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For the network shown, there are some buses connected with the generators and 
other buses  are connected to the loads.

The Real and Reactive power is known at each Load bus. The Generator Voltages 
are Also Specified at the generator buses.

Introduction to Load Flow Analysis



The Transmission Lines interconnecting the buses have resistance and 
inductance. Therefore, the Electric Current flowing through the lines results in 
Electrical Losses.
The Generators in the System Must supply the Total Electrical Loads pulse the 
Electrical Losses.

The power flow is the backbone of the power system 
operation, analysis and design. It is necessary for 
planning, operation, economic scheduling and exchange 
power between utilities. 

The power flow is also required for many other 
applications such as short-circuit calculations, transient 
stability and contingency analysis.

G

G
G
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There are some constrains should be considered while running the system:

In Case of
An Equipment Over-Loaded Or Voltage-Limit Violation.

The Generation Schedule have to be adjusted and Power Flow in the 
transmission lines have to be Re-routed or Capacitor Banks have to be switched 
in order to bring the system into its Normal Operating Conditions.

To Satisfy all the previous requirement for a Reliable Power System Operation, 
Power Flow Study is a MUST. The Power flow study is an essential part in 
power system Operation, Planning and Design.

1. The Generators Must Operate within their Generation Capabilities.
2. The Generators Must Deliver the required power at the Desired Voltage at 

the Loads.
3. There should be no bus voltage either above or below the specified Voltage 

operating limits.
4. There Should be no Over-Loading of equipment, including Transmission 

Lines and Transformers 
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Power Flow Concept

Consider the three-bus power system. Generators (G1 and G2 ) are 
connected to the first two buses and an electric load is connected 
to the third bus.
The real and reactive power demands are known for the load bus (3). 
The generator voltages are also specified at  bus 1 and bus 2.

G1 G2

Bus 1 Bus 2

Bus 3

G1 G2

Bus 1 Bus 2

Bus 3

The three transmission lines interconnecting the buses contain both resistance and 
reactance, thus currents flow through these lines results in electrical-losses.

In addition, there should be no over-loading of the power system equipments 
including transmission lines and transformers. 

The two generators (G1 and G2 ) must jointly supply the total load requirements 
and the power losses in the transmission lines.

Furthermore, there should be no bus voltage either above or below specified 
values of the bus voltage operating limits. 

The generators are constrained to operate within their power generation 
capabilities.
The generators are also constrained to deliver the required power at the desired 
voltage at the customer loads.
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It is clear that the set of equations are nonlinear and the solution (bus voltages) can 
only obtained by iterative techniques

Consider the above circuit, if all the components and loads are expressed in 
terms of constant power loads (i.e., in power systems, powers are known 
rather than currents), then the equation to be solved are given by   

    
  

















*

*

V
SI

IVY

Power Flow Analysis
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Power Flow Analysis

It is the solution for the static operating condition of a power system. 

The node voltage method is commonly used for the power system analysis. The 
formulation of the network equations results in complex linear equations in terms 
of node currents.

In power systems, powers are known rather than currents. Thus, resulting  
equations in terms of power become non-linear and must be solved by iterative 
techniques.

These non-linear equations are known as power flow equations or load flow 
equations.

The power flow programs compute the voltage magnitude and phase angle at 
each bus bar in the system under steady-state operation condition.

These programs use the bus-voltage data to compute the power flow in the 
network and the power losses for all equipment and transmission lines.
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What are the  power flow equations?

What do you expect to get by solving the power flow equations?

How do we benefit from the solution of the power flow equations?
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Bus Admittance Matrix or Ybus

•
 

First step in solving the power flow is to formulate the bus 
admittance matrix, often call the Ybus

 

.
•

 
The

 
Ybus

 

gives the relationships between all the bus current 
injections, I, and all the bus voltages, V,

 I = Ybus

 

V
•

 
The Ybus

 

is developed by applying KCL at each bus in the 
system to relate the bus current injections, the bus voltages, 
and the branch impedances and admittances
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Formulate the bus admittance matrix
 

for the network shown in 
the Figure. The Impedance diagram

 
of the system is as 

indicated. Shunt elements are ignored.

