ELE B7 Power Systems Engineering

Power Flow- Introduction



Introduction to Load Flow Analysis %”jt%

The power flow is the backbone of the power system
operation, analysis and design. It is necessary for i ?
planning, operation, economic scheduling and exchange -

power between utilities. -H I

The power flow is also required for many other T
applications such as short-circuit calculations, transient
stability and contingency analysis.

For the network shown, there are some buses connected with the generators and
other buses are connected to the loads.

The Real and Reactive power is known at each Load bus. The Generator VVoltages
are Also Specified at the generator buses.

The Transmission Lines interconnecting the buses have resistance and
inductance. Therefore, the Electric Current flowing through the lines results in
Electrical Losses.

The Generators in the System Must supply the Total Electrical Loads pulse the
Electrical Losses. Slide # 2
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There are some constrains should be considered while running the system: %}

1. The Generators Must Operate within their Generation Capabilities.

2. The Generators Must Deliver the required power at the Desired Voltage at
the Loads.

3. There should be no bus voltage either above or below the specified VVoltage
operating limits.

4. There Should be no Over-Loading of equipment, including Transmission
Lines and Transformers

In Case of
An Equipment Over-Loaded Or Voltage-Limit Violation.

The Generation Schedule have to be adjusted and Power Flow in the
transmission lines have to be Re-routed or Capacitor Banks have to be switched
in order to bring the system into its Normal Operating Conditions.

To Satisfy all the previous requirement for a Reliable Power System Operation,
Power Flow Study is a MUST. The Power flow study is an essential part in
power system Operation, Planning and Design. Stide # 3




Power Flow Concept

Consider the three-bus power system. Generators (G,and G,) are
connected to the first two buses and an electric load is connected
to the third bus.

The real and reactive power demands are known for the load bus (3).
The generator voltages are also specified at bus 1 and bus 2.

The three transmission lines interconnecting the buses contain both resistance and
reactance, thus currents flow through these lines results in electrical-losses.

The two generators (G, and G,) must jointly supply the total load requirements
and the power losses in the transmission lines.

The generators are constrained to operate within their power generation
capabilities.

The generators are also constrained to deliver the required power at the desired
voltage at the customer loads.

In addition, there should be no over-loading of the power system equipments
Including transmission lines and transformers.

Furthermore, there should be no bus voltage either above or below specified
values of the bus voltage operating limits. Slide 4



Power Flow Analysis
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Consider the above circuit, if all the components and loads are expressed in
terms of constant power loads (i.e., in power systems, powers are known
rather than currents), then the equation to be solved are given by

[YIv]=0]

-]

It is clear that the set of equations are nonlinear and the solution (bus voltages) can
only obtained by iterative techniques

Vo
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Power Flow Analysis

It is the solution for the static operating condition of a power system.

The node voltage method is commonly used for the power system analysis. The
formulation of the network equations results in complex linear equations in terms
of node currents.

In power systems, powers are known rather than currents. Thus, resulting
equations in terms of power become non-linear and must be solved by iterative
techniques.

These non-linear equations are known as power flow equations or load flow
equations.

The power flow programs compute the voltage magnitude and phase angle at
each bus bar in the system under steady-state operation condition.

These programs use the bus-voltage data to compute the power flow in the
network and the power losses for all equipment and transmission lines.
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What are the power flow equations?
What do you expect to get by solving the power flow equations?

How do we benefit from the solution of the power flow equations?
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Bus Admittance Matrix or Y,

 First step in solving the power flow is to formulate the bus

admittance matrix, often call the Y ..

* The Y gives the relationships between all the bus current

injections, |, and all the bus voltages, V,
| =Y, .V

* The Y, 1s developed by applying KCL at each bus in the
system to relate the bus current injections, the bus voltages,
and the branch impedances and admittances

bus

Slide # 8
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Y,us EXample

Formulate the bus admittance matrix for the network shown in
the Figure. The Impedance diagram of the system is as
indicated. Shunt elements are ignored.

Solution:

The node voltage method 1s commonly used for the power
system analysis. Where,
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The system can be represented in terms of its admittance A/
elements as shown, where: |

ym:ﬁ‘—ﬂ@ y, =—J2.5

Yo, :ﬁ:—ll 25 Vi3 =¥y =150

Bus 4

Admittance diagram

Applying KCL at each node (bus), then
Iy =(Yo1 + Y12 + Y13 V1 = Y12Va — Y13V3
Iy =(Yo2 + Y12 + Y23 V2 = Y12Vi — ¥23V3
0=C(Y31+ Y32+ ¥34 V3= ¥31V1 = ¥32Vo — Y34V

0= Yy34V4 — Y34V3
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defined.

