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Fault Analysis
• Fault?

When the insulation of the system breaks down or a 
conducting object comes in touch with a live point, a short 
circuit or a fault occurs.

• Sources?
• This breakdown can be due to a variety of different factors

• lightning
• wires blowing together in the wind
• animals or plants coming in contact with the wires
• salt spray or pollution on insulators 



Fault Types
• There are two classes of faults

– Balanced faults (symmetric faults): A Fault involving all the three 
phases 

• system remains balanced; 
• these faults are relatively rare, but are the easiest to analyze so 

we’ll consider them first.
– Unbalanced faults (unsymmetric faults): A fault involving only one 

or two phases
• The majority of the faults are unsymmetrical. 
• system is no longer balanced; 
• very common, but more difficult to analyze

• The most common type of fault on a three phase system is 
the single line-to-ground (SLG), followed by the line-to- 
line faults (LL), double line-to-ground (DLG) faults, and 
balanced three phase faults
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Fault Analysis
• Fault Analysis involve finding the voltage and current 

distribution throughout the system during fault condition.
• Fault currents cause equipment damage due to both 

thermal and mechanical processes
• Why do we need that?

– To adjust and set the protective devices so we can 
detect any fault and isolate the faulty portion of the 
system.

– To protect the human being and the equipment during 
the abnormal operating conditions.

– need to determine the maximum current to insure 
devices can survive the fault



Symmetrical Faults 
(Balanced Faults)

• It is the most severe fault but can be easily calculated

• It is an important type of fault 

• The circuit breaker rated MVA breaking capacity is 
selected based on the three phase short circuit MVA.

A Fault involving 
all the three phases.
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1. Synchronous machines are represented by a constant 
voltage sources behind subtransient reactances. The EMF 
of all generators are 1 per unit making zero angle. 

oV 01

The following assumptions are made in three phase fault 
calculation :

This means that the system voltage is at its nominal 
value and the system is operating at no-load conditions 
at the time of fault. 

Therefore, All the generators can be replaced by a single 
generator since all EMFs are equal and are in phase.



2. Transformers are represented by their leakage reactances

Winding resistances, shunt admittances and Δ-Y phase 
shifts are neglected

3. The shunt capacitances of the transmission

Lines
 

are neglected.

4. The system resistances are neglected
 

and only 

the inductive reactance of different elements are 

taken into account.
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1. Simple Circuits and Load is ignored

1. Draw a single line diagram for 
the system.

The Calculations for the three phase fault are easy because the 

circuit is completely symmetrical and calculations can be done 

for only one phase.
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Steps For Calculating Symmetrical Faults:

2. Select a common base and find 
out the per unit reactances of all 
generators, transformers, 
transmission lines, etc. 



4. Reduce the single line reactance diagram by using 
series, parallel and Delta-Why transformations 
keeping the identity of the fault point intact. Find the 
total reactance of the system as seen from the fault 
point (Using Thevenin’s

 
Theorem)

3. From the single line 
diagram of the system 
draw a single line 
reactance diagram showing 
one phase and neutral. 
Indicate all the reactances, 
etc. on the single line 
reactance diagram. 
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5. Find the fault current and the fault MVA in 
per unit.

Convert the per unit values to actual values.

6. Retrace the steps to calculate the voltages 
and the currents throughout different parts 
of the power system
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Example:

A three phase fault occurs in the system as shown in the Figure.
Find the total fault current, the fault level and fault current 
supplied by each generator.



Step 1: Draw a single line diagram for the system.

The single line diagram for the system is given in the 
example as shown.

Solution:
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Step 2: Select a common base and find the per unit reactances of all 
generators, transformers, etc. 

Select the common base as:

100 MVA (100,000 kVA) 

11 kV for Transformer low voltage side (LV)

132 kV for Transformer high voltage side (HV)
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From the single line diagram of the system draw a single line reactance diagram 
showing one phase and neutral. Indicate all the reactances, etc. on the single line 
reactance diagram. 
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Find the total impedance
 

(reactance) of the system as seen from the 
fault side.
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The Fault Level is:
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The Fault Current at 11 kV side supplied by the two generators is:
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Example:
Consider the single-line diagram of a power system shown below. 
The transient reactance of each part of the system is as shown 
and expressed in pu on a common 100 MVA base. 
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Assuming that all generators are 
working on the rated voltages, when a 
three-phase fault with impedance of  
j0.16 pu occurs at bus 5. Find: The fault 
currents and buses voltages. 
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Problem:
For the network shown in the figure, find the current flowing between 
buses 3 and 4 during symmetrical three phase fault at bus 5 as in the 
previous example. 
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2. Symmetrical Faults Considering the load current

Generally, the fault currents are much larger than the load currents. Therefore, the 
load current  can be neglected during fault calculations.

The pre-fault voltage and the ZTH are used in calculating the fault current.

The fault current represents two components:
1. The Load Current
2. The Short Circuit Current

There are some cases where considering the load current is an essential factor in 
fault calculations. Superposition technique is proposed for such cases to compute the 
fault current.

