#### ELEC B7

#### **Load Flow**

## Load Models

- Ultimate goal is to supply loads with electricity at constant frequency and voltage
- Electrical characteristics of individual loads matter, but usually they can only be estimated
  - actual loads are constantly changing, consisting of a large number of individual devices
  - only limited network observability of load characteristics
- Two common models
  - constant power:  $S_i = P_i + jQ_i$
  - constant impedance:  $S_i = |V|^2 / Z_i$

#### **Generator Models**

- Generators are usually synchronous machines
- For generators we will use two different models:
  - a steady-state model, treating the generator as a constant power source operating at a fixed voltage; this model will be used for power flow and economic analysis
  - a short term model treating the generator as a constant voltage source behind a possibly timevarying reactance



## **Power Flow Analysis**

- We now have the necessary models to start to develop the power system analysis tools
- The most common power system analysis tool is the power flow (also known sometimes as the load flow)
  - power flow determines how the power flows in a network
  - also used to determine all bus voltages and all currents
  - because of constant power models, power flow is a nonlinear analysis technique
  - power flow is a steady-state analysis tool

#### Linear versus Nonlinear Systems

A function **H** is linear if

$$\mathbf{H}(\alpha_1\mu_1 + \alpha_2\mu_2) = \alpha_1\mathbf{H}(\mu_1) + \alpha_2\mathbf{H}(\mu_2)$$
  
That is

1) the output is proportional to the input 2) the principle of superposition holds **Linear Example:** y = H(x) = c x $y = c(x_1 + x_2) = cx_1 + cx_2$ Nonlinear Example:  $y = H(x) = c x^2$  $\mathbf{y} = c(\mathbf{x}_1 + \mathbf{x}_2)^2 \neq (c\mathbf{x}_1)^2 + (c\mathbf{x}_2)^2$ 

#### Linear Power System Elements

Resistors, inductors, capacitors, independent voltage sources and current sources are linear circuit elements

$$V = RI \quad V = j\omega LI \quad V = \frac{1}{j\omega C}I$$

Such systems may be analyzed by superposition



#### **Nonlinear Power System Elements**

•Constant power loads and generator injections are nonlinear and hence systems with these elements can not be analyzed by superposition  $R_i \qquad R_s$ 



Nonlinear problems can be very difficult to solve, and usually require an iterative approach

## Nonlinear Systems May Have Multiple Solutions or No Solution

•Example 1:  $x^2 - 2 = 0$  has solutions  $x = \pm 1.414$ 

•Example 2:  $x^2 + 2 = 0$  has no real solution

 $f(x) = x^2 - 2$   $f(x) = x^2 + 2$ 



## Multiple Solution Example 3

The dc system shown below has two solutions:



where the 18 watt load is a resistive load

The equation we're solving is

$$I^{2}R_{Load} = \left(\frac{9 \text{ volts}}{1\Omega + R_{Load}}\right)^{2} R_{Load} = 18 \text{ watts}$$
  
One solution is  $R_{Load} = 2\Omega$   
Other solution is  $R_{Load} = 0.5\Omega$ 

## Bus Admittance Matrix or Y<sub>bus</sub>

- First step in solving the power flow is to create what is known as the bus admittance matrix, often call the Y<sub>bus</sub>.
- The Y<sub>bus</sub> gives the relationships between all the bus current injections, I, and all the bus voltages, V,
   I = Y<sub>bus</sub> V
- The Y<sub>bus</sub> is developed by applying KCL at each bus in the system to relate the bus current injections, the bus voltages, and the branch impedances and admittances

