

1

DIRECT CURRENT (DC) MACHINES Fundamentals

- **Generator action:** An emf (voltage) is induced in a conductor if it moves through a magnetic field.
- **Motor action:** A force is induced in a conductor that has a current going through it and placed in a magnetic field
- Any DC machine can act either as a generator or as a motor.

DC Generator Fundamentals

$$
e = (\mathbf{v} \times \mathbf{B}) \cdot \ell
$$

 $e = B \ell v \sin \alpha \cos \beta$

 $e =$ induced voltage, $v =$ velocity of the conductor, $B =$ **flux density and l is the length of the conductor**

 α - angle between the direction in which the conductor is moving and the flux is acting.

 β - smallest possible angle the conductor makes with the direction of, the vector product, ($v \times \textbf{\textit{B}})$ and for maximum induction, β = 0. Hence, e = *Blv* for most cases.

($v \times B$) indicates the direction of the current flow in the conductor, or the polarity of the emf.

Generated Voltage in a Loop (a coil of one turn)

• For emf to be induced, the conductors must cut the flux lines as they move. Otherwise, ($v \times B$) = 0.

$$
\mathbf{e}_{loop} = \mathbf{e}_{ab} + \mathbf{e}_{bc} + \mathbf{e}_{cd} + \mathbf{e}_{da}
$$

eloop **⁼***Blv* **+ 0 +** *Blv* **+ 0**

eloop **= 2** *B l v*

3/23/2007 ELEC A6 DC Machine

Generated Voltage in a Loop (a coil of one turn)

• Note: Induced voltages are always AC.

Generated Voltage in a Loop (a coil of one turn)

DC MACHINES

Real DC machine Construction

- • **Stator:** Stationary part of the machine. The stator carries a field winding that is used to produce the required magnetic field by DC excitation. Often know as the field.
- • **Rotor:** The rotor is the rotating part of the machine. The rotor carries a distributed winding, and is the winding where the emf is induced. Also known as the armature.

DIRECT CURRENT MACHINES

DC machine Construction

- The picture shows the stator of a large DC machine with several poles.
- The iron core is supported by a cast iron frame.

Dc motor stator construction

DIRECT CURRENT MACHINES

DC machine Construction

- • The rotor iron core is mounted on the shaft.
- •Coils are placed in the slots.
- • The end of the coils are bent and tied together to assure mechanical strength.
- • Note the commutator mounted on the shaft. It consists of several copper segments, separated by insulation.

DC MACHINES

Generated EMF in a Real DC Machine

$$
E_G = \frac{ZP}{60a} \phi n = k_g \phi n = \frac{ZP}{2\pi a} \phi \omega = k_m \phi \omega
$$

Where

Z = total number of conductors, P = total number of poles

 $a = P$ for lap winding, $a = 2$ for wave winding, $\phi = f(x)$,

 ω = speed in rad/s and n = speed in rpm.

DC Motor Fundamentals

$$
F=(\ell\times B)i
$$

i **F = induced force, B = flux density, I is the current passing in the conductor and l is the length of the conductor**

L is a vector in the direction of the flow of the current.

 $(l\!\times\! B)$ direction indicates the direction of force.

DC Motor Fundamentals

Counter EMF:

When the motor is running, internally generated emf, ($E_G = E_C$) opposes the applied voltage, thus:

$$
I_A = \frac{V_T - E_C}{R_A}
$$

Where: V_T = terminal voltage, E_c = counter EMF, R_A is the armature resistance and I_A is the armature current

The relationship between the induced EMF and torque

$$
E_{conductor} = B \ell v
$$

\n
$$
T_{conductor} = B \ell i r
$$

\ntherefore,
\n
$$
E = B \ell v - v
$$

\n
$$
T = \frac{B \ell v}{B \ell i r} = \frac{v}{ir}, v = \omega r
$$

\n
$$
E = \omega
$$

\n
$$
E = \omega
$$

\n
$$
E = T \omega
$$

\n
$$
P = T
$$

$$
T = \frac{EI}{\omega} = \frac{ZP}{2\pi a} \phi I_A
$$

$$
T = k_m \phi I_A
$$

Where: T is the torque,

3/23/2007 ELEC A6 DC Machine

Find the induced voltage for a road with a length of 1 m.

$$
e_{ind} = (v \times B) \cdot l
$$

$$
v \times B = vB = 3 \text{ (into the page)}
$$

$$
v \times B \text{ makes } 90^{\circ} \text{ with } l
$$

$$
(v \times B) \cdot l = 0
$$

The direction is into the page

30 mWb, calculate the induced voltage. The armature is rotating ω 600 rpm and the flux per pole is winding. The aramature has 48 slots with 4 conductors/slot. A 6 pole DC machine has an armature connected as a Wave

$$
E_G = \frac{ZP}{60a} \phi n = \frac{48 * 4 * 6}{60 * 2} * 600 * 30 * 10^{-3} = 172.8V
$$

