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Abstract

We investigate the joint source-channel coding problem of transmitting non-uniform
memoryless sources over BPSK-modulated additive white Gaussian noise (AWGN) and
Rayleigh fading channels via Turbo codes. In contrast to previous work, recursive non-
systematic convolutional encoders are proposed as the constituent encoders for heavily
biased sources. We prove that under certain conditions and when the length of the
input source sequence tends to infinity, the encoder state distribution and the marginal
output distribution of each constituent recursive convolutional encoder become asymp-
totically uniform regardless of the degree of source non-uniformity. We also give a
conjecture (which is empirically validated) on the condition for the higher order distri-
bution of the encoder output to be asymptotically uniform irrespective of the source
distribution. Consequently, these conditions serve as design criteria for the choice of
good encoder structures. As a result, the outputs of our selected non-systematic Turbo
codes are suitably matched to the channel input since a uniformly distributed input
maximizes the channel mutual information and hence achieves capacity. Simulation
results show substantial gains by the non-systematic codes over previously designed
systematic Turbo codes; furthermore, their performance is within 0.74 to 1.17 dB from
the Shannon limit. Finally, we compare our joint source-channel coding system with
two tandem schemes which employ a 4%*-order Huffman code (performing near optimal
data compression) and a Turbo code that either gives excellent waterfall bit error rate
(BER) performance or good error-floor performance. At the same overall transmission
rate, our system offers robust and superior performance at low BERs (< 107*), while
its complexity is lower.
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1 Introduction

In most of the theory and practice of error-control coding, the input to the channel encoder
is assumed to be uniform, independent and identically distributed (i.i.d.); i.e., the source
generates a memoryless binary stream {U}32,, where Pr{U; = 0} = 1/2. In reality, how-
ever, a substantial amount of redundancy resides in natural sources. For example, many
uncompressed binary images (e.g., facsimile and medical images) may contain as much as
80% of redundancy in the form of non-uniformity (e.g., [1, 2]); this corresponds to a prob-
ability poéPr{Uk = 0} = 0.97. In this case, a source encoder would be used. Such an
encoder is optimal if it can eliminate all the source redundancy and generates uniform i.i.d.
outputs. However, most existing source encoders are sub-optimal, particularly fixed-length
encoders that are commonly used for transmission over noisy channels; thus, the source
encoder output contains some residual redundancy. For example, the 4.8 kbits/s US FS
1016 CELP speech vocoder produces line spectral parameters that contain 41.5% of resid-
ual redundancy due to non-uniformity and memory [3]. Variable-length or entropy codes
(e.g., Huffman codes) which can be asymptotically optimal (for sufficiently large blocks of
source symbols) could be employed instead of fixed length codes or in conjunction with them;
however, error-propagation problems in the presence of channel noise are inevitable and are
sometimes catastrophic. Therefore, the reliable communication of sources with a considerable
amount of redundancy (residual if compressed, or natural if not) is an important issue. This
in essence is a joint source-channel coding problem. Blizard [4], Koshelev [5] and Hellman [6]
are among the first few who proposed convolutional coding for the joint source-channel coding
of sources with natural redundancy, where the source statistics are utilized at the receiver.
Specifically, the convolutional encoding of such sources (Markov and non-uniform sources)
over memoryless channels and their decoding via sequential decoders employing a decoding
metric that is dependent on both source and channel distributions, was studied in [4, 5]. The
computational complexity of such sequential decoders is analyzed, and it is shown that for a

range of transmission rates, the expected number of computations per decoded bit is finite.



In [6], a lossless joint source-channel coding theorem for convolutional codes is established.
It is proved that for a discrete memoryless source and channel pair, there exist convolutional
codes of rate R that can be used to perform reliable joint source and channel coding (under
maximum a posteriori decoding) as long as R < C'/H, where H is the source entropy and
C' is the channel capacity. Recently, several studies (e.g., [1]-[3], [7]-[22], etc.) have also
shown that appropriate use of the source redundancy can significantly improve the system

performance.

Turbo codes have been regarded as one of the most exciting breakthroughs in channel
coding. The original work by Berrou et al. demonstrated excellent performance of Turbo
codes for uniform i.i.d. sources over AWGN channels [23]. The work was later extended to
Rayleigh fading channels showing comparable performance [24]. Recently, McEliece pointed
out that Turbo codes have also great potential on nonstandard channels (asymmetric, non-
binary, multiuser, etc.) [25]. However, the above works focus on uniform i.i.d. sources. In
[26, 27|, the authors considered using Turbo codes for sources with memory. To the best
of our knowledge, the issue of designing Turbo codes for non-uniform i.i.d. sources has not
been fully studied, except for the recent work in [28, 29], in which standard systematic Turbo
codes are considered, where each constituent encoder is a recursive systematic convolutional
(RSC) encoder. Although the gains achieved by these codes are considerable with respect to
the original Berrou code, their performance gaps vis-a-vis the Shannon limit — also known as
the optimal performance theoretically achievable (OPTA) — are still relatively big for heavily
biased sources (e.g., with pp=0.8, 0.9). Analysis on the encoder output reveals that the
drawback lies in the systematic structure, which results in a mismatch! between the biased

distribution of the systematic bit stream and the uniform input distribution needed to achieve

LA similar mismatch in the context of the design of scalar quantizers for non-uniform memoryless sources
over binary symmetric channels (BSC) was also observed in [15, 17] and addressed via the use of a rate-
one convolutional encoder. This method is however unsuitable for our problem as it will result in error-

propagation at the receiver due to our use of large data blocks in an attempt to achieve the Shannon limit.



channel capacity. As we will show in this paper, when some constraints are satisfied, recursive
non-systematic convolutional (RNSC) encoders can generate asymptotically uniform outputs
even for extremely biased sources. But it is known that the capacity of a binary input AWGN
or Rayleigh channel is achieved by a uniform i.i.d. channel input. Furthermore, it was shown
in [30] by Shamai and Verdd that the empirical distribution of any good code — a code with
rate close to capacity and vanishing probability of error for sufficiently long blocklengths
— should approach the capacity achieving input distribution?. Therefore, we propose using
RNSC Turbo encoders. Simulation results demonstrate substantial gains over systematic

Turbo codes. The OPTA gaps for heavily biased sources are hence significantly reduced.

