Professional Engineers Ontario

Electromagnetic Energy Conversion Exam: 98-Elec-A6

Spring 2005

Notes:

- 1. This exam consists of two parts: Part 1 consists of 30 multiple choice questions, and Part 2 consists of problems. For Part 1, please use the answer sheet provided at the back of the exam. For Part 2, you have a choice of questions do <u>only</u> 2 of the 4 questions given. If you attempt more than two questions, clearly indicate which questions should be marked; otherwise, the first two questions found in the answer booklet will be the only ones marked.
- 2. You may use one of the approved Casio or Sharp calculators.
- 3. This is a closed book exam. Formulae sheets are attached. Candidates are allowed to bring ONE aid sheet 8.5" x 11" hand-written on both sides containing notes and formulae. Note, no example or solution problems and no figures allowed. The aid sheet must be submitted with the written exam paper.
- 4. All ac voltages and currents are rms values unless noted otherwise. For three-phase circuits, all voltages are line-to-line voltages unless noted otherwise.
- 5. You may use pencil for this exam.

If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.

Part 1 - Multiple Choice

- 1. The power waveform in an ac circuit is a sine wave at double the source frequency.
 - a. True.
 - b. False, because the average power is greater than zero.
 - c. True, but only with a resistive load.
 - d. False, because the power waveform has the same frequency as the source.
- 2. In a transformer, the secondary voltage can rise above its rated voltage when the load is:
 - a. resistive.
 - b. capacitive.
 - c. inductive.
 - d. none of the above.
- 3. The short-circuit secondary current in a transformer is 2 A. What is the primary current if the transformer turns ratio is 2:5?
 - a. 2 A
 - b. 5 A
 - c. 2.5 A
 - d. 0.8 A
- 4. An ideal 400 Hz transformer is to be used in a 60 Hz system. Which of the following statements is correct if the maximum permissible flux is not to be exceeded?
 - a. The maximum voltage that should be applied in this case is the same as it was for 400 Hz.
 - b. The maximum voltage that should be applied is 667% of the rated voltage in the 400 Hz system.
 - c. The maximum voltage that should be applied is 15% of the rated voltage in the 400 Hz system.
 - d. A transformer can only be used at the frequency for which it was designed.
- 5. For the circuit shown below, the instrument readings are as follows: Wattmeter: 400 W; Voltmeter: 100 V; and, Ammeter: 5.0 A. The values of R and X_L are:
 - a. 16 Ω and 12 Ω , respectively
 - b. 25 Ω and 22.37 Ω , respectively
 - c. 20 Ω and 22.37 Ω , respectively
 - d. 20 Ω and 12 Ω , respectively

- 6. The apparent power rating of a 10:1 autotransformer is 450 VA. This means that the apparent rating of the secondary is
 - a. 45 VA.
 - b. 4500 VA.
 - c. 450 VA.
 - d. None of the above.
- 7. The line voltage at the secondary of a three-phase transformer connected Δ -Y is 208 V. What is the line voltage at the primary if the turns ratio is 10:1?
 - a. 2080 V.
 - b. 1200 V.
 - c. 3600 V.
 - d. 3280 V.
- 8. A DC motor turns at a speed of 1460 rpm and produces an output torque of 23.5 N-m (208 in-lbf). The DC voltage applied to the motor is 280 V and a current of 14.1 A flows through the motor. What is the efficiency of the motor?
 - a. 94%
 - b. 91%
 - c. 79%
 - d. 86%
- 9. What are the two main categories of losses for rotating machines?
 - a. Copper and iron losses.
 - b. Electrical and copper losses.
 - c. Mechanical and iron losses.
 - d. Electrical and mechanical losses.
- 10. The motor of a water pump produces an output torque of 10 N-m (88.5 in-lbf) at a speed of 3000 rpm. How much work is done by the pump motor if it turns for 10 minutes?
 - a. 31.4 kW
 - b. 3.14 kJ
 - c. 1.88 MJ
 - d. 31.4 kJ
- 11. If the armature connections to a universal motor are reversed, the
 - a. armature current will decrease
 - b. direction of rotation will reverse
 - c. motor will stop rotating
 - d. motor speed will become unstable

- 12. The direction of rotation of a DC series motor or a universal motor connected to a DC power source
 - a. depends on the polarities of the armature and field currents
 - b. depends exclusively on the polarity of the armature current
 - c. depends exclusively on the polarity of the field current
 - d. depends on the connection of the compensating winding
- 13. Does the speed of a squirrel-cage induction motor increase or decrease when the motor load increases?
 - a. It increases.
 - b. It decreases.
 - c. Neither it stays the same.
 - d. The speed oscillates around the original value.
- 14. A squirrel-cage induction motor always requires
 - a. reactive power to maintain the rotating magnetic field.
 - b. active power to create the rotating magnetic field.
 - c. a source of DC power to operate correctly.
 - d. a prime mover to help it start.
- 15. What will be the output voltage of an asynchronous generator turning at its synchronous speed if the generator is not connected to an ac source?
 - a. It will be zero except for a small voltage variation due to residual magnetism.
 - b. It will depend on the direction of rotation.
 - c. It will equal the nominal voltage rating of the generator.
 - d. It will be much higher than if the generator were connected to an ac source.
- 16. How is motor torque affected when the motor voltage is decreased for a three-phase induction motor?
 - a. It increases.
 - b. It decreases.
 - c. It does not change.
 - d. It depends on the speed of the motor.
- 17. When the strength of the stator electromagnet is increased, the torque produced by a squirrelcage induction motor
 - a. does not change.
 - b. decreases.
 - c. increases.
 - d. Torque only depends on the motor input voltage.

