ELE B7 Power Systems Engineering

Newton-Raphson Method
Newton-Raphson Algorithm

• The second major power flow solution method is the Newton-Raphson algorithm
• Key idea behind Newton-Raphson is to use sequential linearization

General form of problem: Find an \(x \) such that

\[
f(\hat{x}) = 0
\]
Newton-Raphson Method (scalar)

1. For each guess of \hat{x}, $x^{(v)}$, define
 $$\Delta x^{(v)} = \hat{x} - x^{(v)}$$

2. Represent $f(\hat{x})$ by a Taylor series about $f(x)$
 $$f(\hat{x}) = f(x^{(v)}) + \frac{df(x^{(v)})}{dx} \Delta x^{(v)} + \frac{d^2 f(x^{(v)})}{dx^2} (\Delta x^{(v)})^2 + \text{higher order terms}$$
Newton-Raphson Method, cont’d

3. Approximate $f(\hat{x})$ by neglecting all terms except the first two

$$f(\hat{x}) = 0 \approx f(x^{(v)}) + \frac{df(x^{(v)})}{dx} \Delta x^{(v)}$$

4. Use this linear approximation to solve for $\Delta x^{(v)}$

$$\Delta x^{(v)} = -\left[\frac{df(x^{(v)})}{dx} \right]^{-1} f(x^{(v)})$$

5. Solve for a new estimate of \hat{x}

$$x^{(v+1)} = x^{(v)} + \Delta x^{(v)}$$
Newton-Raphson Example

Use Newton-Raphson to solve $f(x) = x^2 - 2 = 0$

The equation we must iteratively solve is

$$
\Delta x^{(v)} = -\left[\frac{df(x^{(v)})}{dx} \right]^{-1} f(x^{(v)})
$$

$$
\Delta x^{(v)} = -\left[\frac{1}{2x^{(v)}} \right] ((x^{(v)})^2 - 2)
$$

$$
x^{(v+1)} = x^{(v)} + \Delta x^{(v)}
$$

$$
x^{(v+1)} = x^{(v)} - \left[\frac{1}{2x^{(v)}} \right] ((x^{(v)})^2 - 2)
$$
Newton-Raphson Example, cont’d

\[x^{(v+1)} = x^{(v)} - \left[\frac{1}{2x^{(v)}} \right] ((x^{(v)})^2 - 2) \]

Guess \(x^{(0)} = 1 \). Iteratively solving we get

<table>
<thead>
<tr>
<th>(v)</th>
<th>(x^{(v)})</th>
<th>(f(x^{(v)}))</th>
<th>(\Delta x^{(v)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.25</td>
<td>-0.08333</td>
</tr>
<tr>
<td>2</td>
<td>1.41667</td>
<td>6.953 \times 10^{-3}</td>
<td>-2.454 \times 10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>1.41422</td>
<td>6.024 \times 10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>
Sequential Linear Approximations

Function is $f(x) = x^2 - 2 = 0$. Solutions are points where $f(x)$ intersects $f(x) = 0$ axis.

At each iteration the N-R method uses a linear approximation to determine the next value for x.
Newton-Raphson Comments

• When close to the solution the error decreases quite quickly -- method has quadratic convergence
• $f(x^{(v)})$ is known as the mismatch, which we would like to drive to zero
• Stopping criteria is when $|f(x^{(v)})| < \varepsilon$
• Results are dependent upon the initial guess. What if we had guessed $x^{(0)} = 0$, or $x^{(0)} = -1$?
• A solution’s region of attraction (ROA) is the set of initial guesses that converge to the particular solution. The ROA is often hard to determine
Next we generalize to the case where \mathbf{x} is an n-dimension vector, and $\mathbf{f}(\mathbf{x})$ is an n-dimension function

\[
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \quad \mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{bmatrix}
\]

