 3. Here, we find that even though the optimal
performance has significantly increased, the selective greedy
heuristic has significantly narrowed the gap to the optimal per-
formance. We attribute this to the better granularity afforded
by the largerF . By comparison, the outcome of Step 4 shows
a significant gap.

VIII. C ONCLUSIONS

We have considered OFDMA cognitive resource allocation
for downlink cognitive radio networks. We have proposed
an iterative procedure involving a sequence of integer linear
programs to solve this non-linear integer problem and found
that the optimal performance could be computed for relatively
large problems.

We have proposed two heuristics. The first is an adaptation
of a class of decoupling algorithms common in the literature.
The second does not decouple the problem and we refer to it
as selective greedy. The second heuristic clearly outperforms
the first in the cognitive setting.

This paper has numerically quantified the performance gain
obtained by taking queues into account and the improvement
obtained by allocating resources over multiple time slots.
Finally, we have found that surprisingly good performance can
be obtained at reasonable values of the interference control
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parameterω. Specifically,ω = 0 dB yields most of the gain
that is to be had.
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