1V

Y11 =Yoot Yo+ Yis
Y22 =Yoo+ Yo+ Y3
Ya3 = Yar + Yoo + Vs

Y44 = Y
Y42 — Y24 =0

Then, the Node Voltage Equation is:
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] Ibus = [Zbus] Ibus

Substituting the values, then the bus admittance matrix of the network is:
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Y2
Y
Y

Y,us General Form

The diagonal terms, Y, are the self admittance
terms, equal to the sum of the admittances of all

devices incident to bus 1.

The off-diagonal terms, Y, are equal to the
negative of the sum of the admittances joining the
two buses.

With large systems Y
most entries are zero)

bus 1S @ sparse matrix (that 1s,

Shunt terms, such as with the n-line model, only
affect the diagonal terms.

12 Y13 Y14_ _( Yor T Y12 T Y3 ) (_Y12 ) (_Y13 ) (O) |
2 Y23 Y24 _ (_y21 ) ( Yoo * Yor + Yos ) (_yza ) (O)

32 Y33 Y34 - (_y31 ) (_yaz ) ( Yau ¥ Yot Yas ) (_y34 )
42 Y43 Y44_ (O) (O) (_y43) (Y43)_
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Two Bus System Example

bwsa
— Z = 0-03+ )0-94

Wj

V2)+V1 : =12-j16
Z 2 0.03+;0.04
I (12— 7159 12+ 16 ][V} ]

I —12+ 16 12— 159V,

Slide # 13



Using the Y,

If the voltages are known then we can solve for
the current injections:

Y, V=1
If the current 1njections are known then we can
solve for the voltages:

Vous! = V=2,

where Z, . 1s the bus impedance matrix

Slide # 14



Solving for Bus Currents

For example, 1n previous case assume

1.0
V =
10.8—70.2
Then
12— /159 -12+j16]] 1.0 | [ 5.60—;0.70

~12+ 16 12— /159 0.8— ;0.2
:Fherefore the power injected at bus 1 1s

S, =VI;, =1.0x(5.60+ j0.70) = 5.60 + j0.70

S, =V,I, = (0.8— j0.2)x (=5.58 — j0.88) = —4.64 + j0.41

Slide # 15
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Solving for Bus Voltages

For example, 1n previous case assume
5.0 ]
—4.8

Then

12— 7159 —12+ 1677507 [ 0.0738-0.902
12+ 16 12—j159| |-4.8| |-0.0738— j1.098 |

Therefore the power injected 1s
S, =V,I, =(0.0738— j0.902)x5 =0.37 — j4.51
S, =V,I, = (-0.0738 — j1.098) x (—4.8) = 0.35+ j5.27

Slide # 16




Power Flow Analysis

* When analyzing power systems we know neither the complex
bus voltages nor the complex current injections

« Rather, we know the complex power being consumed by the
load, and the power being injected by the generators plus their
voltage magnitudes

* Therefore we can not directly use the Y, equations, but rather
must use the power balance equations

YIVI=[1]

THENE.

*

V

— — y
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L Power Flow Analysis , cont’d
Definitions:

The starting point is the single line diagram from which the input data can be obtained. The
input data: Bus data, transmission line data and transformer data

To other buses

SRR

As shown, 4 variables are associated with each bus 4: the voltage magnitude V,, phase angle 6, ,
net power P, and reactive power Q, .

At each bus, two of these variables are specified as input data and the other two are unknowns to
computed by the power flow analysis

Slide # 18



Power Balance Equations

From KCL we know at each bus 1 1n an n bus system
the current injection, /;, must be equal to the current

that flows 1nto the network

]i = l_[Dl_ Z

Since | =Y,V we also know

[, = Ilgi—1Ip; = ZYika
k=1

The network power injection is then S, =V./ ;k

Slide # 19



Power Balance Equations, cont’'d

S; = ViI; = V{ZYika] =V, > YyV¢
k=1 k=1

This 1s an equation with complex numbers.
Sometimes we would like an equivalent set of real

power equations. These can be derived by defining

Yy = Gy + jBy
v, = e =20,
O = 0, -6,

Recall '’ =cosf + jsin@

Slide # 20



Real Power Balance Equations
S R JOik -
S; = Zsz e = 2 ViV €% (Gy — jBy)