This paper is organized as follows. In Section 2, we illustrate the need to examine
non-systematic Turbo codes instead of systematic codes for the transmission of strongly
non-uniform sources by evaluating the capacity loss incurred when such sources are directly
(e.g., via a systematic bit stream) sent over BPSK-modulated AWGN or Rayleigh fading
channels. In Section 3, we give two asymptotic properties (when the input sequence length
tends to infinity) of recursive convolutional encoders whose input is a non-uniform i.i.d.
source with arbitrary degree of non-uniformity. Design criteria for good non-systematic
encoder structures based on these two properties are introduced in Section 4. The iterative
decoding design for such non-systematic Turbo codes is also addressed. Simulation results
and performance comparisons to the Shannon limit are presented in Section 5. In Section 6,
we compare our joint source-channel coding system with two tandem coding schemes that
employ a nearly optimal source code followed by Berrou’s (37,21) Turbo code [23] (which
gives excellent waterfall BER performance) or a systematic (35,23) Turbo code (which gives
a slightly inferior waterfall BER, performance but a lower error-floor performance). Finally,

conclusions are given in Section 7.

2More precisely, it is shown in [30, Theorem 4] that for any discrete memoryless channel, and for any
fixed integer k > 0, the kth-order empirical distribution of any regular good code sequence converges (in the

Kullback Leibler divergence sense) to the k-product of the capacity-achieving distribution.



2 Capacity Loss Due to Channel Input Mismatch

In this section, we illustrate why systematic codes are not well matched to symmetric channels
(due to their systematic bit stream) when the source is very biased (py=0.8, 0.9). This is
achieved by examining the capacity loss incurred in BPSK-modulated AWGN channels and
memoryless Rayleigh fading channels with known channel state information [24] under such
biased sources as input. The channel capacity is the largest rate at which information
can be transmitted (via a block code) and recovered with a vanishingly low probability of
error. For discrete-input memoryless channels, it is well known that the capacity is given
by the maximum of the mutual information between the channel input and output: C =
max, ) {(X;Y), where the maximization is taken with respect to all input distributions
p(z). When the channel is symmetric, the capacity is achieved by a uniform channel input

distribution. For AWGN channels, the capacity is

Cawgn =1 / ! - 1)2 log, (1 + 22)d
A =1- o) €o .
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Similarly, for Rayleigh fading channels, the capacity is
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Note that the average energy per channel symbol E; = 1, and 02 = N;/2 is the variance of

the additive white Gaussian noise. Therefore, both Cawen and Cge, are functions of the

channel signal-to-noise ratio (CSNR) E,/o?.

When a non-uniform i.i.d. source (with distribution py # 1/2) is directly fed into either
channels, the channel input is obviously non-uniform and the capacity cannot be fully ex-
ploited since the uniform distribution achieves capacity for such channels. Therefore, the

actual achievable capacity for AWGN channels with such a biased input is
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and for Rayleigh fading channels, it is
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As a result, to transmit the non-uniform source directly, the capacity cannot be fully realized

due to the mismatch between the channel input distribution and the capacity-achieving
distribution. This is numerically illustrated in Table 1 for various values of CSNR, where we
note that in certain cases C%%/C can be as low as 41.4%. This leads us to conclude that for
the transmission of very biased non-uniform sources, we should eliminate the systematic bit
stream in the encoder structure, and hence investigate the design of non-systematic codes in

our attempt to avoid such mismatch incurred performance loss.

3 Asymptotic Properties of Recursive Encoders

In this section, we prove two asymptotic properties of recursive convolutional encoders when
the input sequence is a non-uniform i.i.d. source {Uy} with distribution py and length ap-
proaching infinity. Throughout this section, we assume that py € (0.0,1.0) and that py # 1/2.
We first show that, regardless of the value of py, when certain conditions are satisfied, the
parity output of the encoder is asymptotically uniform. Based upon empirical observations,
we also give a conjecture on the condition when the encoder output has higher order asymp-
totically uniform distributions (the joint distribution of m > 1 consecutive parity bits). We
next show that, if the tap coefficient of the last memory element is unity, all of the encoder
states will be reached with asymptotically equal probability. The conditions for the above
two asymptotic properties are both necessary and sufficient. These two properties offer per-
tinent design criteria which will be used in the next section for constructing good encoder

structures of Turbo codes for heavily biased non-uniform i.i.d. sources.

We first study the asymptotic distribution of a single parity check output of a constituent



recursive convolutional encoder (either systematic or non-systematic, see Figure 1). We begin
by quoting the following result from [33, Theorem, p. 1692 with @ = 2| and [34, Lemma 3,

p. 1855].

Lemma 1: Consider the sequence {Y,,z,}, where {Y,} is a stationary sequence of inde-
pendent symbols from GF(2) with probability P(Y,, = 0) = py, and {z,} is a deterministic
sequence containing an infinite number of nonzero terms. If Wy = Zz:o Y, zn, where the
summation is modulo-2, then

lim P(W), =0) = %

k—o0

Using the above lemma, we can now establish the following result.