The node voltage method
 

is commonly used for the power 
system analysis. Where,

Solution:

G1G1

Bus 1 Bus 2

Bus 3

G2G2

Bus 4

20.j 20.j

40.j

080.j

01.j 80.j

Impedance diagramImpedance diagram

















44434241

34333231

24232221

14131211

YYYY
YYYY
YYYY
YYYY=



















4

3

2

1

V
V
V
V



















4

3

2

1

I
I
I
I

Or
busbusbus V]Y[I 

Ybus Example
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The system can be represented in terms of its admittance 
elements as shown, where:

Bus 1 Bus 2

Bus 3

Bus 4

1I 2I
01

y 02
y

12
y

13
y

23
y

34
y

ij
ij Z

y 1


Admittance diagramAdmittance diagram

01
01

1
01

.j
.j

y  52
12

.jy 

251
80

1
02

.j
.j

y  05
2313

.jyy 

Applying KCL
 

at each node (bus), then

32311222312022 VyVyV)yyy(I 

31321211312011 VyVyV)yyy(I 

43423213133432310 VyVyVyV)yyy( 

3344340 VyVy 
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23120222 yyyY 
13120111 yyyY 

34323133 yyyY 

122112 yYY 

3444 yY 

133113 yYY 

233223 yYY 

0YY 2442 

344334 yYY 

0YY 4114 

Then, the Node Voltage Equation is:

defined: and



















44434241

34333231

24232221

14131211

YYYY
YYYY
YYYY
YYYY=



















4

3

2

1

V
V
V
V



















4

3

2

1

I
I
I
I

busbusbus
1

busbus I]Z[I]Y[V  
busbusbus V]Y[I  Or

























5.12j5.12j00
5.12j5.22j0.5j0.5j

00.5j75.8j5.2j
00.5j5.2j5.8j

Substituting the values, then the bus admittance matrix of the network is:

busY
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Ybus General Form 

•
 

The diagonal terms, Yii

 

, are the self admittance 
terms, equal to the sum of the admittances of all 
devices incident to bus i.  

•
 

The off-diagonal terms, Yij

 

, are equal to the 
negative of the sum of the admittances joining the 
two buses. 

•
 

With large systems Ybus

 

is a sparse matrix (that is, 
most entries are zero)

•
 

Shunt terms, such as with the π-line model, only 
affect the diagonal terms.     

Bus 1 Bus 2

Bus 3

Bus 4

1I 2I01y 02y

12y

13y 23y

34y













































)y()y()0()0(
)y()yyy()y()y(

)0()y()yyy()y(
)0()y()y()yyy(

YYYY
YYYY
YYYY
YYYY

4343

344332313231

2323210221

1312131201

44434241

34333231

24232221

14131211
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Two Bus System Example

1 2
1 1

1 1

2 2

( ) 1 12 16
2 0.03 0.04

12 15.9 12 16
12 16 12 15.9

cYV VI V j
Z j

I Vj j
I Vj j


   


      

          
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Using the Ybus

1

bus

If the voltages are known then we can solve for 
the current injections:

If the current injections are known then we can 
solve for the voltages:

where  is the bus impedance matr

bus

bus bus




 

Y V I

Y I V Z I
Z ix
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Solving for Bus Currents

*
1 1 1

For example, in previous case assume 
1.0

0.8 0.2
Then
12 15.9 12 16 1.0 5.60 0.70

12 16 12 15.9 0.8 0.2 5.58 0.88
Therefore the power injected at bus 1 is 

S 1.0 (5.60

j

j j j
j j j j

V I

 
   

        
               

  

V

*
2 2 2

0.70) 5.60 0.70

(0.8 0.2) ( 5.58 0.88) 4.64 0.41

j j

S V I j j j

  

        
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Solving for Bus Voltages

1

*
1 1 1

For example, in previous case assume 
5.0
4.8

Then

12 15.9 12 16 5.0 0.0738 0.902
12 16 12 15.9 4.8 0.0738 1.098

Therefore the power injected is

S (0.0738 0.902) 5 0

j j j
j j j

V I j



 
   

        
               

    

