Lecture Notes ELE 6A

Ramadan El-Shatshat

Single Phase circuit

Circuit Elements

9/12/2006 ELE 6A Single-phase Circuit 2

Resistor Connections

Ohms Law

$V= I \ ^{\ast }R$

Where:

 $V = voltage$ =

I= current

$R = resistance$

KCL

For any node in the circuit:

$$
I_A = I_B + I_C + I_D
$$

The summation of currents entering a node is equal to the currents leaving a node.

KVL

For any closed loop:

$$
\sum V = 0
$$

The summation of voltages in any closed loop is equal to zero.

Example 1

• Find I_{o} (-0.25 mA)

Example 2

• Find $I_2(1 \text{ A})$

• **Single phase circuit components:**

- •Voltage or current sources.
- • Impedances (resistance, inductance, and capacitance).
- The components are connected in series or in parallel.
- The figure shows a simple circuit where a voltage source (generator) supplies a load (resistance and inductance in series).

 \bullet **The voltage source produces a sinusoidal voltage wave)(** $v(t) = \sqrt{2} V_{rms} \sin(\omega t)$

where: Vrms is the rms value of the voltage (volts) w is the angular frequency of the sinusoidal function (rad/sec)

$$
\omega = 2\pi f = \frac{2\pi}{T} \text{ rad/sec} \qquad f = \frac{1}{T} \quad \text{Hz}
$$

f is the frequency (60 Hz in USA, 50 Hz in Europe). T is the time period (seconds).

The RMS value is calculated by

$$
V_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt}
$$

For sinusoidal signal the RMS value =

$$
V_{\rm rms} = \frac{V_{\rm peak}}{\sqrt{2}}
$$

Unless it is stated in the question, all the given values are in RMS value.

- **The current is also sinusoidal)t(** $i(t) = \sqrt{2} I_{rms} \sin(\omega t - \phi)$
- **where: I rms is the rms value of the current.** φ **is the phase-shift between current and voltage.**
- **The RMS current is calculated by the Ohm's Law:** $I_{\text{rms}} = \frac{V_{\text{rms}}}{Z}$ =
	- **where: Z is the impedance**

 \boldsymbol{Z}

- **The impedances (in Ohms) are :**
	- **a) Resistance (R)**
	- **b) Inductive reactance** $\rm X_{\rm L}$ = ω L

c) Capacitive reactance

$$
X_C = \frac{1}{\omega C}
$$

 \bullet **The impedance of a resistance and a reactance connected in series is :**

$$
Z = \sqrt{R^2 + X^2}
$$

 \bullet **The phase angle is :**

$$
\phi = \tan^{-1} \frac{X}{R}
$$

•Impedance calculation

Inductive circuit

- •The φ phase-shift between the current and voltage is negative.
- •The current is lagging with respect to the voltage.

Capacitive circuit

- •The φ phase shift between the current and voltage is positive.
- •The current is leading with respect to the voltage.

9/12/2006 ELE 6A Single-phase Circuit 16

Complex Notation

- **Engineering calculations need the amplitude (rms value) and phase angle of voltage and current.**
- **The amplitude and phase angle can be calculated using complex notation.**
- **The voltage, current, and impedance are expressed by complex phasors.**

Single Phase Circuit (AC)

Review

Complex Notation

Impedance phasor: (resistance, capacitor, and inductance connected in series)

Rectangular form:

$$
\mathbf{Z} = \mathbf{R} + \mathbf{j}\,\omega\,\mathbf{L} + \left(\frac{1}{\mathbf{j}\,\omega\,\mathbf{C}}\right) = \mathbf{R} + \mathbf{j}\left(\mathbf{X}_{\mathbf{L}} - \mathbf{X}_{\mathbf{C}}\right) = \mathbf{R} + \mathbf{j}\,\mathbf{X}_{\mathbf{T}}
$$

 $R = Z \cos{(\phi)}$ $X = Z \sin{(\phi)}$

9/12/2006 ELE 6A Single-phase Circuit 18

Complex Notation

 \bullet **Voltage phasor:**

 $V=|V| \angle \delta = |V| \cos \delta + j |V| \sin \delta$

where : V is the rms value, and δ is the phase angle **Note: The supply voltage phase angle is often selected as the reference with** $\delta = 0$

Complex Notation

 \bullet **Current phasor**

$$
\mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} = \frac{|\mathbf{V}| \angle \delta}{|Z| \angle \varphi} = \frac{|\mathbf{V}|}{|Z|} \angle (\delta - \varphi) = \frac{|\mathbf{V}|}{|Z|} [\cos (\delta - \phi) + j \sin (\delta - \phi)]
$$

Example 1:

18.75*i* - 18.74 – 90 $5 j + (-5 j)$ $(3.75) = 5 j + \frac{3}{2} j + \$ $3.75 - 5i$ 6.25 -53.1 $Z = 5j + (-5j \mid 3.75) = 5j + \frac{-18.75j}{2.5j - 5j} = 5j + \frac{18.74[-90^{\circ}]}{2.5j + 5j} = 5j + 3j - 36.9^{\circ} = 2.4 + j$ *j* $= 5$ $j + (-5$ $j \parallel 3.75) = 5$ $j + \frac{-18.75j}{j} = 5$ $j + \frac{18.74[-90^{\circ}}{j} = 5$ $j + 3[-36.9^{\circ} = 2.4 + j3.2 = 4]53^{\circ} \Omega$ $-5i$ 6.25 - 53.1°

Example 2:

– Find V0

$$
Z = \frac{j}{2} \| \frac{-j}{3} = \frac{\frac{1}{6}}{\frac{j}{2} - \frac{j}{3}} = -j
$$

$$
I = \frac{2\angle 60}{1 - j} = \frac{2\angle 60}{\sqrt{2}\angle -45} = \sqrt{2}\angle 105
$$

 $V_{o} = I * Z = \sqrt{2} \angle 15$

Power calculation.

1) Instantaneous power

 $p(t) = v(t)i(t)=\sqrt{2} V \sin(\omega t) \sqrt{2} I \sin(\omega t - \phi)$

2) Real Power (Average Power) $P = VI/\cos(\phi)$ **Power factor**

3) Reactive Power

$$
Q = VI \sin{(\phi)}
$$

4) Complex Power

- •**The complex notation can be used for power calculation.**
- • **The complex power is defined as : Voltage times the conjugate of the current.**

$$
S = V \bar{I} = VI \left[cos \left(\phi \right) \pm j sin \left(\phi \right) \right] = P \dot{=} j Q
$$
\nPositive for Inductive load

\n0

\n0

Example 3

A generator supplies a load through a feeder whose impedance is $Z_{\text{feeder}} = 1 + 1$ j2. The load impedance is $Z_1 = 8 + j6$. The voltage across the load is 120 V.

Find the real power and reactive power supplied by the generator.