Theorem 1: For a recursive convolutional encoder with feedback polynomial F'(D) and
feed-forward polynomial G(D), the necessary and sufficient condition that the encoder output
is asymptotically uniform for a non-uniform i.i.d. source with distribution py (regardless of

the value of py) is that G(D) is not divisible by F(D) in GF(2).

Proof: a) Necessary Part: Suppose the source generates {Uy}52,, and the encoder pro-
duces an output sequence of {X;}?2,. Denote the encoder input and output in polyno-

mial forms as U(D) = Y2 UyD* and X (D) = Y32, XxDF, respectively. Also, define
E(D)éG (D)/F(D). Then for a recursive convolutional encoder with feedback polynomial

F(D) and feed-forward polynomial G(D), we have

Suppose that G(D) is divisible by F(D) in GF(2). Then E(D) is a polynomial of D
with finite degree. Therefore, any bit of the encoder output X is essentially a modulo-2
summation of a finite number of bits from {U}$,. However, a finite modulo-2 summation
of non-uniform i.i.d. variables would still be non-uniform; therefore, the encoder output

{Xk}%2, is non-uniform.



b) Sufficient Part: When G(D) is not divisible by F(D) in GF(2), E(D) is an infinite
polynomial of D.

E(D)=¢ey+e1D+eyD* + -+ e DF - -

where ey, is binary. Then

k
X = Z Uer_, k=0,1,2,---, (where summation is in mod-2).
1=0

Letting zléek_l, where ! = 0,1,--- , k. Since E(D) = G(D)/F (D) is arational polynomial
fraction, when G(D) is not divisible by F(D) in GF(2), {¢;} is a periodic series. Therefore,
when k — oo, the number of 1s in {¢;}}_; (and hence in {2}¥_,) also goes to infinity. From

Lemma 1 we obtain that limg_,o, P(X; =0) = 1/2. O

In [30], Shamai and Verdi proved that for any fixed positive integer k, the k™-order
empirical distribution of any good code (i.e., a code approaching capacity with asymptotically
vanishing probability of error) converges to the input distributions that achieve channel
capacity. The capacity of a binary-input AWGN or Rayleigh channel is achieved when its
mutual information is maximized by an independent and identically distributed uniform
input. Therefore, having higher order uniform distributions (in addition to the first order
distribution) in encoder outputs is also desirable. A related result has been established by
Leeper in [34], which states that for any binary source (with unknown statistics), recursive
convolutional encoders can produce a parity output whose first and second order distributions
can be arbitrarily close (within a given value §) to uniform for an appropriately chosen large
value of the source sequence under the following conditions: (i) the source is first passed
through the equivalent of a BSC with an arbitrarily small but nonzero error probability ¢;
(ii) the encoder’s memory size is greater than a certain value determined by § and e. For
our system, which does not satisfy the above (rather stringent) conditions, we can state the

following conjecture based on extensive simulations.



Conjecture: Suppose a non-uniform i.i.d. source with distribution p, is input to a
recursive convolutional encoder with feedback polynomial F(D) and feed-forward polyno-
mial G(D). If G(D)/F(D) is in its minimal form, where M is the degree of F(D), then
the m'-order distribution of the encoder output is asymptotically uniform for any p, and
Vm=1,2,---, M.

A proof for the above conjecture with arbitrary G(D) and F(D) is not obvious. However,
the conjecture has been verified by empirical estimations of all possible combinations of

recursive convolutional encoders with memory 4.

The above results indicate promising potentials when RNSC encoders are used as the con-
stituent Turbo code encoders for the transmission of non-uniform i.i.d. sources. However, in
this large family of candidate encoders, some structures offer inferior performance. Consider
a heavily biased non-uniform i.i.d. sequence which is used as the input of a recursive convo-
lutional encoder; for some structures, with high probability the state transition is confined
within a few encoder states while other states may rarely or never be reached. This ineffi-
cient use of the encoder memory would result in performance degradations. Therefore, we
next establish the condition for the asymptotic uniformity on the distribution of the encoder

states. This result will be a useful design criterion in eliminating poor encoder structures.

Lemma 2: For a recursive convolutional encoder as depicted in Fig. 1, at time &k + 1,

each state siy1 can be reached from only two distinct (state, input) pairs (s,(go),u,(c(izl) and

(sg), u,(cljzl), where the two states at time k satisfy sg)) #* s,(cl). The necessary and sufficient
condition for ug)ll # uﬁl is far = 1.
Proof: The encoder state is determined by the content of each memory element of the

shift register. Let the state at time k& be sy = (71, 72k, - - ,Tmr). By the shift register’s

structure, we have

M

T1k+1 = Ug+1 D Z [i " Tiks (1)
7j=1

Tik+1 = Tj—1k, .7 = 2) 3) o aMa (2)



where @ and the summation are modulo-2. Therefore, s;.; can only be reached from two

states which only differ at 73, Now rewrite (1) as follows,

M-1

Uk41 = T1h+1 D s - Tk @ E fi Tk
j=1

For both states s,(co) and 5,&1), the summand produces the same result. When f;; = 0, the
input wug41 is independent of the encoder state being s,(co) or sg). When fp; = 1, different

values of 7y, require different values of wgy1. O

Theorem 2: Consider a recursive convolutional encoder with feedback {fi, fo, -, fur}s
and let a non-uniform i.i.d. source with distribution py be its input. Then the encoder
state distribution is asymptotically uniform (as the source sequence length tends to infinity)

regardless of the value of pg iff fi = 1.