- 18. The current in the stator winding of a squirrel-cage induction motor greatly increases when the nominal winding voltage is exceeded because
 - a. the motor develops a large torque.
 - b. saturation occurs in the motor.
 - c. squirrel-cage reaction occurs in the motor.
 - d. reactive power is consumed in the motor.
- 19. What advantage is obtained by reducing the voltage applied to a squirrel-cage induction motor?
 - a. The line current is reduced during starting.
 - b. The motor brushes suffer less damage and wear.
 - c. The starting torque is increased.
 - d. The danger of motor runaway is avoided.
- 20. The direction of rotation of a three-phase squirrel-cage induction motor depends on the
 - a. residual magnetism in the squirrel-cage rotor.
 - b. interaction of the stator and rotor magnetic fields.
 - c. design of the induction motor.
 - d. phase sequence of the voltage applied to the motor stator windings.
- 21. When a synchronous motor without load is connected to a three-phase ac power network, the resulting power factor depends on
 - a. the speed of the motor.
 - b. the active power consumed by the motor.
 - c. the amount of the field current.
 - d. the line current.
- 22. A squirrel cage in a synchronous motor with a rotor of the electromagnet type
 - a. allows the motor to start when ac power is applied to the stator windings.
 - b. prevents saturation of the rotor electromagnet.
 - c. minimizes the line current.
 - d. makes the motor operate as a synchronous condenser.
- 23. When the load torque in a synchronous motor is increased, the pull-out torque
 - a. decreases.
 - b. increases.
 - c. does not change
 - d. increases momentarily until the speed stabilizes.

- 24. The output voltage of a synchronous generator is a function of the
 - a. speed of rotation and polarity of the field current.
 - b. speed of rotation and strength of the field electromagnet.
 - c. speed of rotation and input torque.
 - d. speed of rotation only.
- 25. For a synchronous generator to deliver a constant output voltage at a fixed frequency,
 - a. both its speed and field current must be controlled.
 - b. only its speed must be controlled.
 - c. only its excitation current must be controlled.
 - d. the load must be only resistive.
- 26. Active power to overcome the rotation friction of a synchronous generator that is "floating" on the ac power network comes from
 - a. the network.
 - b. the ac power supply.
 - c. the prime mover turning the generator.
 - d. the field current.
- 27. A three-phase synchronous generator with thirty pairs of poles per stator winding produces voltages at a frequency of 60 Hz when it rotates at the nominal speed. What is the nominal speed of the generator?
 - a. 120 rpm.
 - b. 360 rpm.
 - c. 1800 rpm.
 - d. 3600 rpm.
- 28. When a synchronous generator supplies power to either a resistive or an inductive load, the output voltage
 - a. decreases as the output current increases.
 - b. increases as the output current increases.
 - c. remains constant as the output current varies.
 - d. decreases as the field current increases.

- When a single synchronous generator supplies power to a load that fluctuates, the voltage 29. and frequency can be maintained constant by continually adjusting the
 - a. generator speed only.
 - b. position of the stator windings.
 - c. speed and field current of the generator.
 - d. field current only.
- When a synchronous generator is synchronized with an ac power network, increasing the 30. torque applied to the generator's shaft
 - a. increases the reactive power the generator delivers.
 - b. increases the active power the generator delivers.
 - c. decreases the reactive power the generator delivers.
 - d. increases the generator's speed.

Part 2 - Problems - Do ONLY 2 of these 4 questions. Each question is worth 20 marks.

1. A 208V/120 V, 60 Hz, 1800 VA transformer has the following parameters:

$$R_C = 416 \Omega \text{ (HV side)}$$

$$R_{eq} = 0.21 \Omega \text{ (LV side)}$$

$$X_m = 172 \Omega \text{ (HV side)}$$
 $X_{eq} = 0.98 \Omega \text{ (LV side)}$

$$X_{eq} = 0.98 \Omega \text{ (LV side)}$$

(Note: HV = high voltage side; LV = low voltage side)

The transformer is to be used as a step-down transformer.

- If an open-circuit and short-circuit test were performed on this transformer, what a. would be the wattmeter reading for each test condition? You may place the measuring instruments in either winding.
- Determine the efficiency and percent voltage regulation if a 1200 W load with a b. power factor of 0.67 lagging connected to the low voltage side, and the voltage across the load is the rated voltage, i.e., 120 V.
- Repeat part (b) if the load is changed to a capacitive impedance of 12 Ω . c.