A six-pole DC machine has a flux per pole of 30 mWb. The armature has 536 conductors connected as a lap winding. The DC machine runs at 1050 rpm and it delivers a rated armature current of 225 A to a load connected to its terminals, calculate:

- A) Machine constant, $\rm K_m$
- B) Generated voltage, $\mathrm{E_{G}}$
- C) Conductor current
- D) Electromagnetic torque.
- E) Power delivered by the machine.

a)
$$
k_m = \frac{ZP}{2\pi a} = \frac{6 * 536}{2\pi * 6} = 85.31
$$

\n*b*) $\omega = \frac{2\pi n}{60} = \frac{2\pi * 1050}{60} = 109.96 \text{ rad/s}$
\n $E_G = k_m \phi \omega = 85.31 * 0.03 * 109.96 = 281.4 \text{ V}$
\n*c*) Since it is lap winding :
\n*I*(*conductor*) = $\frac{I_a}{a} = \frac{225}{6} = 37.5 \text{ A}$
\n*d*) $T = k_m \phi I_a = 85.31 * 0.03 * 225 = 575.84 \text{ N} \cdot \text{m}$
\n*e*) $P = T \omega = E_G I_a = 63.32 \text{ kW}$

DC Motors

Equivalent circuit.

The equivalent circuit of DC Motors (and Generators) has two components:

- **Armature circuit:** it can be represented by a voltage source and a resistance connected in series (the armature resistance). The armature winding has a resistance, $\rm R_{a}$.
- \bullet **The field circuit:** It is represented by a winding that generates the magnetic field and a resistance connected in series. The field winding has resistance $\rm R_{f}$

Classification of DC Motors

- **Separately Excited and Shunt Motors**
- Field and armature windings are either connected separate or in parallel.

• **Series Motors**

Field and armature windings are connected in series.

•**Compound Motors**

- Has both shunt and series field so it combines features of series and shunt motors.

Shunt DC Motors

- The armature and field windings are connected in parallel.
- –Constant speed operation.

Shunt DC Motors

By KVL around the outer loop: *V* $V_{\mathcal{T}}$ *IARA EC* = 0 *T*-- $\bm{I}_{\bm{F}}$ =*RF* $E_{_C} = k_{_g} \phi n$ $= k_{_\rho}$ ϕ n but **la** If \setminus Ra $\propto \phi$, so $I_f = m\phi$ $I_{\overline{f}} \propto \phi$, so $I_{\overline{f}} = m$ **Rf** Ec $E_{C} = kI_{f}n$ =

Starting of Shunt DC Motors

• At the starting of a DC motor, $EC = 0$, so:

$$
I_A = \frac{V_T}{R_a}
$$

• To limit I_A , a resistance is inserted in series with R_A then removed after the development of $\mathrm{E_{C}}$

Speed Regulation

Speed regulation is the percentage change in speed from no-load to full-load as a function of the full load speed.

$$
SR = \frac{n_{NL} - n_{FL}}{n_{FL}} \times 100\%
$$

Power Flow and Losses in DC Motors

 $\text{Pin} = \text{V}_{\text{t}} \text{I}_{\text{L}}$ I2R LossesCopper losses Core Losses(Both cores) V_t = Terminal voltage I_{L} = Line current Mechanical LossesStray Losses $\rm P_{out}$ P (developed) = $E_C I_a$

Q1) A 240 V, shunt DC motor takes an armature current of 20 A when running at 960 rpm. The armature resistance is 0.2Ω . Determine the no load speed if the no load armature current is 1 A.

assuming $\boldsymbol{\mathrm{I}}_{\rm f}$ is constant E_c (no load) = 240 – 1 * 0.2 = 239.8 V \Rightarrow E_c (full load) = 240 – 20 * 0.2 = 236 V $V_t = I_a R_a + E_c$

$$
\Rightarrow \frac{E_c(n.l.)}{E_c(F.l.)} = \frac{n(n.l.)}{n(F.l.)} \Rightarrow n(n.l.) = \frac{239.8}{236} *960 = 975.45 \text{ rpm}
$$

 $n.l$ = ${\rm no\ load},$ $F.l$ = ${\rm full\ load}$

Q2) A 120 V shunt motor has the following parameters: $\rm Ra$ = 0.4 $\rm \Omega$, $\rm RF$ = 120 $\rm \Omega$ and rotational (core, mechanical and stray) losses are 240 W. On full load, the line current is 19.5 A and the motor runs at 1200 rpm, find:

- The developed power
- The output power, and
- The output torque.