Proof: The shift register is a fully connected (irreducible) time-invariant Markov chain
when pg; so the state distribution will asymptotically converge to the steady state distri-
bution. Then it is equivalent to show that the uniform distribution is or is not the steady
state distribution. From Lemma 2, there are only two (state, input) pairs (sfﬁo),u,(;:zl) and

(s,(cl),u,(elll) that may transit to state sy.;. Without loss of generality, denote the possible

encoder state as 0,1,---,2™ — 1. Assuming that at time k the state distribution is uniform,

i.e., Pr(Sy =s)=2"M for s =0,1,---,2M — 1, then at time k + 1, if f5; = 1, we have

Pr(Sis1 = sp11) = Pr(Sy= s, Uppr = u)) + Pr(Sk = s, Upr = u))

= Pr(Ugs = u,(COJZl)Q_M + Pr(Ugy1 = u,(clll)Q_M = 27M

where the second equality is due to the independence of Sy and Uy, and the last equality
holds because u,(gl #* u,(clll by Lemma 2. Therefore, fy; = 1 yields that the uniform distri-
bution is the steady distribution of the encoder states. On the other hand, if f; = 0, by
Lemma 2, “20421 = ugll; then Pr(Sgy1 = spy1) = 2Pr(Ugy1 = upy1) - 27M. Thus, when the

source is biased, the uniform distribution is not the steady state distribution when f,, = 0.



In other words, when fj; = 0, biased sources result in a biased distribution of the encoder
states, and the steady state distribution is not equal to the uniform distribution. Hence for

any pg, the encoder state distribution is asymptotically uniform iff fy, = 1. O

4 Non-Systematic Turbo Codes

In most of the Turbo codes literature, the Turbo code encoders are systematic; however,
non-systematic Turbo codes were recently proposed by Costello et al. [35], and followed by
a series of works in [36, 37, 38]. The scenario in these works is still for uniform i.i.d. sources.
The motivation for using non-systematic Turbo codes as an alternative to their systematic
peers is due to their larger code space; therefore, there is a potential that better codes might
be found. In [38], Massey et al. construct an asymmetric non-systematic Turbo code that
outperforms Berrou’s (37,21) code by about 0.2 dB at the 107° BER level with a block
length size of 4096. For larger block length, we expect that Massey’s code to still outperform

Berrou’s code, although it is not clear if the 0.2 dB gain would be maintained.

As illustrated in Section 2, when non-uniform i.i.d. sources get heavily biased, a possibly
significant performance loss may result due to the systematic structure. Furthermore, in
light of Shamai and Verdi’s result [30], Theorem 1 and the conjecture, we note that non-
systematic Turbo codes seem to provide a suitable solution for the source-channel coding of

such sources.

4.1 Design of Good Encoder Structures

Figs. 2 and 3 show our proposed non-systematic Turbo encoders. In a) the first constituent
encoder has two parity outputs X» and X ;g while the second has only one parity output
X29; so the overall rate is 1/3. This structure has been extensively used in [35]-[38]. In b)
both constituent encoders have two parity outputs and the overall rate is 1/4. Structure b)
can achieve the same overall rate of 1/3 via puncturing. It is also clear that structure a) is
a special case of structure b), obtained by completely puncturing X2"; therefore, a generally

designed decoder for structure b) can also be employed for structure a).
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Ideally, good design criteria are analytically based on the minimization of the error prob-
ability. However, to the best of our knowledge, all available error bounds for Turbo codes
are obtained by averaging over a code ensemble or by assuming uniform interleaving and
maximum likelihood decoding, while Turbo codes in fact employ random interleaving with
each constituent decoder adopting the BCJR algorithm [39], which is a maximum a poste-
riori decoding algorithm. Furthermore, the bounds are useful only in the error floor region
at high signal-to-noise ratios (SNRs); they are not tight in the waterfall region [40, 41, 42].
Since our goal is to obtain the best waterfall performance, we revert to other methods to find

good design criteria.

As in [28, 29], we focus on symmetric 16-state encoders. The feedback tap coefficients are
{fo, f1, f2, f3, fa}. We always have fo = 1 since it provides the tap for the encoder input.
Denote the feedback polynomial as F(D)=fo+fi D+ foD?>+ f3 D3+ f4D*, and the two feed-
forward polynomials as G(D) and H(D), respectively. Then for such an RNSC encoder, there
are altogether 2¢ x (2° — 1) x (2° — 1) = 15, 376 possible combinations; an exhaustive search
over the entire code space is clearly not feasible. However, the two asymptotic properties

studied in Section 3 serve as good design criteria to eliminate poor encoder structures.

First, as proved by Theorem 2 in Section 3, we choose to have the last feedback tap
coefficient f; = 1 to fully exploit the encoder memory. For the feed-forward polynomials,
having G(D) = 1 or G(D) = D™, where m = 1,-- - , 4 yields the same performance, since the
only difference is a shift of time delay. The same holds for having G(D) = 1+ D? or G(D) =
D? + D*. Therefore, without loss of generality, we can choose to fix the first tap coefficient
of both feed-forward polynomials to 1. Furthermore, for obvious reasons we do not want the
two feed-forward polynomials to be identical. Then the total number of possible encoders
in our search space is reduced down to 2% x 2* x (2* — 1) = 1920, which is still impractical
for an exhaustive search. Second, according to Theorem 1, we should only consider the

choices of G(D) and F(D) such that G(D) is not divisible by F(D). Furthermore, by our

11



empirically verified conjecture, given f; = 1, the selection of relatively prime F'(D) and G(D)
can guarantee that the encoder output has an asymptotically uniform 4 order distribution.
Thus additional inferior candidate encoder structures can be eliminated. Finally, again to
avoid an exhaustive search, we take advantage of the optimization results found in systematic
Turbo codes [29]; i.e., we first find the best pair of F(D) and G(D), and then search for the
best second feed-forward polynomial H(D). The iterative search procedure for (sub-)optimal

encoder structures, given a source distribution, is implemented as follows.