- 2. The circuit below shows the power distribution circuit for part of a small factory. The loads consist of a three-phase induction motor driving a constant speed pump, a second induction motor driving a constant speed fan, and a three-phase electric heater. Each load can be considered to be a balanced three-phase load.
 - a. Determine the readings of the 4 ammeters indicated (recall that ammeters read only rms magnitudes).
 - b. If all loads are on 24 hours per day, and energy costs are 9.4¢ per kWh, determine the daily energy costs.
 - c. Determine the overall power factor for this circuit.
 - d. If Induction Motor 2 were to be replaced with a synchronous motor that can supply the same output power, but at a leading power factor of 0.8, determine the new daily energy costs and the new overall power factor.

- 3. For a terminal voltage of 220 V DC, a DC shunt motor has a rated armature current of 50 A and a field current of 1.5 A, and a speed of 1000 rpm. No-load tests indicate the rotational losses at this speed are 1100 W. The armature resistance is 0.4 Ω . Determine:
 - a. the no-load speed;
 - b. the output power and torque under rated conditions;
 - c. the full-load efficiency; and,
 - d. the resistance that must be inserted in the armature winding during start up to limit the current to twice the rated value.
- 4. A three-phase, 60 Hz, 4-pole induction motor provides the following per-phase readings:

	Voltage	Current	Power
No-load test	254 V	13.7 A	900 W
Blocked rotor test	91.8 V	45 A	810 W

- a. Determine the parameters of the per-phase equivalent circuit for this motor.
- b. Determine the output torque developed by this motor for 5% slip.

END OF THE EXAM

Useful formulae

$$P = VI\cos\theta = \frac{V_R^2}{R} = I^2R = Re[VI^*]$$

$$Q = VI\sin\theta = \frac{V_X^2}{X} = I^2X = Im[VI^*]$$

$$S = VI^*$$

$$|S| = \sqrt{P^2 + Q^2} = VI = I^2Z = \frac{V^2}{Z}$$

$$pf. = \cos\theta = \frac{R}{Z} = \frac{P}{S}$$

$$P_T = \sqrt{3}V_LI_L\cos\theta = 3P_P \qquad P_P = V_PI_P\cos\theta$$

$$Q_T = \sqrt{3}V_LI_L\sin\theta = 3Q_P \qquad Q_P = V_PI_P\sin\theta$$

$$S_T = \sqrt{3}V_LI_L \qquad S_P = V_PI_P$$

$$B = \frac{\Phi}{A} = \mu H = \mu \frac{\mathcal{F}}{l} = \mu \frac{Ni}{l} \qquad \left[\frac{Wb}{m^2} = T\right]$$

$$H = \frac{NI}{l} = \frac{B}{\mu} = \frac{\Phi/A}{\mu} \qquad \left[\frac{A-t}{m}\right]$$

$$\mathcal{F} = Ni = \Phi \frac{l}{\mu A} = \Re \Phi \qquad [A-t]$$

$$\Re = \frac{l}{\mu A} \qquad \left[\frac{A-t}{Wb}\right]$$

$$\mu_0 = 4\pi \times 10^{-7} \frac{Wb}{A-t-m} \qquad \mu = \mu_0 \mu_r$$

$$P_e = K_f f^2 B_{\text{max}}^2 V_{vol} \qquad P_h = K_h f B_{\text{max}}^x V_{vol}$$

$$L = \frac{N^2}{\Re}$$

$$V_{t} = E_{a} + I_{a}R_{a}$$

$$E_{a} = K_{a}\Phi\omega$$

$$T = K_{a}\Phi I_{a}$$

$$P_{input} = V_{t}I_{L}$$

$$P_{dev} = E_{a}I_{a} = T_{dev}\omega_{m}$$

$$P_{out} = P_{dev} - P_{rot} = T_{out}\omega_{m}$$

$$P_{rot} = \text{No load } P_{dev}$$

$$n_{s} = 120 \frac{f}{p}$$

$$s = \frac{n_{s} - n_{m}}{n_{s}}$$

$$P_{input} = 3V_{1}I_{1}\cos\theta$$

$$P_{gap} = P_{input} - 3I_{1}^{2}R_{1} = 3I_{2}^{2} \frac{R_{2}^{\prime}}{s} = T_{dev}\omega_{s}$$

$$3I_{2}^{\prime 2}R_{2}^{\prime} = sP_{gap}$$

$$P_{dev} = P_{gap} - 3I_{2}^{\prime 2}R_{2}^{\prime} = (1 - s)P_{gap}$$

$$P_{out} = P_{dev} - P_{rot} = T_{out}\omega_{m}$$

$$\mathbf{E}_{f} = \mathbf{V}_{t} + \mathbf{I}_{a}(R_{a} + jX_{s})$$

$$P = \frac{3V_{t}E_{f}}{X_{s}}\sin\delta$$

 $I_L = I_f + I_a$