Z ‘VzHVk‘ (cosby + jsm by )Gy — jBy)
k=1

Resolving into the real and imaginary parts

P = > V|V (Gy cosOy + By sinby) = F; — Py,
Q; = Z‘VzHVk‘( ik SNy — By cosby ) = Og; — Op;

Slide # 21



Power Flow Requires lterative Solution =

In the power flow we assume we know S; and the
Yius- We would like to solve for the V's. The problem

1s the below equation has no closed form solution:

*

S; = Vi, = %(Zm} =V, > YyVy
k=1 k=1

Rather, we must pursue an iterative approach.

Slide # 22



Gauss lteration

There are a number of different iterative methods

we can use. We'll consider two: Gauss and Newton.

With the Gauss method we need to rewrite our

equation 1n an implicit form: x = h(x)

To iterate we first make an 1nitial guess of x, x ) :

and then iteratively solve x"™" = 4(x")) until we
find a "fixed point", X, such that X = A(X).

Slide # 23



Example: Solve x - Jx—1=0

SRS FRVERS

Let k = 0 and arbaitrarily guess x9 =1 and solve

k

0
1
2
3
4

Gauss lteration Example

)

1
2
2.41421
2.55538
2.59805

k W)
S 2.61
6 2.61
7 2.61
3 2.61
9 2.61

185
612
744
785
798
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Stopping Criteria

A key problem to address 1s when to stop the

iteration. With the Guass iteration we stop when

‘Ax(v) <& with Ax®") = x0T — xO)

If x 1s a scalar this 1s clear, but if x 1s a vector we

need to generalize the absolute value by using a norm

H Ax™Y)

<&
J

Two common norms are the Euclidean & infinity

AX], = \/ZAX? AX[,, = max; |Ax;
i=1

Slide #25



Gauss Power Flow
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Gauss Two Bus Power Flow Example =

A 100 MW, 50 Mvar load 1s connected to a generator through a
line with z=0.02 + j0.06 p.u. and line charging of 5 Mvar on
cach end (100 MVA base). Also, there 1s a 25 Mvar capacitor at
bus 2. If the generator voltage 1s 1.0 p.u., what 1s V,?

V': \‘Dlgb Vl
Z=0.024)0:0b

-

T \/(o\\,:j()-zg pu

|04j05pu
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Gauss Two Bus Example, cont’d

The unknown 1s the complex load voltage, V,.

To determine V, we need to know the Y.

: = 5—JI5
0.02 + j0.06
5-j1495 -5+ 15 |
Hence Yy =
=5+ j15  5-;14.70
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Gauss Two Bus Example, cont’d

V, = 1( 5 Y,ka)

Yy, Vz k=1 Je#i

1‘|‘] .
V, = 514 70( —(-5+ ]15)(1.040))
Guess Vz( ) =1.0£0 (thls 1s known as a flat start)
v i) V i)
0 1.000+ 70.000 3 0.9622 — j0.0556
1 0.9671— j0.0568 4 0.9622 — j0.0556
2 0.9624 — j0.0553
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Gauss Two Bus Example, cont’d

V, = 0.9622 - ;0.0556 =0.9638 £ —3.3°

Once the voltages are known all other values can
be determined, such as the generator powers and the

line flows
S, =V, (Y,\V; + Y;,V,) =1.023 — j0.239
In actual units P, =102.3 MW, Q, =23.9 Mvar

The capacitor is supplying |V, \2 25=23.2 Mvar

Slide # 30
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Slack Bus

In previous example we specified S, and V, and
then solved for S; and V,.

We can not arbitrarily specify S at all buses
because total generation must equal total load +
total losses

We also need an angle reference bus.

To solve these problems we define one bus as the
"slack" bus. This bus has a fixed voltage
magnitude and angle, and a varying real/reactive
power 1njection.