1) Using a systematic Turbo code, fix the feed-forward polynomial G(D) = 1 and search

for the best feedback polynomial F(D) with fy = f4 = 1;

2) With the F'(D) found in step 1), search for the best G(D) among all remaining possible

choices with the condition that the greatest common divisor of F'(D) and G(D) is 1;
3) With the G(D) found in step 2), go back to step 1). If F(D) coincides with the one
obtained in step 1), go to step 4); otherwise, proceed to step 2);

4) For a non-systematic Turbo code, fix the pair (F(D), G(D)) found above and search

for the best second feed-forward polynomial H (D).

4.2 Decoder Design

When RNSC encoders are used as constituent encoders, unlike in systematic Turbo codes, the
a posteriori log-likelihood ratio A(Uy) in the Turbo decoder [23, 43] can only be decomposed
into two terms:

A(Uk) = Lex(Uk) + Lap(Uk):
where the new extrinsic term involves two parity sequences. For AWGN channels, we have

S A L 5, ) - o (s) - Bals)
Lea(Un) = log == 6105, %)~ 1 (5) B 5)”

where the summations for s and s’ are both over all 2 possible states, and for i = 0, 1,

Yy, yili, s,8) = p(yl|\Us = 3, Sk = 8) - p(yl|Ux = 3, Sk = 5) - Pr{U; = i|Sy = 5, Sp_1 = 5'},

12



and where Sy is the encoder state at time &, y! and yy are the noise corrupted version of zh

and zj, which are the parity bits generated from the two feed-forward polynomials.

For Rayleigh fading channels, the extrinsic term needs to be modified to appropriately

incorporate the channel statistics. The extrinsic term therefore becomes

Zs,s’ ’Y(yl};: yg‘la S, S,: U,Z', U,i) - a’k*l(sl) - Bk(s)

L. (U,) =lo ,
) =log = o 70,5, af) a1 (9) - o)

where for : =0, 1,

7(y27ylg|za S, SI,CLZ,CLi) = p(y]’cl‘Uk = ia Slc =S, a"l;) p(y;ﬂUk = /[;a Sk = S,GZ)

-PT{UIC = 7’|Sk =S, Skfl = SI}’

where a} and aj are the fading factors. When the source is non-uniform i.i.d., log((1—po)/po)
is used as the initial a priori input L, (Uy) to the first decoder at the first iteration; then at
the following iterations, L., + log((1 — po)/po) is used as the new extrinsic information for

both constituent decoders at each iteration.

5 Numerical Results and Discussion

In this section, we present simulation results of our non-systematic Turbo codes for uniform
i.i.d. sources over BPSK-modulated AWGN and Rayleigh fading channels with known channel
state information®. In the following, all non-systematic Turbo codes adopt the decoder

discussed in Section 4.2, while all systematic codes employ the BCJR algorithm with the

modification proposed in [29].

3Tt is assumed throughout that the decoder has perfect knowledge of the source distribution pg. Simula-
tions on the effect of mismatch in py show little performance loss if the value of py used at the decoder is
within a reasonable distance from the true pg. For example, when the true distribution is pyg = 0.9 and the
decoder assumes it is 0.8, the performance degradation is no more than 0.1 dB. Furthermore, information
on po can be sent to the receiver as an overhead with negligible bandwidth loss. Finally, if no overhead
information is sent, pp can possibly be estimated at the decoder (e.g., see [27] where the source statistics are

estimated at the receiver in the context of Turbo decoding of Hidden Markov sources).
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5.1 Performance Evaluations

The performance is measured in terms of the bit error rate (BER) versus FEj/Ny, where
E, = E /R, is the average energy per source bit. All simulated Turbo codes have 16-
state constituent encoders and use the same pseudo-random interleaver introduced in [23].
The sequence length is N = 512 x 512 = 262144 and at least 200 blocks are simulated;
this would guarantee a reliable BER estimation at the 107 level with 524 errors. The
number of iterations employed in the decoder is 20; note that additional iterations result in
minor improvements. All results are presented for Turbo codes with structure b) encoders
(see Fig. 3) as they provide a better performance than codes with structure a) encoders.
Simulations are performed for rates R, = 1/3 and R, = 1/2 with py=0.8 and 0.9. From our
simulations, for both rates 1/3 and 1/2, the best found RNSC encoder structure for pp=0.8
and for both channels has each constituent encoder with feedback polynomial 35 and feed-
forward polynomials 23 and 25; this is denoted by the octal triplet (35,23,25). For py=0.9 the
best structure is (31,23,27). Several other encoders give very competitive performance, such
as (35,23,31) for py=0.8, (31,23,35) and (31,23,37) for py=0.9. We hereafter characterize all
non-systematic Turbo codes by triplets as described above (while their systematic peers are

represented by the conventional octal pair).

Fig. 4 shows the performance over AWGN channels of our rate-1/3 non-systematic Turbo
codes in comparison with their systematic peers investigated in [28, 29|, as well as with
Berrou’s (37,21) code, which offers the best waterfall performance (among 16-state encoders)
for uniform i.i.d. sources. At the 107° BER level, when py=0.8, our (35,23,25) non-systematic
Turbo code offers a 0.45 dB gain over its (35,23) systematic peer; when py=0.9, our (31,23,27)
code offers an improvement of 0.89 dB over the systematic (31,23) code*. In comparison with

Berrou’s (37,21) code performance, the gains achieved by exploiting the source redundancy

Tt should also be indicated that our non-systematic joint source-channel Turbo codes maintain a similar
level of performance gains over their systematic peers when the sequence length is shorter than 262144.