## Y<sub>bus</sub> Example

Determine the bus admittance matrix for the network shown below, assuming the current injection at each bus i is  $I_i = I_{Gi} - I_{Di}$  where  $I_{Gi}$  is the current injection into the bus from the generator and  $I_{Di}$  is the current flowing into the load



$$Y_{\text{bus}} \text{ Example, cont'd}$$
  
By KCL at bus 1 we have  
$$I_1 \square I_{G1} - I_{D1}$$
$$I_1 = I_{12} + I_{13} = \frac{V_1 - V_2}{Z_A} + \frac{V_1 - V_3}{Z_B}$$
$$I_1 = (V_1 - V_2)Y_A + (V_1 - V_3)Y_B \quad (\text{with } Y_j = \frac{1}{Z_j})$$
$$= (Y_A + Y_B)V_1 - Y_A V_2 - Y_B V_3$$
Similarly  
$$I_2 = I_{21} + I_{23} + I_{24}$$
$$= -Y_A V_1 + (Y_A + Y_C + Y_D)V_2 - Y_C V_3 - Y_D V_4$$

## Y<sub>bus</sub> Example, cont'd

We can get similar relationships for buses 3 and 4 The results can then be expressed in matrix form

$$\mathbf{I} = \mathbf{Y}_{bus} \mathbf{V}$$

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} Y_A + Y_B & -Y_A & -Y_B & 0 \\ -Y_A & Y_A + Y_C + Y_D & -Y_C & -Y_D \\ -Y_B & -Y_C & Y_B + Y_C & 0 \\ 0 & -Y_D & 0 & Y_D \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix}$$

For a system with n buses,  $Y_{bus}$  is an n by n symmetric matrix (i.e., one where  $A_{ij} = A_{ji}$ )

# Y<sub>bus</sub> General Form

•The diagonal terms,  $Y_{ii}$ , are the self admittance terms, equal to the sum of the admittances of all devices incident to bus i.

- •The off-diagonal terms,  $Y_{ij}$ , are equal to the negative of the sum of the admittances joining the two buses.
- With large systems Y<sub>bus</sub> is a sparse matrix (that is, most entries are zero)
- •Shunt terms, such as with the  $\pi$  line model, only affect the diagonal terms.

#### Two Bus System Example



## Using the $Y_{\mbox{\scriptsize bus}}$

If the voltages are known then we can solve for the current injections:

 $\mathbf{Y}_{bus}\mathbf{V}=\mathbf{I}$ 

If the current injections are known then we can solve for the voltages:

$$\mathbf{Y}_{bus}^{-1}\mathbf{I} = \mathbf{V} = \mathbf{Z}_{bus}\mathbf{I}$$

where  $\mathbf{Z}_{bus}$  is the bus impedance matrix

## Solving for Bus Currents

For example, in previous case assume

$$\mathbf{V} = \begin{bmatrix} 1.0\\ 0.8 - j0.2 \end{bmatrix}$$

Then

$$\begin{bmatrix} 12 - j15.9 & -12 + j16 \\ -12 + j16 & 12 - j15.9 \end{bmatrix} \begin{bmatrix} 1.0 \\ 0.8 - j0.2 \end{bmatrix} = \begin{bmatrix} 5.60 - j0.70 \\ -5.58 + j0.88 \end{bmatrix}$$
  
Therefore the power injected at bus 1 is  
 $S_1 = V_1 I_1^* = 1.0 \times (5.60 + j0.70) = 5.60 + j0.70$ 

 $S_2 = V_2 I_2^* = (0.8 - j0.2) \times (-5.58 - j0.88) = -4.64 + j0.41$ 

## Solving for Bus Voltages

For example, in previous case assume

 $\mathbf{I} = \begin{bmatrix} 5.0\\ -4.8 \end{bmatrix}$ 

Then

 $\begin{bmatrix} 12 - j15.9 & -12 + j16 \\ -12 + j16 & 12 - j15.9 \end{bmatrix}^{-1} \begin{bmatrix} 5.0 \\ -4.8 \end{bmatrix} = \begin{bmatrix} 0.0738 - j0.902 \\ -0.0738 - j1.098 \end{bmatrix}$ Therefore the power injected is  $S_{1} = V_{1}I_{1}^{*} = (0.0738 - j0.902) \times 5 = 0.37 - j4.51$  $S_{2} = V_{2}I_{2}^{*} = (-0.0738 - j1.098) \times (-4.8) = 0.35 + j5.27$ 