For such case, it is necessary to compute the terminal voltage at fault location 
before fault takes place. This terminal voltage is known as the pre-fault voltage.

Connecting the load to the system
 

causes the current to flow in the network. Voltage 
drop due to system impedance cause the voltage magnitude at different buses to be 
deviated from 1.0 pu.



Consider a load (synchronous Motor) connected to a synchronous generator through 
a transmission line. The circuit model of the network could be represented as shown 
in the Figure
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During fault condition in the system, the generator as well as the load (synchronous 
motor) will supply the faulted terminals with power from the energy stored in their 
windings.



The Motor is drawing 40 MW at 0.8 pf. Leading with terminal 

voltage of 10.95 kV.

Calculate the total current in the generator and motor during 3 

phase s.c.

Example 

100 MVA, 11 kV 
Generator
0.25 pu
sub-transient 
reactance

50 MVA, Motor
0.2 pu
sub-transient 
reactance

0.05 pu. Reactance

On 100 MVA Base

3 phase 
fault

G M
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The network could be represented as 
shown in the Fig.
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Consider the motor terminal voltage as a reference.
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Using KVL, calculate the pre-fault voltage 
at the generator terminal.

Find the equivalent reactance as seen 
from the fault terminals.
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Calculate the fault current
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Consider the system shown 
in the Figure.

The two generators are 
supplying the buses 1, 2, 3 

and 4.

Let the pre-fault voltage 
between bus 2 and ref. Bus 

be (Vf ).

3 - Symmetrical Fault Calculation Using Bus Impedance 
Matrix
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If a 3 phase short circuit 
occurs a bus 2.

A huge current        
will run in the system 

during the fault 
condition.
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If the pre-fault voltage 
between bus 2 and ref. bus is 
Vf , then the voltage during 

fault is zero. 

Then, the system can be 
analyzed using the reactance 

circuit.



During the three-phase fault, the voltage between bus 2 and the 
reference becomes zero. Therefore, the 3 phase fault at bus 2 can be 
simulated by making the voltage between bus 2 and Ref. is equal to 
zero during the fault condition. 
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This is simulated by inserting 
a source with a magnitude 

equal to 

Therefore, the voltage 
between bus 2 and reference 

is zero and fault current 
runs in the system.
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This means that, the Fault current         during the three-phase short 
circuit  results  from the voltage source
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Therefore, to compute the 
short circuit current, we have 
to find the current entering 

bus 2 due to only      )( fV
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The Nodal Impedance Equation 
during the fault is:

Note:
is the voltage difference between node i and the reference node 

due to the current       .
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Or
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And from the second row, the fault current is:
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Substituting in the previous equation: 
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Assuming no load is connected in the system, no current will flow 
before fault and all bus voltages are the same and equal to the pre- 
fault voltage )V( f

Using Superposition, then during the fault:
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
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




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






4

3

2

1

V
V
V
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




fV
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

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


























22

42
22

32

22
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Z
Z1

Z
Z1
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Z
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= +

i)voltagefaultPre(f)voltageiBus(i VVV  

iV is the voltage change in bus i due to fault current in bus 2.
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Example:

A three-phase fault occurs at bus 
2 of the network shown in the 
Figure. 

Determine:
1. the sub-transient current 
during the fault, 
2.the voltages at all the buses
3.The current flow during the 
fault from buses 3-2, 1-2 and 4-2.

Consider the pre-fault voltage at 
bus 2 equal to 1 pu. and neglect 
the pre-fault currents.
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T2

G1

G2

1 2

4

fV

3 phase
fault e



Solution:

Construct the reactance circuit 
under normal operation condition.

pu2.0j pu1.0j

pu125.0j

pu25.0j

pu4.0j

pu25.0j

up2.0j

3

2

1

4
pu2.0j pu1.0j

Construct the bus impedance 
Matrix (ZBUS )























1954.0j1046.0j1506.0j1456.0j
1046.0j1954.0j1494.0j1544.0j
1506.0j1494.0j2295.0j1938.0j
1456.0j1544.0j1938.0j2436.0j

ZBUS

NOTE:
Constructing ZBus will be discussed later. 



Since there are no-load currents, the pre-fault voltage at all the buses is equal to 
1.0 pu. When the fault occurs at bus 2,

pu357.4j
2295.0j
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f''
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2295.0j
1506.0j1

2295.0j
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0
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The current flows from bus 1 to bus 2 is:

125.0j
VVI 21

12




pu2448.1jI12 

125.0j
1556.0I12 

pu2.0j pu1.0j

pu125.0j

pu25.0j

pu4.0j

pu25.0j

pu2.0j

3

2

1

4
"
fI

pu2.0j pu1.0j

The current flows from bus 
3 to bus 2 is:

25.0j
V3VI 2

32




pu396.1jI32 

pu719.1jI42 

The current flows 
from bus 4 to bus 2 is:

The current flows from 
bus 3 to bus 1 is:

25.0j
VV

I 13
31


 pu7736.0j
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