For example, for a sequence length of N = 128 x 128 = 16384, with py=0.9 and the same rate and channel
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and encoder optimization are therefore 1.48 dB and 3.25 dB for py=0.8 and 0.9, respectively.

Fig. 5 shows similar results over AWGN channels for rate-1/2. In this case, the gains
are generally more significant. In comparison with the best systematic Turbo codes, at the
10-° BER level, for py=0.8 and 0.9, the gains achieved are 0.69 dB and 1.56 dB, respectively.
Furthermore, the gains over Berrou’s code due to combining the optimized encoder with the
modified decoder that exploits the source redundancy are 1.57 dB (pp=0.8) and 3.72 dB
(po=0.9).

Simulations over Rayleigh channels are also provided in Figs. 6 and 7. For rate-1/3
codes, at a 107° BER, when py=0.8, our (35,23,25) non-systematic Turbo code provides a
0.40 dB gain over its (35,23) systematic peer; when pg=0.9, the improvement is 1.01 dB with
encoder structure (31,23,27). In comparison with Berrou’s (37,21) code, the gains achieved
by exploiting the source redundancy and encoder optimization are 1.76 dB and 3.87 dB for
Po=0.8 and 0.9, respectively. For rate-1/2, as shown in Fig. 7, the gains are more pronounced.
In comparison with the best systematic Turbo codes, at a 10° BER, for py=0.8 and 0.9,
the gains are 0.77 dB and 1.84 dB, respectively. Furthermore, the gains due to combining
the optimized encoder with the modified decoder are 2.01 dB (for pp=0.8) and 4.71 dB (for
2o=0.9).

To achieve a desired rate via puncturing, using different puncturing patterns may result
in different performances. For example, when structure b) is used for an overall rate of 1/3,
we may choose to puncture 1/4 of each parity sequence according to various patterns, or
we may puncture half of two parity sequences, and leave the other two sequences intact.
Simulations show the best puncturing pattern is to keep the parity sequence generated by
feed-forward polynomial 23 intact and puncture half of the one generated by the other feed-

forward polynomial. The performance of this puncturing pattern is about 0.2 dB better than

conditions as in Fig. 4, our (31,23,27) non-systematic code offers around 0.9 dB gain over its (31,23) systematic
peer; a similar gain is obtained for N = 32 x 32 = 1024. These gains are interesting to note for practical

situations where delay may be limited.
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other patterns; in particular it is 0.3 dB better than the performance offered by structure
a). For an overall rate of 1/2, structure b) is also better than a), and the best puncturing
pattern is to delete all even (odd) position bits of the sequences generated by feed-forward
polynomial 23, and delete all odd (even) position bits of the sequences generated by the other

feed-forward polynomial.

In previous work on non-systematic Turbo codes for uniform i.i.d. sources, it is verified
via extensive simulations that most non-systematic codes show inferior performance to their
systematic peers [36]-[38], except for the one in [38] employing a non-systematic “quick-look-
in” constituent code, which is basically “close” to a systematic code. Also, it is pointed out
in [37, 38] that at low values of Ej/Nj, the initial extrinsic estimates for the information bits
provided by non-systematic Turbo codes are not as good as those of systematic Turbo codes
due to the lack of received channel values; this motivates their choice of a close-to-systematic
code in the non-systematic family. However, as shown by our results, systematic Turbo codes
are not a suitable choice for heavily biased non-uniform sources; therefore, close-to-systematic
codes may not be desired in this case. Another encoder structure called “big-numerator-little-
denominator” [35], which provides gains over Berrou’s code for uniform sources, may also
be unsuitable for non-uniform sources since the denominator results in non-uniform higher

order output distributions.

In the scenario of non-uniform i.i.d. sources, there are two factors playing against each
other: the a priori knowledge of py at the decoder, and the systematic structure. When the
source is heavily biased, systematic codes considerably underperform due to the distribution
mismatch between the source and the capacity achieving channel input. Furthermore, the
knowledge of a biased py can give good initial extrinsic estimations of the information bits
at the decoder, thus eliminating the need for the systematic structure. This may explain
why non-systematic Turbo codes, which do not suffer from any distribution mismatch (at

least asymptotically), offer superior performance over their systematic counterparts. On
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the other hand, when the source distribution is close to uniform, the distribution mismatch
due to a systematic structure becomes minor. Furthermore, very little useful knowledge
about the information bits is provided from p, at the decoder, while a systematic structure,
even when its bits are received corrupted at the receiver due to channel noise, provides
more reliable extrinsic estimations in the initial iterative decoding stages for low E,/Ny. In
particular, as pointed out in [36]-[37], when the source is exactly uniform, there is no useful
knowledge from p, at all, and thus the systematic structure plays a critically important role.
To investigate the role of the systematic bits for less biased non-uniform i.i.d. sources, we
also study the performance of so-called “extended” systematic Turbo codes. The results are

briefly summarized in the following.