(a)
$$
I_a = I_L - I_f
$$

\n $I_f = \frac{120}{120} = 1A \Rightarrow I_a = 19.5 - 1 = 18.5 \text{ A}$
\n $E_c = V_T - I_a R_a = 120 - (18.5)^*(0.4) = 112.6 \text{ V}$
\n $P_{developed} = E_c * I_a = 112.6 * 18.5 = 2083.1 \text{ watt}$
\n(b) $P_{out} = P_{developed} - rotational losses = 2083 - 240 = 1843 \text{ watt}$
\n(c) $\tau_{out} = \frac{P_{out}}{\omega} = \frac{1843}{\frac{2\pi}{60}} = 14.67 \text{ N.m}$

Separately Excited DC Motors

- The armature winding supplies the load.
- The field winding is supplied by a separate DC source whose voltage is variable.
- –Good speed control.

Separately Excited DC Motors

Series DC Motors

- The armature and field winding are connected in series.
- –High starting torque.

Series DC Motors

By KVL around the loop: $V_{\mathcal{T}}$ - I_A ^{$(R_A + R_f)$} -- E_{C} = 0

$$
E_C = k_g \phi n \text{ but}
$$

$$
I_A \propto \phi, \text{ so } I_A = m\phi
$$

$$
E_C = kI_A n
$$

- Q1) A DC series motor is operated at full load from a 240 V supply at a speed of 600 rpm. The EC is found to be 217.2 V at a line current of 38 A, find:
- a) The armature resistance assuming the series field resistance is 0.2 Ω.
- b) Find the no-load speed given that the no-load current is 1 A.

$$
(a) Vt = Ec + Ia * (Ra + Rf)
$$

\n
$$
\Rightarrow Ra + Rf = \frac{240 - 217.2}{38} = 0.6 \,\Omega
$$

(b) At no load:
\n
$$
E_c = 240 - 1*0.6 = 239.6 \text{ V}
$$

\n $\frac{E_{c2}}{E_{c1}} = \frac{n_2 I_{a2}}{n_1 I_{a1}} \Rightarrow n_2 = 25,151 \text{ rpm}$

Compound DC Motors

Speed Control of DC Motors

Speed can be controlled by varying:

- 1) Armature circuit resistance using an external resistance $R_{\scriptstyle A \, Ext}$
- $2)$ I_F can be varied by using an external resistance R_{adj} in series with R_{F} to control the flux, hence the speed.
- 3) The applied voltage to the armature circuit resistance, if the motor is separately excited

Torque developed by shunt motor

$$
V_T = E_C + I_A R_A \text{ so}
$$

\n
$$
V_T = k_m \phi \omega + I_A R_A \text{ but}
$$

\n
$$
I_A = \frac{T}{k_m \phi} \text{ so}
$$

\n
$$
V_T = k_m \phi \omega + \frac{T}{k_m \phi} R_A \text{ solving for } \omega
$$

\n
$$
\omega = \frac{V_T}{k_m \phi} - \frac{R_A}{(K_m \phi)^2} T
$$

Torque developed by shunt motor

If $V_\mathcal{T}$ and $I_\mathcal{F}$ (hence $\stackrel{\bullet}{\mathscr{F}}$) are constant, speed is directly proportional to the torque

Torque developed by series motor

3/23/2007 ELEC A6 DC Machine

Comparison between different DC Motors

Comparison of DC Motors

Shunt Motors: "Constant speed" motor (speed regulation is very good). Adjustable speed, medium starting torque. (_{Start} = 1.4 × *T_{FL}*) **Applications: centrifugal pump, machine tools, blowers fans, reciprocating pumps, etc.**

Series Motors: Variable speed motor which changes speed drastically from one load condition to another. It has a high starting torque.

Applications: hoists, electric trains, conveyors, elevators, electric cars, etc.

Compound motors: Variable speed motors. It has a high starting torque and the no-load speed is controllable unlike in series motors.

Applications: Rolling mills, sudden temporary loads, heavy machine tools, punches, etc

Home work problems

Q no.1

A 30 hp, 240 V, 1150 rpm DC shunt motor, operating at rated conditions, has an efficiency of 88.5 percent. The armature resistance is 0.064 Ω and the field resistance is 93.6 Ω . Draw an equivalent circuit for the motor, and determine:

- what percentage of the total losses are due to rotation losses; a.
- the external resistance needed in series with the armature circuit to limit the starting \mathbf{b} . current to 175 percent of rated armature current on start-up; and,
- the new speed if the flux is reduced by 10 percent and the shaft load is adjusted to c. maintain rated armature current.

Home work problems

Q no.2

A 230 V DC shunt motor has a full-load efficiency of 89.9%. Rated (full) load is 40 hp. Motor losses, expressed as a percentage of output power are as follows: rotational losses -3.7%; armature copper loss - 3.9%; and, field copper loss - 2.5%. Stray load losses can be neglected. At full load, the motor speed is 1150 rpm. Neatly sketch an equivalent circuit for the DC shunt motor, and determine:

- the field current; a.
- the armature current at full load; \mathbf{b} .
- the armature current at half load; c.
- the armature current at no load; and, d.
- the shaft torque at full load. e.