Slide # 31



Gauss with Many Bus Systems

With multiple bus systems we could calculate

new V;'s as follows:

1 Sj Zn: v, 70
* ik” k
Y VZ.(V) k=1 ki

V(V-l—l) —
l

= WV, 70

But after we've determined Vl-("”) we have a better
estimate of 1ts voltage , so 1t makes sense to use this
new value. This approach is known as the

Gauss-Seidel 1teration.
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Gauss-Seidel lteration

Immediately use the new voltage estimates:
P = VT, )
= YY)
V4(v+1) - W, V2(v+1) , V3(v+1) , V4(v) . Vn(v))

V(V+1) — hz (I/I V2(V+1) V3(V+1) V4(V+1) V(V))
n ) 9 9 *°°) n
The Gauss-Seidel works better than the Gauss, and
1s actually easier to implement. It 1s used instead

of Gauss.
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Three Types of Power Flow Buses

* There are three main types of power flow buses

— Load (PQ) at which P/Q are fixed; iteration solves for
voltage magnitude and angle.

— Slack at which the voltage magnitude and angle are
fixed; iteration solves for P/Q injections

— Generator (PV) at which P and |V| are fixed; iteration
solves for voltage angle and Q 1njection

* special coding is needed to include PV buses in the
Gauss-Seidel iteration

Slide # 34
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Three Types of Power Flow Buses

Each bus i can be categorized into one of the following:

1. Load Bus: Input data: P, and Q,
Output (solution): V, and 6,
Load Bus with no generation: P,= - P,
Q,=-Q,, (inductive) ; Q, = +Q,, (capacitive)

2. Swing (Reference) Bus: Only one swing bus (bus #1) - é

: L
input data: V,L.6, = 1.0L_0° ! 3] o)
Output (solution): P, and Q, v = el @)ﬂ ’

3. Voltage Controlled Bus: Generators, Switched shunt capacitors, static var systems
Input data: P, ,V, Q.. and Q..
Output (solution): Q, and J,

Slide # 35



Inclusion of PV Buses in G-S =

Assuming a power system has n buses, then; one bus will be considered as a
slack bus and the other buses are load buses (PQ-buses) and voltage controlled
buses (PV-buses). Let the system buses be numbered as:

i=1 Salck bus

i=2,3,.....m PV —buses

i=m+1,m+2,...,n PQO-buses O

For the voltage controlled buses,

P and |V, |areknown & Q. and 0, areunknown
|Vi |= |Vi |Specified
Qi,min ( Qi ( Qi,max

The second requirement for the voltage controlled bus may be violated if the
bus voltage becomes too high or too small. It is to be noted that we can control
the bus voltage by controlling the bus reactive power. Slide # 36



Therefore, during any iteration, if the PV-bus reactive power ‘o . ( Q. ( Q.|
violates its limits then set it according to the following rule. | |

Qi > Qi,max set Qi = Qi,max
Qi ( Qi,min set Qi = Qi,min

""""""""""""""""

And treat this bus as PO-bus. | NOTE

For PO —bus

P and Q, are known

i& |V, land 0, are unknown i
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Load flow solution_when PV buses are present erie

a. Find Q,

To solve for V; at PV buses, we must first make a guess of O,

mn n

S, =V SV =V (Y Vi Y Vy +oet Yy Vy +..%, V, )= P + O,
k=1

% n
Qi(v) — _ImI:Vi(V) kZ:lYika(v):|
in the iteration, weuse S\ = P + jQ"

b. Check Q;"*!to see if it is within the limits

Qi,min < Qi < Qi,max

_____________________________

Case 1: If the reactive power limits are not violated, .~ ® Usethemost !
calculate Vv+1 . updated value of Q;
! . tocalculate S;.
* |

11 §™ n . * New Voltage

D = i _ 3y, 7Y . magnitude and
j (v) ik " k ! ) !
Y, |V k=i k#1 . angle are obtained
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+1
Use |Vl e and 67 For the PV-bus voltage. (&}
- . Voltage magnitude is known for PV |
+1 | :
Reset the magnitude | Viv | = | Vz |Speci bus, therefore the new calculated

magnitude will not be used.

____________________________________

v+l _ v+l | Only the calculated angle
Vi _| Vz |Speci £ ‘91' " will be updated and used. !