I

*
2 2 2

.37 4.51

( 0.0738 1.098) ( 4.8) 0.35 5.27

j

S V I j j



       
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Power Flow Analysis

•
 

When analyzing power systems we know neither the complex 
bus voltages nor the complex current injections

•
 

Rather, we know the complex power being consumed by the 
load, and the power being injected by the generators plus their 
voltage magnitudes

•
 

Therefore we can not directly use the Ybus

 

equations, but rather 
must use the power balance equations

    
  

















*

*

V
SI

IVY
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Definitions:
The starting point is the single line diagram from which the input data can be obtained. The 
input data:  Bus data, transmission line data and transformer data

As shown, 4 variables are associated with each bus k: the voltage magnitude Vk

 

, phase angle δk , 
net power Pk

 

and reactive power Qk

 

.

At each bus, two of these variables are specified as input data and the other two are unknowns to 
computed by the power flow analysis

Power Flow Analysis , cont’d
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Power Balance Equations

1

bus

1

From KCL we know at each bus i in an n bus system
the current injection, , must be equal to the current
that flows into the network 

Since  =  we also know

i

n

i Gi Di ik
k

n

i Gi Di ik k
k

I

I I I I

I I I Y V





  

  





I Y V

*
iThe network power injection is then S i iV I
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Power Balance Equations, cont’d

*
* * *

i
1 1

 S

This is an equation with complex numbers. 
Sometimes we would like an equivalent set of real
power equations.  These can be derived by defining

n n

i i i ik k i ik k
k k

ik ik ik

i

V I V Y V V Y V

Y G jB

V

 

 
   

 



 

�

�

jRecall   e cos sin

ij
i i i

ik i k

V e V

j







  

 

 



 

�

=

=

=
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Real Power Balance Equations

* *
i

1 1

1

i
1

i
1

S ( )

(cos sin )( )

Resolving into the real and imaginary parts

P ( cos sin )

Q ( sin cos

ik
n n

j
i i i ik k i k ik ik

k k
n

i k ik ik ik ik
k

n

i k ik ik ik ik Gi Di
k
n

i k ik ik ik i
k

P jQ V Y V V V e G jB

V V j G jB

V V G B P P

V V G B



 

 

 

 







    

  

   

 

 





 )k Gi DiQ Q 
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Power Flow Requires Iterative Solution

i

bus

*
* * *

i
1 1

In the power flow we assume we know S  and the
.  We would like to solve for the V's.  The problem

is the below equation has no closed form solution:  

S

Rath

n n

i i i ik k i ik k
k k

V I V Y V V Y V
 

 
   

 
 

Y

er, we must pursue an iterative approach.  
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Gauss Iteration

There are a number of different iterative methods
we can use.  We'll consider two: Gauss and Newton.

With the Gauss method we need to rewrite our 
equation in an implicit form:  x = h(x)

To iterate we fir (0)

( +1) ( )

st make an initial guess of x, x ,

and then iteratively solve x ( ) until we
find a "fixed point", x, such that x (x).ˆ ˆ ˆ

v vh x
h



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Gauss Iteration Example

( 1) ( )

(0)

( ) ( )

Example:   Solve  - 1 0

1

Let k = 0 and arbitrarily guess x 1 and solve

0 1 5 2.61185
1 2 6 2.61612
2 2.41421 7 2.61744
3 2.55538 8 2.61785
4 2.59805 9 2.61798

v v

v v

x x

x x

k x k x



 

 


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Stopping Criteria

( ) ( ) ( 1) ( )

A key problem to address is when to stop the 
iteration.  With the Guass iteration we stop when 

with  

If x is a scalar this is clear, but if x is a vector we
need to generalize t

v v v vx x x x    �

( )

2
i2

1

he absolute value by using a norm

Two common norms are the Euclidean & infinity

max x

v
j

n

i i
i

x

x






 

     x x

=
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Gauss Power Flow

*
* * *

i
1 1

* * * *

1 1
*

*
1 1,

*

*
1,

We first need to put the equation in the correct form

S

S

S

S1

i i

i

i

n n

i i i ik k i ik k
k k
n n

i i i ik k ik k
k k

n n
i

ik k ii i ik k
k k k i

n
i

i ik k
ii k k i

V I V Y V V Y V

V I V Y V V Y V

Y V Y V Y V
V

V Y V
Y V

 