Again define the solution $\hat{\mathbf{x}}$ so $\mathbf{f}(\hat{\mathbf{x}}) = 0$ and

\[
\Delta \mathbf{x} = \hat{\mathbf{x}} - \mathbf{x}
\]
The Taylor series expansion is written for each $f_i(x)$

\[f_1(\hat{x}) = f_1(x) + \frac{\partial f_1(x)}{\partial x_1} \Delta x_1 + \frac{\partial f_1(x)}{\partial x_2} \Delta x_2 + \ldots \]

\[\frac{\partial f_1(x)}{\partial x_n} \Delta x_n + \text{higher order terms} \]

\[\vdots \]

\[f_n(\hat{x}) = f_n(x) + \frac{\partial f_n(x)}{\partial x_1} \Delta x_1 + \frac{\partial f_n(x)}{\partial x_2} \Delta x_2 + \ldots \]

\[\frac{\partial f_n(x)}{\partial x_n} \Delta x_n + \text{higher order terms} \]
Multi-Variable Case, cont’d

This can be written more compactly in matrix form

\[f(\hat{x}) = \left[\begin{array}{c} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{array} \right] + \left[\begin{array}{cccc} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(x)}{\partial x_1} & \frac{\partial f_n(x)}{\partial x_2} & \cdots & \frac{\partial f_n(x)}{\partial x_n} \end{array} \right] \left[\begin{array}{c} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{array} \right] + \text{higher order terms} \]
The n by n matrix of partial derivatives is known as the Jacobian matrix, \(\mathbf{J}(\mathbf{x}) \)

\[
\mathbf{J}(\mathbf{x}) = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \ldots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \ldots & \frac{\partial f_2(\mathbf{x})}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n(\mathbf{x})}{\partial x_1} & \frac{\partial f_n(\mathbf{x})}{\partial x_2} & \ldots & \frac{\partial f_n(\mathbf{x})}{\partial x_n}
\end{bmatrix}
\]
Multi-Variable N-R Procedure

Derivation of N-R method is similar to the scalar case
\[f(\hat{x}) = f(x) + J(x)\Delta x + \text{higher order terms} \]
\[f(\hat{x}) = 0 \approx f(x) + J(x)\Delta x \]
\[\Delta x \approx -J(x)^{-1}f(x) \]
\[x^{(v+1)} = x^{(v)} + \Delta x^{(v)} \]
\[x^{(v+1)} = x^{(v)} - J(x^{(v)})^{-1}f(x^{(v)}) \]

Iterate until \[\|f(x^{(v)})\| < \varepsilon \]
Multi-Variable Example

Solve for $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ such that $\mathbf{f}(\mathbf{x}) = 0$ where

$f_1(\mathbf{x}) = 2x_1^2 + x_2^2 - 8 = 0$

$f_2(\mathbf{x}) = x_1^2 - x_2^2 + x_1x_2 - 4 = 0$

First symbolically determine the Jacobian

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} \\ \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} \end{bmatrix}$$
Multi-variable Example, cont’d

\[J(x) = \begin{bmatrix} 4x_1 & 2x_2 \\ 2x_1 + x_2 & x_1 - 2x_2 \end{bmatrix} \]

Then

\[\begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = -J^{-1}(x) \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} \]

 Arbitrarily guess \(x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \)

\[x^{(1)} = x^{(0)} - J^{-1}(x) \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}^{-1} \begin{bmatrix} -5 \\ -3 \end{bmatrix} = \begin{bmatrix} 2.1 \\ 1.3 \end{bmatrix} \]
Multi-variable Example, cont’d

\[
x^{(2)} = \begin{bmatrix} 2.1 \\ 1.3 \end{bmatrix} - \begin{bmatrix} 8.40 & 2.60 \\ 5.50 & -0.50 \end{bmatrix}^{-1} \begin{bmatrix} 2.51 \\ 1.45 \end{bmatrix} = \begin{bmatrix} 1.8284 \\ 1.2122 \end{bmatrix}
\]