## **Power Flow Analysis**

- When analyzing power systems we know neither the complex bus voltages nor the complex current injections
- Rather, we know the complex power being consumed by the load, and the power being injected by the generators plus their voltage magnitudes
- Therefore we can not directly use the Y<sub>bus</sub> equations, but rather must use the power balance equations

#### **Power Balance Equations**

From KCL we know at each bus i in an n bus system the current injection,  $I_i$ , must be equal to the current that flows into the network

1/1

$$I_i = I_{Gi} - I_{Di} = \sum_{k=1}^n I_{ik}$$

Since  $\mathbf{I} = \mathbf{Y}_{bus} \mathbf{V}$  we also know

$$I_i = I_{Gi} - I_{Di} = \sum_{k=1}^n Y_{ik} V_k$$

The network power injection is then  $S_i = V_i I_i^*$ 

Power Balance Equations,  $cont'd_{*}$   $S_{i} = V_{i}I_{i}^{*} = V_{i}\left(\sum_{k=1}^{n}Y_{ik}V_{k}\right) = V_{i}\sum_{k=1}^{n}Y_{ik}^{*}V_{k}^{*}$ 

This is an equation with complex numbers. Sometimes we would like an equivalent set of real power equations. These can be derived by defining  $Y_{ik} \square G_{ik} + jB_{ik}$  $V_i \square |V_i|e^{j\theta_i} = |V_i| \angle \theta_i$  $\theta_{ik} \square \theta_i - \theta_k$ 

Recall  $e^{j\theta} = \cos\theta + j\sin\theta$ 

#### **Real Power Balance Equations**

$$S_{i} = P_{i} + jQ_{i} = V_{i}\sum_{k=1}^{n}Y_{ik}^{*}V_{k}^{*} = \sum_{k=1}^{n}|V_{i}||V_{k}|e^{j\theta_{ik}}(G_{ik} - jB_{ik})$$

$$= \sum_{k=1}^{n} |V_i| |V_k| (\cos \theta_{ik} + j \sin \theta_{ik}) (G_{ik} - jB_{ik})$$

#### Resolving into the real and imaginary parts

11

$$P_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di}$$

$$Q_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} | (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di}$$

## Slack Bus

- We can not arbitrarily specify S at all buses because total generation must equal total load + total losses
- We also need an angle reference bus.
- To solve these problems we define one bus as the "slack" bus. This bus has a fixed voltage magnitude and angle, and a varying real/reactive power injection.

## Three Types of Power Flow Buses

- There are three main types of power flow buses
  - Load (PQ) at which P/Q are fixed; iteration solves for voltage magnitude and angle.
  - Slack at which the voltage magnitude and angle are fixed; iteration solves for P/Q injections
  - Generator (PV) at which P and |V| are fixed; iteration solves for voltage angle and Q injection

## Generator Reactive Power Limits

- The reactive power output of generators varies to maintain the terminal voltage; on a real generator this is done by the exciter
- To maintain higher voltages requires more reactive power
- Generators have reactive power limits, which are dependent upon the generator's MW output
- These limits must be considered during the power flow solution.

#### Home Work

Consider the system shown in the single-line diagram of Figure 2, where all line admittances are identical and have the same value of  $Y_L = -j5$ .

- b- Write the bus admittance matrix of the system Y. What are the primary unknowns for the power flow problem for the system? [5 points]
- c- Write the power flow equations assuming that bus 1 is the slack bus whose voltage is unity and whose angle is zero. Bus 2 is maintained at a voltage of 1.025 [5 points]



#### Home Work

Consider the system shown in the single-line diagram of Figure 2, where the line admittance between bus 1 and 2 is the same as that between bus 1 and 3 as:  $Y_L = 4 - j5$ . It is required to:

- b- Find the voltage  $V_2$  and its phase angle exactly given that  $S_{D2} = 0.8 + j0.6$ . [5 points]
- c- Find the voltage  $V_3$  and its phase angle exactly given that  $S_{D3} = 0.4 + j0.3$  [5 points]
- d- Find the value of  $S_{G1}$  and the generator power factor. [5 points]