 

  

 

 
   

 

  

  


 

 

 

 




  
 
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Gauss Two Bus Power Flow Example

A 100 MW, 50 Mvar load is connected to a generator through a 
line with z = 0.02 + j0.06 p.u. and line charging of 5 Mvar on 
each end (100 MVA base).  Also, there is a 25 Mvar capacitor at 
bus 2.  If the generator voltage is 1.0 p.u., what is V2

 

?  
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Gauss Two Bus Example, cont’d

2

2 bus

bus

22

The unknown is the complex load voltage, V .
To determine V  we need to know the .

1 5 15
0.02 0.06

5 14.95 5 15
Hence 

5 15 5 14.70
( Note  - 15 0.05 0.25)

j
j

j j
j j

B j j j

 


   
     
  

Y

Y
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Gauss Two Bus Example, cont’d

*
2

2 *
22 1,2

2 *
2

(0)
2

( ) ( )
2 2

1 S

1 -1 0.5 ( 5 15)(1.0 0)
5 14.70

Guess 1.0 0  (this is known as a flat start)

0 1.000 0.000 3 0.9622 0.0556
1 0.9671 0.0568 4 0.9622 0.0556
2 0

n

ik k
k k i

v v

V Y V
Y V

jV j
j V

V

v V v V
j j
j j

 

 
  

 
 

       

 

 
 



.9624 0.0553j

−1+j0.5
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Gauss Two Bus Example, cont’d

2

* *
1 1 11 1 12 2

1

0.9622 0.0556 0.9638 3.3
Once the voltages are known all other values can 
be determined, such as the generator powers and the
line flows

S ( ) 1.023 0.239
In actual units P 102.3 MW

V j

V Y V Y V j

    

   
 1

2
2

, Q 23.9 Mvar

The capacitor is supplying V 25 23.2 Mvar




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Slack Bus

•
 

In previous example we specified S2
 

and V1
 

and 
then solved for S1

 

and V2
 

.  
•

 
We can not arbitrarily specify S at all buses 
because total generation must equal total load + 
total losses

•
 

We also need an angle reference bus.
•

 
To solve these problems we define one bus as the 
"slack" bus.  This bus has a fixed voltage 
magnitude and angle, and a varying real/reactive 
power injection.  
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Gauss with Many Bus Systems

*
( )( 1)

( )*
1,

( ) ( ) ( )
1 2

( 1)

With multiple bus systems we could calculate 
new V '  as follows:

S1

( , ,..., )

But after we've determined  we have a better
estimate of

i

i

n
vv i

i ik kv
ii k k i

v v v
i n

v
i

s

V Y V
Y V

h V V V

V



 



 
  
 
 





its voltage , so it makes sense to use this
new value.  This approach is known as the
Gauss-Seidel iteration.  
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Gauss-Seidel Iteration

( 1) ( ) ( ) ( )
2 12 2 3

( 1) ( 1) ( ) ( )
2 13 2 3

( 1) ( 1) ( 1) ( ) ( )
2 14 2 3 4

( 1) ( 1) ( 1)( 1) ( )
2 1 2 3 4

Immediately use the new voltage estimates:

( , , , , )

( , , , , )

( , , , , )

( , , , ,

v v v v
n

v v v v
n

v v v v v
n

v v vv v
n n

V h V V V V

V h V V V V

V h V V V V V

V h V V V V V



 

  

  

 

 

 

 



)
The Gauss-Seidel works better than the Gauss, and
is actually easier to implement.  It is used instead
of Gauss.
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Three Types of Power Flow Buses

•
 

There are three main types of power flow buses
–

 
Load (PQ) at which P/Q are fixed; iteration solves for 
voltage magnitude and angle.  