Each iteration we check \(\| \mathbf{f}(\mathbf{x}) \| \) to see if it is below our specified tolerance \(\varepsilon \)

\[
\mathbf{f}(x^{(2)}) = \begin{bmatrix} 0.1556 \\ 0.0900 \end{bmatrix}
\]

If \(\varepsilon = 0.2 \) then we would be done. Otherwise we'd continue iterating.
We first need to rewrite complex power equations as equations with real coefficients

\[S_i = V_i I_i^* = V_i \left(\sum_{k=1}^{n} Y_{ik} V_k \right)^* = V_i \sum_{k=1}^{n} Y_{ik}^* V_k^* \]

These can be derived by defining

\[Y_{ik} = G_{ik} + jB_{ik} \]

\[V_i = |V_i|e^{j\theta_i} = |V_i| \angle \theta_i \]

\[\theta_{ik} = \theta_i - \theta_k \]

Recall \(e^{j\theta} = \cos \theta + j \sin \theta \)
Real Power Balance Equations

\[S_i = P_i + jQ_i = V_i \sum_{k=1}^{n} Y_{ik} V_k^* = \sum_{k=1}^{n} |V_i||V_k| e^{j\theta_{ik}} (G_{ik} - jB_{ik}) \]

\[= \sum_{k=1}^{n} |V_i||V_k| (\cos \theta_{ik} + j \sin \theta_{ik})(G_{ik} - jB_{ik}) \]

Resolving into the real and imaginary parts

\[P_i = \sum_{k=1}^{n} |V_i||V_k|(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di} \]

\[Q_i = \sum_{k=1}^{n} |V_i||V_k|(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di} \]
Newton-Raphson Power Flow

In the Newton-Raphson power flow we use Newton's method to determine the voltage magnitude and angle at each bus in the power system.

We need to solve the power balance equations

\[
P_i = \sum_{k=1}^{n} |V_i||V_k| (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di}
\]

\[
Q_i = \sum_{k=1}^{n} |V_i||V_k| (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di}
\]
Power Flow Variables

Assume the slack bus is the first bus (with a fixed voltage angle/magnitude). We then need to determine the voltage angle/magnitude at the other buses.

\[\mathbf{X} = \begin{bmatrix} \theta_2 \\ \vdots \\ \theta_n \\ |V_2| \\ \vdots \\ |V_n| \end{bmatrix}, \quad \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \Delta P(x) \\ \Delta Q(x) \end{bmatrix} = \begin{bmatrix} P_2(x) - P_{G2} + P_{D2} \\ \vdots \\ P_n(x) - P_{Gn} + P_{Dn} \\ Q_2(x) - Q_{G2} + Q_{D2} \\ \vdots \\ Q_n(x) - Q_{Gn} + Q_{Dn} \end{bmatrix} \]
The power flow is solved using the same procedure discussed last time:

Set \(\nu = 0 \); make an initial guess of \(x, x^{(\nu)} \)

While \(\| f(x^{(\nu)}) \| > \varepsilon \) Do

\[
 x^{(\nu+1)} = x^{(\nu)} - J(x^{(\nu)})^{-1} f(x^{(\nu)})
\]

\(\nu = \nu + 1 \)

End While
Power Flow Jacobian Matrix

The most difficult part of the algorithm is determining and inverting the n by n Jacobian matrix, \(\mathbf{J}(\mathbf{x}) \)

\[
\mathbf{J}(\mathbf{x}) = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_2(\mathbf{x})}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n(\mathbf{x})}{\partial x_1} & \frac{\partial f_n(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_n}
\end{bmatrix}
\]
Jacobian elements are calculated by differentiating each function, $f_i(x)$, with respect to each variable.