The encoder of an “extended” systematic Turbo code consists of one systematic out-
put, two RNSC encoders, each of which produces two parity outputs. The overall rate is
therefore 1/5. Higher rates (e.g., 1/3 and 1/2) are obtained by partial puncturing of the
systematic part and partial puncturing of the four parity sequences. For py=0.6, 0.7 and 0.8,
and for R,=1/2 and 1/3, we performed simulations using the following puncturing patterns:
delete j/8 of the systematic sequence, where j = 0,1,---,8, and delete evenly the four
parity sequences to maintain the desired overall rates. Our simulations demonstrate that
when py=0.7, starting from j = 0, the performance is improved as j increases up to j = 4,
which yields approximately a 0.1 dB gain in Ej/Ny at the 107° BER level over the system
with pattern j = 0. Then the performance degrades as j increases from 4 to 8. Therefore,
when py=0.7, puncturing half of the systematic sequence yields the best performance. When
po=0.8, we observe a monotonic performance improvement as j increases from 0 up to 8,
which indicates that purely non-systematic Turbo codes should be preferred. When py=0.6,
we observe exactly the opposite behavior: preserving all systematic gives the best perfor-
mance. These observations indicate, as remarked in [35]-[38], that a systematic encoding

structure is especially important when not enough a priori knowledge about the source is
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available at the decoder.

5.2 Shannon Limit

Shannon’s Lossy Joint Source-Channel Coding Theorem states that, for a given memoryless
source and channel pair® and for sufficiently large source block lengths, the source can be
transmitted via a source-channel code over the channel at a transmission rate of R. source
symbols/channel symbols and reproduced at the receiver end within an end-to-end distortion

given by D if the following condition is satisfied [32]:
Rc : R(D) < C’ (3)

where C' is the channel capacity and R(D) is the source rate-distortion function. For a
discrete binary non-uniform i.i.d. source with distribution pg, we have that D=P, (the BER)

under the Hamming distortion measure; then R(D) becomes

R(P.) = ho(po) — ho(Fe), 0 < P < min{po,p:}
0, P, > min{py, p1 }
where p;=1 — pg, and hy(z) = —zlog, z — (1 — z) log,(1 — z) is the binary entropy function.

As seen in Section 2, the capacity of an AWGN or Rayleigh fading channel is a function
of CSNR, or equivalently, Ej/Ny; therefore, the optimum value of E,/N, to guarantee a BER
of P, — called the Shannon limit or OPTA — can be solved using (3) assuming equality. The
Shannon limit cannot be explicitly solved for our BPSK-modulated channels due to the lack

of a closed form expression; so it is computed via numerical integration.

For the simulations of the above subsection, the OPTA values at the 10~° BER level are
computed. The OPTA gaps, which are the distances between our system performance and

the corresponding OPTA values, are provided in Table 2. We observe that the OPTA gaps

5The above theorem also holds for wider classes of sources and channels with memory (e.g., stationary

ergodic sources and channels with additive stationary ergodic noise) [31].
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are significantly reduced by non-systematic Turbo codes. For example, for AWGN channels
and R, = 1/2, when py=0.8, systematic Turbo codes provide a performance which is 1.56 dB
away from OPTA; on the other hand, for our non-systematic Turbo codes the OPTA gap is

0.87 dB. When py=0.9, the OPTA gap is reduced from 2.61 dB down to 1.05 dB.

6 Comparison with Tandem Schemes

Traditionally, source and channel coding are designed separately, resulting in a so-called
tandem coding scheme. That is, the source is compressed first, and then channel coded.
This is justified by Shannon’s separation principle [44], which states that there is no loss of
optimality in such separation as long as unlimited coding delay and complexity are avail-
able. However, in practice, joint source-channel coding often outperforms traditional tandem

coding when delay and system complexity are constrained.

We next compare the performance of our joint source-channel system with that of two
tandem schemes for the same overall transmission rate. Each tandem scheme consists of a
4" order Huffman code followed by a rate R,=1/3 Turbo code. The overall rate for both
tandem and joint source-channel coding systems is » = R./R;=1/2 source symbol/channel
symbol (in the joint coding scheme, R. = 1/2 and R; = 1 since no source coding is per-
formed). Therefore, the Huffman code needs to be of rate R;=2/3 code bits/source symbol.
Since the average rate of the Huffman code depends on the source distribution, we need to
find the value of p, which renders the Huffman code rate (not the entropy) Rs=2/3 code
bits/source symbol with satisfactory accuracy. By using the bisection method, we obtain
that when py=0.83079, a 4""-order Huffman code has rate R,=0.666668 code bits/source

symbol. Therefore, simulations are performed for this value of py.

Berrou’s pseudo-random interleaver [23| requires the sequence length to be an even power
of 2; this inflexibility is an obstacle in the design of the tandem scheme, since the Huffman
code is a variable-length code. The S-random interleaver [45], however, can take an input

sequence of arbitrary length and it yields good BER performance. We thus herein adopt
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the S-random interleaver in the Turbo code. We also do not terminate the first constituent
Turbo encoder, because otherwise errors in the tail bits of the Turbo-decoded sequence would
introduce irrecoverable errors in the Huffman-decoded sequence. For fair comparison, our

system also uses the S-random interleaver and its first constituent encoder is not terminated.

The tandem scheme is implemented as follows: 1) the source generates a non-uniform
i.i.d. sequence with length N, and py=0.83079; 2) the Huffman encoder produces a com-
pressed sequence with variable length, whose mean is approximately (2/3)N; 3) an S-random
interleaver is generated for this given length; 4) the sequence is Turbo-encoded using the S-
random interleaver generated in 3); 5) the sequence is BPSK modulated and transmitted over

a Rayleigh fading channel; 6) the sequence is Turbo-decoded and then Huffman-decoded.