–
 

Slack at which the voltage magnitude and angle are 
fixed; iteration solves for P/Q injections

–
 

Generator (PV) at which P and |V| are fixed; iteration 
solves for voltage angle and Q injection

•
 

special coding is needed to include PV buses in the 
Gauss-Seidel iteration
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Each bus i
 

can be categorized into one of the following:

1.  Load Bus:                          Input data: Pk

 

and Qk
Output (solution): Vk

 

and δk
Load Bus with no generation: Pk

 

= 
 

PLk
Qk

 

= 
 

QLk

 

(inductive) ; Qk

 

= +QLk

 

(capacitive)

3.  Voltage Controlled Bus: Generators, Switched shunt capacitors, static var
 

systems
Input data: Pk

 

,Vk , QkGmax

 

and QkGmin

 
Output (solution): Qk

 

and δk

2.  Swing (Reference) Bus:   Only one swing bus (bus #1)
input data: V1

 

∟δ1

 

= 1.0∟0o

Output (solution): P1

 

and Q1

Three Types of Power Flow Buses
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Assuming a power system has n buses, then; one bus will be considered as a 
slack bus and the other buses are load buses (PQ-buses) and voltage controlled 
buses (PV-buses). Let the system buses be numbered as:

busSalcki 1

busesPVmi  ,.....,3,2

busesPQnmmi  ,......,2,1

For the voltage controlled buses, 

unknownareandQknownareVandP iiii &||

Specifiedii |V||V| 

,maxii,mini QQQ 

The second requirement for the voltage controlled bus may be violated if the 
bus voltage becomes too high or too small. It is to be noted that we can control 
the bus voltage by controlling the bus reactive power. 

Inclusion of PV Buses in G-S 
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Therefore, during any iteration, if the PV-bus reactive power 
violates its limits then set it according to the following rule.

,maxii,maxii QQsetQQ 

,minii,minii QQsetQQ 

And treat this bus as PQ-bus.

unknownareθand||V&

knownareQandP

busPQFor
NOTE

ii

ii



,maxii,mini QQQ 
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iininiiiiii
n

k
kikii jQPVYVYVYVYVVYVS 


).........( 2211

*

1

**

To solve for Vi

 

at PV buses, we must first make a guess of Qi

b. Check  Qi
v+1 to see if it is within the limits

max,min, iii QQQ 

Case 1: If the reactive power limits are not violated, 
calculate 1v

iV
•

 
Use the most 

updated value of Qi 
to calculate Si .

•
 

New Voltage 
magnitude and 

angle are obtained





 



n

k

v
kik

v
i

v
i VYVQ

1

)(*)()( Im

)()(useweiteration,thein v
ii

v
i jQPS 

Load flow solution  when PV buses are present

a. Find Qi













 n

kik

v
kikv

i

v
i

ii

v
i VY

V
S

Y
V

1,

)(
*)(

*)(
)1( 1



Slide # 39

Specii
v

i VV |||| 1 

11 ||   v
iSpecii

v
i VV 

Reset the magnitude Voltage magnitude is known for PV 
bus, therefore the new calculated 

magnitude will not be used.

Only the calculated angle 
will be updated and used.

Use 1|| v
ispecii andV  For the PV-bus voltage.

Case 2: If the reactive power limits are violated, 

1v
iV

max,
1

max,
1

i
v
ii

v
i QQsetQQ  

min,
1

min,
1

i
v
ii

v
i QQsetQQ  

Consider this bus as a PQ-Bus, calculate bus voltage

111 ||   v
i

v
i

v
i VV 

The PV-bus becomes PQ-bus 
and both Voltage magnitude 
and angle are calculated and 

used

Or













 n

kik

v
kikv

i

v
i

ii

v
i VY

V
S

Y
V

1,

)(
*)(

*)(
)1( 1
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EXAMPLE:

Each line has an impedance of  0.05+j0.15

1

2

2

3

1

4

2

3

4

4

5

5

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.1500

0.1500

0.1500

0.1500

0.1500

0.1500

From
Bus

To
Bus R X

Line Data for the 5 buses Network

Bus Data for the the 5 buses Network Before load flow solution 

1

2

3

4

5

Slack

PV

PQ  

PQ 

PQ 

1.0200

1.0200

?

?

?

0

?

?

?

?

100

0

50

50

50

50

0

20

20

20

?

200

0

0

0

?

?

0

0

0

0

20

0

0

0

0

0

0

0

0

Bus
No.

Bus
code

Volt
Mag.

Volt
Angle

Load 
MW Load

MVAR
Gen.
MW

Gen.
MVAR

Q
Min.