For example, if $f_i(x)$ is the bus i real power equation

$$f_i(x) = \sum_{k=1}^{n} |V_i||V_k|(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) - P_{Gi} + P_{Di}$$

$$\frac{\partial f_i(x)}{\partial \theta_i} = \sum_{k=1, k\neq i}^{n} |V_i||V_k|(-G_{ik} \sin \theta_{ik} + B_{ik} \cos \theta_{ik})$$

$$\frac{\partial f_i(x)}{\partial \theta_j} = |V_i||V_j|(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \quad (j \neq i)$$
Line Flows and Losses

- After solving for bus voltages and angles, power flows and losses on the network branches are calculated
 - Transmission lines and transformers are network branches
 - The direction of positive current flow are defined as follows for a branch element (demonstrated on a medium length line)
 - Power flow is defined for each end of the branch
 - Example: the power leaving bus i and flowing to bus j
Line Flows and Losses

- current and power flows:
\[I_{ij} = I_L + I_{i0} = y_{ij} (V_i - V_j) + y_{i0} V_i \quad I_{ji} = -I_L + I_{j0} = y_{ij} (V_j - V_i) + y_{j0} V_j \]
\[S_{ij} = V_i I_{ij}^* = V_i^2 (y_{ij} + y_{i0}) * - V_i y_{ij}^* V_j^* \quad S_{ji} = V_j I_{ji}^* = V_j^2 (y_{ij} + y_{j0}) * - V_j y_{ij}^* V_i^* \]

- power loss:
\[S_{Loss_{ij}} = S_{ij} + S_{ji} \]
Two Bus Newton-Raphson Example

For the two bus power system shown below, use the Newton-Raphson power flow to determine the voltage magnitude and angle at bus two. Assume that bus one is the slack and $S_{\text{Base}} = 100$ MVA.

\[
\begin{align*}
\bar{V}_1 &= 1 \angle 0^\circ \\
\bar{V}_2 &= V_2 \angle \theta_2 \\
\bar{S}_2 &= 200 + j100
\end{align*}
\]

\[
x = \begin{bmatrix} \theta_2 \\ |V_2| \end{bmatrix} \quad Y_{\text{bus}} = \begin{bmatrix} -j10 & j10 \\ j10 & -j10 \end{bmatrix}
\]
Two Bus Example, cont’d

General power balance equations

\[P_i = \sum_{k=1}^{n} |V_i||V_k|(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di} \]

\[Q_i = \sum_{k=1}^{n} |V_i||V_k|(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di} \]

Bus two power balance equations

\[P_2 = |V_2||V_1|(10 \sin \theta_2) + 2.0 = 0 \]

\[Q_2 = |V_2||V_1|(-10 \cos \theta_2) + |V_2|^2 (10) + 1.0 = 0 \]
Two Bus Example, cont’d

\[P_2(x) = |V_2|(10\sin \theta_2) + 2.0 = 0 \]

\[Q_2(x) = |V_2|(-10\cos \theta_2) + |V_2|^2(10) + 1.0 = 0 \]

Now calculate the power flow Jacobian

\[
J(x) = \begin{bmatrix}
\frac{\partial P_2(x)}{\partial \theta_2} & \frac{\partial P_2(x)}{\partial |V_2|^2} \\
\frac{\partial Q_2(x)}{\partial \theta_2} & \frac{\partial Q_2(x)}{\partial |V_2|^2}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
10|V_2|\cos \theta_2 & 10\sin \theta_2 \\
10|V_2|\sin \theta_2 & -10\cos \theta_2 + 20|V_2|
\end{bmatrix}
\]
Two Bus Example, First Iteration

Set $\nu = 0$, guess $\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Calculate

$$f(\mathbf{x}^{(0)}) = \begin{bmatrix} |V_2|(10\sin \theta_2) + 2.0 \\ |V_2|(-10\cos \theta_2) + |V_2|^2(10) + 1.0 \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix}$$

$$\mathbf{J}(\mathbf{x}^{(0)}) = \begin{bmatrix} 10|V_2|\cos \theta_2 & 10\sin \theta_2 \\ 10|V_2|\sin \theta_2 & -10\cos \theta_2 + 20|V_2| \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