Another issue is the choice of the source sequence length N. Due to error propagation
in the Huffman decoder, a few errors in the Turbo-decoded sequence could result in a big
percentage of errors in the final Huffman-decoded sequence. Furthermore, what matters is
not only the number of errors in the Turbo-decoded sequence, but also the positions of the
erroneous bits. This is due to the fact that an error occurring in the first few bits of the
Turbo-decoded sequence has a much longer propagating effect than an error occurring in
the tail bits. Therefore, a sufficiently large number of blocks is necessary to obtain a good

average performance. After several tests, we chose to use N=12000 and 60000 blocks.

For a given N, the larger the “spread” S of the S-random interleaver is, the better is
the performance. However, in practice, generating an S-random interleaver with a large S
requires a substantial amount of computing time, and sometimes such an interleaver may not
be successfully generated. Thus, in order to reduce the computation time and to guarantee

the successful generation of S-random interleavers of arbitrary size, S is set to equal 10.

Fig. 8 shows the performance of our system versus that of two tandem schemes over
Rayleigh channels. Twenty iterations are used in the Turbo decoder. In the first tandem

scheme, the Turbo code with R,=1/3 is Berrou’s (37,21) code, which offers an excellent wa-
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terfall performance for uniform sources among all 16-state codes. However, due to a relatively
high error-floor provided by Berrou’s code, this tandem scheme suffers from a high-BER per-
formance caused by error propagation in the Huffman decoder. Thus, we also evaluate a
second tandem scheme using the (35,23) Turbo code, which has a significantly lower error-
floor at the expense of a slight waterfall performance loss. Although at very high BERs, both
tandem schemes are better than our system, their error-floors occur at high BERs (1073 for
the (37,21) code, and 107 for the (35,23) code). Therefore, at low BER levels, our sys-
tem offers superior performance than both tandem schemes. Interestingly, most traditional
joint source-channel coding schemes outperform tandem schemes at high BER levels (e.g.,
[2, 3, 7]), while in the context of Turbo codes, the opposite result is observed. Alternative
source-channel coding systems using jointly designed Huffman and Turbo codes have been
recently proposed in [46, 47]. It would be interesting to make performance comparisons with
these schemes. However, our system has lower complexity since the source encoding and

decoding parts are omitted.

7 Conclusion

In this work, the joint source-channel coding issue of transmitting non-uniform memoryless
sources via Turbo codes over AWGN and Rayleigh channels is investigated. Necessary and
sufficient conditions are proved for recursive convolutional encoders having asymptotically
uniform state and marginal output distributions regardless of the degree of source non-
uniformity. Therefore, recursive non-systematic Turbo source-channel codes are proposed,
and the outputs of our selected codes are suitably matched to the channel input as they nearly
maximize the channel mutual information. Simulation results demonstrate substantial coding
gains (up to 1.84 dB) over systematic Turbo codes designed in [28, 29], and the OPTA gaps
are significantly reduced. Finally, our system is compared with two tandem schemes, which
employ a near-optimal Huffman code followed by a standard Turbo code. Our system offers

substantially better performance at low BERs and enjoys a lower complexity.
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Figure 1: General structure of a recursive convolutional encoder.
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Figure 2: Non-Systematic Turbo encoder structure a).
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Figure 3: Non-Systematic Turbo encoder structure b).
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Figure 4: Turbo codes for non-uniform i.i.d. sources, R.=1/3, N=262144, AWGN channel.
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Figure 5: Turbo codes for non-uniform i.i.d. sources, R.=1/2, N=262144, AWGN channel.
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Figure 6: Turbo codes for non-uniform memoryless sources, R.=1/3, N=262144, Rayleigh
fading channel.
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Figure 7: Turbo codes for non-uniform memoryless sources, R.=1/2, N=262144, Rayleigh

fading channel.
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Figure 8: Performance comparison of our system (Rs = 1, R, = 1/2) with that of tandem

schemes (R, = 2/3, R. = 1/3), po=0.83079, N=12000, Rayleigh fading channel.
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Po = 0.8 Po = 0.9

Channel CSNR C Cbias CZ“S Cbias Cbéas

-4.0 | 0.415 || 0.284 | 68.5% || 0.172 | 41.4%

-2.0 ] 0.564 || 0.392 | 69.6% || 0.242 | 42.9%

AWGN 0.0 |0.721 || 0.509 | 70.6% || 0.320 | 44.4%

2.0 |0.860 || 0.614 | 71.4% || 0.392 | 45.6%

4.0 |0.951 || 0.684 | 71.9% || 0.442 | 46.4%

-4.0 | 0.348 || 0.240 | 69.0% || 0.147 | 42.2%

-2.0 | 0.454 || 0.317 | 69.8% || 0.197 | 43.3%

Rayleigh 0.0 | 0.566 || 0.398 | 70.4% || 0.250 | 44.2%

2.0 ]0.671 | 0.476 | 71.0% || 0.302 | 45.0%

4.0 |0.763 || 0.544 | 71.3% || 0.348 | 45.6%

Table 1: Illustration of channel input mismatch for AWGN and Rayleigh fading channels: C

vs. C%% for py=0.8, 0.9.
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Channel | R. | po || OPTA | STC OPTA gaps [29] | NSTC OPTA gaps
1/3 0.8 || -2.24 1.19 0.74
AWGN 0.9 | -4.40 2.02 1.13
channel | 1/2]0.8 || -1.81 1.56 0.87
09| -4.14 2.61 1.05
1/3 ] 0.8 | -1.56 1.28 0.88
Rayleigh 0.9 || -3.96 2.18 1.17
channel || 1/2 0.8 | -0.73 1.88 1.11
0.9 -3.47 2.99 1.15

Table 2: OPTA gaps for systematic Turbo codes (STC) and non-systematic Turbo codes
(NSTC) in Ey/N, (dB) at BER=10"°.
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