Q
Max.

Inject
MVAR

0

60

0

0

0

The shunt admittance is neglected 

5

1

2

3 4

G1
G2
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busY

For the ‘5’ bus system 

Construct the bus admittance matrix

54322 VandV,V,,QFind 

pu2.0Q

pu6.0Q

min

max





5

1

2

3 4

G1
G2
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5

1

2

3 4

G1
G2

Ybus Construction

6j2
15.0j05.0

1
z
1y 




12j4yyY 151211 

18j6yyyY 25232122 

12j4yyY 343233 

12j4yyY 454344 

18j6yyyY 54525155 

6j2yY 1212 

6j2yY 1515 

0YY 1413 

SOLUTION:

busY
4.0 - J12.0  -2.0 + J6.0        0           0     -2.0 + J6.0
-2.0 + J6.0   6.0 -J18.0  -2.0 + J6.0        0    -2.0 + J6.0

0            -2.0 + J6.0   4.0 -J12.0  -2.0 + J6.0        0    
0 0     -2.0 + J6.0   4.0 -J12.0  -2.0 + J6.0

-2.0 + J6.0  -2.0 + J6.0        0     -2.0 + J6.0   6.0 -J18.0
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)QQ(j)PP(S d,2g,2d,2g,2sch,2 

1

2

3

4

5

Slack

PV

PQ  

PQ 

PQ 

1.0200

1.0200

?

?

?

0

?

?

?

?

100

0

50

50

50

50

0

20

20

20

?

200

0

0

0

?

?

0

0

0

0

20

0

0

0

0

0

0

0

0

Bus
No.

Bus
code

Volt
Mag.

Volt
Angle

Load 
MW Load

MVAR
Gen.
MW

Gen.
MVAR

Q
Min.

Q
Max.

Inject
MVAR

0

60

0

0

0

1

2

3

4

5

Slack

PV

PQ  

PQ 

PQ 

1.0200

1.0200

?

?

?

0

?

?

?

?

100

0

50

50

50

50

0

20

20

20

?

200

0

0

0

?

?

0

0

0

0

20

0

0

0

0

0

0

0

0

Bus
No.

Bus
code

Volt
Mag.

Volt
Angle

Load 
MW Load

MVAR
Gen.
MW

Gen.
MVAR

Q
Min.

Q
Max.

Inject
MVAR

0

60

0

0

0

)0Q(j)00.2(S g,2sch,2 

)2.00(j)5.00(S sch,3 

2.0j5.0S sch,4 

2.0j5.0S sch,3 

2.0j5.0S sch,5 

)QQ(j)PP(S d,1g,1d,1g,1sch,1 

)5.0Q(j)0.1P(S g,1g,1sch,1 

The net scheduled power injected at each bus is:

5

1

2

3 4

G1G1
G2
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The bus admittance matrix is

Using GS method, select the initial values for the unknowns as:

oo
5

o
4

o
3 01VVV 

4.0 - J12.0  -2.0 + J6.0        0           0     -2.0 + J6.0
-2.0 + J6.0   6.0 -J18.0  -2.0 + J6.0        0    -2.0 + J6.0

0            -2.0 + J6.0   4.0 -J12.0  -2.0 + J6.0        0    
0 0     -2.0 + J6.0   4.0 -J12.0  -2.0 + J6.0

-2.0 + J6.0  -2.0 + J6.0        0     -2.0 + J6.0   6.0 -J18.0

0o
2 

o
1 002.1V 

02.1|V| spec2 

The known values are:

)VY...VY......VYVY(VjQP niniii22i11i
*
iii 

and

Check  Q2 is within the limits

2.0Q ,min2  6.0Q ,max2 and

,max22,min2 QQQ 

Start the first iteration

)}VYVYVYVYVY(VIm{Q o
525

o
424

o
323

o
222121

*
2

1
2 

2448.0Q1
2 

Bus 2 is PV Bus
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6.02448.020.0.;e.iQQQ ,max22,min2 

The reactive power limits are not violated, 
Calculate: 

22

22
2 Y

jQPK 


22

21
21 Y

YL 
22

23
23 Y

YL 

 o
525

o
424

o
323121*o

2

21
2 VLVLVLVL

)V(
KV 

K2 = 0.0456 + j0.0959 L21 = -0.3333 L23 = -0.3333

The values for Ki and Lip are computed once in the beginning and used in every 
iteration. 