Solve $\mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix} = \begin{bmatrix} -0.2 \\ 0.9 \end{bmatrix}$
Two Bus Example, Next Iterations

\[
f(x^{(1)}) = \begin{bmatrix} 0.9(10\sin(-0.2)) + 2.0 \\ 0.9(-10\cos(-0.2)) + 0.9^2 \times 10 + 1.0 \end{bmatrix} = \begin{bmatrix} 0.212 \\ 0.279 \end{bmatrix}
\]

\[
J(x^{(1)}) = \begin{bmatrix} 8.82 & -1.986 \\ -1.788 & 8.199 \end{bmatrix}
\]

\[
x^{(2)} = \begin{bmatrix} -0.2 \\ 0.9 \end{bmatrix} - \begin{bmatrix} 8.82 & -1.986 \\ -1.788 & 8.199 \end{bmatrix}^{-1} \begin{bmatrix} 0.212 \\ 0.279 \end{bmatrix} = \begin{bmatrix} -0.233 \\ 0.8586 \end{bmatrix}
\]

\[
f(x^{(2)}) = \begin{bmatrix} 0.0145 \\ 0.0190 \end{bmatrix}
\]

\[
x^{(3)} = \begin{bmatrix} -0.236 \\ 0.8554 \end{bmatrix}
\]

\[
f(x^{(3)}) = \begin{bmatrix} 0.0000906 \\ 0.0001175 \end{bmatrix}
\]

Done! \(V_2 = 0.8554 \angle -13.52^\circ \)
Two Bus Solved Values

Once the voltage angle and magnitude at bus 2 are known we can calculate all the other system values, such as the line flows and the generator reactive power output

\[
\begin{align*}
\vec{S}_{12} &= 200 + j168.3 \\
\vec{V}_1 &= 1 \angle 0^0 \\
\vec{S}_{21} &= -200 - j100 \\
\vec{V}_2 &= 0.855 \angle -13.52^0 \\
\vec{S}_{\text{loss12}} &= \vec{S}_{12} + \vec{S}_{21} = 0 + j68.3 \\
\vec{S}_2 &= 200 + j100
\end{align*}
\]
PV Buses

• Since the voltage magnitude at PV buses is fixed there is no need to explicitly include these voltages in \mathbf{x} or write the reactive power balance equations
 – the reactive power output of the generator varies to maintain the fixed terminal voltage (within limits)
 – optionally these variations/equations can be included by just writing the explicit voltage constraint for the generator bus
 \[|V_i| - V_{i \text{ setpoint}} = 0 \]
Three Bus PV Case Example

For this three bus case we have

\[
x = \begin{bmatrix}
\theta_2 \\
\theta_3 \\
V_2
\end{bmatrix}
\]

\[
f(x) = \begin{bmatrix}
P_2(x) - P_{G2} + P_{D2} \\
P_3(x) - P_{G3} + P_{D3} \\
Q_2(x) + Q_{D2}
\end{bmatrix} = 0
\]
Solving Large Power Systems

• The most difficult computational task is inverting the Jacobian matrix
 – inverting a full matrix is an order n^3 operation, meaning the amount of computation increases with the cube of the size
 – this amount of computation can be decreased substantially by recognizing that since the Y_{bus} is a sparse matrix, the Jacobian is also a sparse matrix
 – using sparse matrix methods results in a computational order of about $n^{1.5}$.
 – this is a substantial savings when solving systems with tens of thousands of buses
Newton-Raphson Power Flow

• Advantages
 – fast convergence as long as initial guess is close to solution
 – large region of convergence

• Disadvantages
 – each iteration takes much longer than a Gauss-Seidel iteration
 – more complicated to code, particularly when implementing sparse matrix algorithms

• Newton-Raphson algorithm is very common in power flow analysis