____________________________________

Case 2: If the reactive power limits are violated,

1 1
Qz'v+ > Qz’,max set Qz'v+ — Qz‘,max

Or
1 1
in+ < Qi ,min sel in+ = Qz' ,min

Consider this bus as a PQ-Bus, calculate bus voltage Vl."+1

(v)* n
(v+1) _ 1 Sl (v)
Vi - v)* Z Y;'k Vk

Y, |V k=ikel |

The PV-bus becomes PQ-bus

| | | . and both Voltage magnitude

v+ v+ v+ ;
Vo=V | L6, - and angle are calculated and
! ! ! | used



EXAMPLE:

A

y

Each line has an impedance of 0.05+j0.15

Bus Data for the the 5 buses Network Before load flow solution

Line Data for the 5 buses Network

B || Bus || R x
1 2 0.0500 0.1500
2 3 0.0500 0.1500
2 4 0.0500 0.1500
3 4 0.0500 0.1500
1 5 0.0500 0.1500
4 5 0.0500 0.1500

gf*"“""“%

- g
ErFIC

The shunt admittance is neglected

Bus Bus Volt Volt IT\(/I)?/S Load Gen. Gen. Q Q Inject
No. code Mag. Angle MVAR MW | |MVAR|| Min. Max. || MVAR
1 Slack 1.0200 0 100 50 ? ? 0 0 0
2 PV 1.0200 ? 0 0 200 ? 20 60 0
3 PQ ? ? 50 20 0 0 0 0 0
4 PQ ? ? 50 20 0 0 0 0 0
5 PQ ? ? 50 20 0 0 0 0 Yide #40



For the ‘5’ bus system

Construct the bus admittance matrix Y
Find Q,,d, .V, \V, andV;

Qax = 0.6 pu

Q... =0.2 pu

I

bus

Slide #41



SOLUTION:

Y, Construction

z 0.05+)0.15

= Yo+t Y5 =4_j12
= y21+Y23+y25=6_j18

= Y3 T Y =4 - j12

= Y3+ Y5 =4_j12
= Y51+Y52+y54=6_j18

4.0 -J12.0 2.0 +J6.0

2.0+ J6.0 6.0 -J18.0

Ybus = 0 2.0+ J6.0
0 0

| -2.0+J6.0 2.0 +J6.0

0
-2.0+J6.0
4.0-J12.0
-2.0+J6.0

0

l w
| I
|

|
-
I N
m&"
i

~Yp =—2+j6
Y y15 -2+ j6

Y13 = Y14 =0

0 2.0+136.0 |

0 2.0+ J6.0
-2.0+J6.0 0
4.0-J12.0 2.0+ J6.0
2.0+ J6.0 6.0 -J18.0

" Slide #42
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The net scheduled power injected at each bus is:

ol | IV A | | el G
| e A | IR | R | I |
el 2 5 Wl e ol o]l ol o o
Sisen = (Prg—=Pig )+ J(Q—Qpy)
Syn = (P —10)+j(Q;,—0.5)
Sysen = (Pog=Pog )+ 1(Q,—Qy4)
S, = (20-0)+j(Q,,—0)
S, = (0-05)+j(0-0.2)
S, = —0.5—j0.2
S, = —0.5—j0.2
S;n = —0.5-]0.2 Slide # 43



w”"“'i':‘%

%
ke

The known values are: The bus admittance matrix is

0 40-312.0 2.0+60 0 0 2.0+J6.0
Vl = 10240 2.0+J6.0 6.0-J18.0 -2.0+J6.0 0 -2.0+J6.0

0 -2.0+J6.0 4.0-J12.0 -2.0+J6.0 0
0 0 2.0+60 4.0-312.0 2.0+160
2.0+60 2.0+60 0 2.0+36.0 6.0 -J18.0

|V2 |spec = 102
Qz,min =0.2 and Q2,max =0.6

Using GS method, select the initial values for the unknowns as:
VSO =V4O =V50 = MOO and 520 =O

Start the first iteration

Bus 2 is PV Bus

Check O2 Is within the limits

Qz,min < QZ < Qz,max
P —jQ =V, (Y, V, +Y, V, +....+Y, V. +..Y_V )

Qzl = Im{VZ*(Y21 V1 +Y22 Vzo +Y23 V30 +Y24 V4O +Y25 V50 )}

Q! =0.2448
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I : 3
Qs min € Q2 { Qy max ie; 020 ( 02448 ( 06 2

The reactive power limits are not violated,
Calculate:

V)= (v N LV, + LV + Ly VO + Ly VY]

The values for K; and L are computed once in the beginning and used in every
iteration.