22

24
24 Y

YL 
22

25
25 Y

YL 

o5.11131.0555 1
2V

L24 = 0.0 L25 = -0.3333

02.1|V||V| Speci2
1

2 
Reset the magnitude Voltage magnitude is 

known and fixed for a 
PV bus, therefore the 

new calculated 
magnitude will not be 

used.

o1
2 1113.5

o5.11131.02 1
2V

Therefore,

2448.0j0.2S sch,2 
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 o
535

o
434

1
232131*o

3

31
3 VLVLVLVL

)V(
KV 

44

44
4 Y

jQPK 


44

41
41 Y

YL 
44

42
42 Y

YL 

K3 = -0.0275 - j0.0325 L31 = 0.0 L32 = -0.5000

o0.75590.9806 1
3V

L34 = -0.5000 L35 = 0.0

Bus 3 is PQ Bus

33

34
34 Y

YL 
33

35
35 Y

YL 

 o
545

1
343

1
242141*o

4

41
4 VLVLVLVL

)V(
KV 

33

33
3 Y

jQPK 


33

31
31 Y

YL 
33

32
32 Y

YL 

K4 = -0.0275 - j0.0325 L41 = 0.0 L42 = 0.0

o1.5489-0.9631 1
4V

L43 = -0.5000 L45 = -0.5000

Bus 4 is PQ Bus

44

43
43 Y

YL 
44

45
45 Y

YL 
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 1
454

3
353

1
252151*o

5

51
5 VLVLVLVL

)V(
KV 

K5 = -0.0183 - 0.0217i L51 = -0.3333 L52 = -0.3333

o0.0031-0.9812  1
5V

L53 = 0.0 L54 = -0.3333

Bus 5 is PQ Bus

Check  Q2 is within the limits 6.0Q2.0 2 

Start the second iteration

)}VYVYVYVYVY(VIm{Q 1
525

1
424

1
323

1
222121

*1
2

2
2 

0.02902
2Q

Bus 2 is PV Bus

The reactive power limits are violated

2.0QQsetQQ ,mini2,mini2 

And treat this bus as PQ-bus 2.0j0.2S sch,2 

All Buses 2, 3, 4 and 5 are PQ Buses. Find the bus voltages using GS method

Use the most 
updated value of 

Q2 to calculate the 
constant K2
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Accelerated G-S Convergence

( 1) ( )

( 1) ( ) ( ) ( )

(

Previously in the Gauss-Seidel method we were
calculating each value x as

( )
To accelerate convergence we can rewrite this as

( )
Now introduce acceleration parameter 

v v

v v v v

v

x h x

x x h x x

x











  

1) ( ) ( ) ( )( ( ) )
With  = 1 this is identical to standard gauss-seidel.
Larger values of  may result in faster convergence.

v v vx h x x




  
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Accelerated Convergence, cont’d

( 1) ( ) ( ) ( )

Consider the previous example:    - 1 0

(1 )
Comparison of results with different values of 

1 1.2 1.5 2
0 1 1 1 1
1 2 2.20 2.5 3
2 2.4142 2.5399 2.6217 2.464
3 2.5554 2.6045 2.6179 2.675
4 2.59

v v v v

x x

x x x x

k




   



 

   

   

81 2.6157 2.6180 2.596
5 2.6118 2.6176 2.6180 2.626
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Accelerated Convergence, cont’d

The Effect of Acceleration Factor

1.5≤≤1.7

Adequate Values of the Acceleration Factor: 
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Gauss-Seidel Advantages

•
 

Each iteration is relatively fast (computational order is 
proportional to number of branches + number of buses in 
the system

•
 

Relatively easy to program
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Gauss-Seidel Disadvantages

•
 

Tends to converge relatively slowly, although this can be 
improved with acceleration

•
 

Has tendency to miss solutions, particularly on large 
systems

•
 

Tends to diverge on cases with negative branch reactances 
(common with compensated lines)

•
 

Need to program using complex numbers
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