P, - JQ, Yar Yo Y Y
Kz = Y L Y 28~y |_24—£ |_25_ﬂ
___________________ 2 72 22 Y, Y,,
S, n = 2.0+ j0.2448
K,= 0.0456 +j0.0959 L, = -0.3333 L, = -0.3333 L,, = 0.0 L,. = -0.3333
V21 =1.0555/5.1113°
Reset the magnitude Voltage mag nitude is |
1 . :
|V2 |=|V2 |Speci =1.02 . known and fixed for a !
. PV bus, therefore the
Therefor 1 _ 0 . new calculated
erefore, 5 =51113 |

. magnitude will not be

vV} =1.02,5.1113° - used. | ;



Bus 3 is PQ Bus (>

K 0 0
Vsl = %_ [I—31V1 + I—32 Vzl + I—34 V4 + I—35 V5 ]
(Vs )
K3:P3_jQ3 L _Ya L _ Yo L _Ya L _Ya
31 — cr i 34 = 35 =
Y33 Y33 Y33 Y33 Y33
Ky= -0.0275-j0.0325  Ls = 0.0 Ls, = -0.5000  Lgg= -0.5000  Lg5= 0.0

V31 =0.9806.£0.7559°
Bus 4 is PO Bus

K 0]
V)= o 04)* [V VA ERVES VAL
4
: Y Y Y
K =P4—JQ4 L41:i L42:Y£ L43:Y£ L45:Y£
4 Y44 Y44 44 44 44
K,= -0.0275-j0.0325 L, = 0.0 L, = 0.0 L,s= -0.5000 L, = -0.5000

V! =0.9631 -1.5489° Stide 146



: 4
Bus 5 is PQ Bus % (>
1 _ 5 1 3 1
V5 - VoY _[L51V1 + L52V2 + L53V3 + I—54\/4]
(Vs )
Kg = -0.0183 - 0.0217i Lg, = -0.3333  Lg, = -0.3333 Lgz= 0.0 Le, = -0.3333

V! = 0.9812/-0.0031°

Start the second iteration

Bus 2 is PV Bus
Check Q, is within the limits 02( Q, (0.6

sz = Im{ Vzl*(Yzl V1 "‘Yzz Vzl +Y23 Ve;1 +Y24 V41 +Y25 V51 )}

Q2 =0.0290
The reactive power limits are violated
Q. ¢ Qi’mi” set Q, = Qi,min =0.2 Usethemost ______ .
. updated value of
And treat this bus as PO-bus S, = 2.0+ j0.2 | Qocalulatethe |

constant K,

All Buses 2, 3, 4 and 5 are PQ Buses. Find the bus voltages using GS method,



R
.‘_‘_‘..*
ErFIc

Accelerated G-S Convergence '

Previously in the Gauss-Seidel method we were

calculating each value x as
KD h(x(v))

To accelerate convergence we can rewrite this as
Kyt ) h(x("))— ()

Now 1ntroduce acceleration parameter o
Yyt ) a(h(x(")) _ x("))

With «a =1 this 1s 1dentical to standard gauss-seidel.

Larger values of a may result in faster convergence.
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Accelerated Convergence, cont’d

Consider the previous example: x - Jx=1=0

XV = x4 a4 xY) = x )

Comparison of results with different values of «

a=1 a=1.2 a=15 a=2
1 1 1 1
2 2.20 2.5 3

2.4142 2.5399 2.6217 2.464
2.5554 2.6045 2.6179 2.675
2.5981 2.6157 2.6180 2.596
2.6118 2.6176 2.6180 2.626
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Accelerated Convergence, cont’d

The Effect of Acceleration Factor

100
ﬂ \
Fouss« Sesdel
é m §
: \
] NI
3 N_/
el Z s Yaug
Grosigs « Seided “_,Newmrl-lﬂhphwn
e I P e
. e Ty ey
“{Il_’\' .8 L0 1.2 14 l.l B 1.8 2.0
Accelerotion jociora

Adequate Values of the Acceleration Factor:

1.5<a<1.7
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Gauss-Seidel Advantages

« Each iteration is relatively fast (computational order 1s
proportional to number of branches + number of buses in
the system

« Relatively easy to program
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Gauss-Seidel Disadvantages

Tends to converge relatively slowly, although this can be
improved with acceleration

Has tendency to miss solutions, particularly on large
systems

Tends to diverge on cases with negative branch reactances
(common with compensated lines)

Need to program using complex numbers
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