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Newton-Raphson Algorithm

• The second major power flow solution method is 
the Newton-Raphson algorithm

• Key idea behind Newton-Raphson is to use 
sequential linearization
General form of problem: Find an x such that

( ) 0ˆf x 
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Newton-Raphson Method (scalar)
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Newton-Raphson Method, cont’d
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3. Approximate ( ) by neglecting all termsˆ
except the first two

( )( ) 0 ( )ˆ
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Newton-Raphson Example
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Use Newton-Raphson to solve ( )  - 2 0
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Newton-Raphson Example, cont’d

( 1) ( ) ( ) 2
( )

(0)

( ) ( ) ( )

3 3
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1 (( ) - 2)
2

Guess x 1.  Iteratively solving we get

v ( )
0 1 1 0.5
1 1.5 0.25 0.08333

2 1.41667 6.953 10 2.454 10

3 1.41422 6.024 10

v v v
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Sequential Linear Approximations

Function is f(x) = x2 - 2 = 0.
Solutions are points where
f(x) intersects f(x) = 0 axis

At each 
iteration the
N-R method
uses a linear
approximation
to determine 
the next value
for x
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Newton-Raphson Comments

• When close to the solution the error decreases 
quite quickly -- method has quadratic convergence

• f(x(v)) is known as the mismatch, which we would 
like to drive to zero

• Stopping criteria is when f(x(v)) 
 

< 
• Results are dependent upon the initial guess.  

What if we had guessed x(0) = 0, or x (0) = -1?
• A solution’s region of attraction (ROA) is the set 

of initial guesses that converge to the particular 
solution.  The ROA is often hard to determine
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Multi-Variable Newton-Raphson

1 1

2 2

Next we generalize to the case where  is an n-
dimension vector, and ( ) is an n-dimension function

( )
( )

( )

( )
Again define the solution  so ( ) 0 andˆ ˆ

n n

x f
x f

x f
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Multi-Variable Case, cont’d

i

1 1
1 1 1 2

1 2
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n

The Taylor series expansion is written for each f ( )
f ( ) f ( )f ( ) f ( )ˆ

f ( ) higher order terms

f ( ) f ( )f ( ) f ( )ˆ

f ( ) higher order terms
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Multi-Variable Case, cont’d

1 1 1

1 2
1 1

2 2 2
2 2

1 2

1 2

This can be written more compactly in matrix form
( ) ( ) ( )

( )
( ) ( ) ( )
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( )
( ) ( ) ( )

n

n

n
n n n

n

f f f
x x x

f x
f f f

f x
x x x

f
f f f

x x x
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Jacobian Matrix

1 1 1

1 2

2 2 2

1 2

1 2

The n by n matrix of partial derivatives is known
as the Jacobian matrix, ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
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Multi-Variable N-R Procedure

1

( 1) ( ) ( )

( 1) ( ) ( ) 1 ( )

( )

Derivation of N-R method is similar to the scalar case
( ) ( ) ( ) higher order termsˆ
( ) 0 ( ) ( )ˆ

( ) ( )

( ) ( )
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Multi-Variable Example
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Multi-variable Example, cont’d

1 2

1 2 1 2

1
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Multi-variable Example, cont’d

1
(2)

(2)

2.1 8.40 2.60 2.51 1.8284
1.3 5.50 0.50 1.45 1.2122

Each iteration we check ( )  to see if it is below our 
specified tolerance 

0.1556
( )

0.0900
If  = 0.2 then we wou


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
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 
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ld be done.  Otherwise we'd 
continue iterating.  
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NR Application to Power Flow

*
* * *

i
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We first need to rewrite complex power equations
as equations with real coefficients 
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Real Power Balance Equations

* *
i

1 1

1

i
1

i
1

S ( )

(cos sin )( )

Resolving into the real and imaginary parts

P ( cos sin )

Q ( sin cos
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n n

j
i i i ik k i k ik ik

k k
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Newton-Raphson Power Flow

i
1

In the Newton-Raphson power flow we use Newton's
method to determine the voltage magnitude and angle
at each bus in the power system.  
We need to solve the power balance equations

P ( cos
n

i k ik ik
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

 

i
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Power Flow Variables

Assume the slack bus is the first bus (with a fixed
voltage angle/magnitude).  We then need to determine 
the voltage angle/magnitude at the other buses.    
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N-R Power Flow Solution 

( )

( )

( 1) ( ) ( ) 1 ( )

The power flow is solved using the same procedure
discussed last time:

Set   0; make an initial guess of , 

While ( ) Do

( ) ( )
1

End While

v

v

v v v v

v

v v


 





 
 

x x
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x x J x f x
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Power Flow Jacobian Matrix

1 1 1

1 2

2 2 2

1 2

1 2

The most difficult part of the algorithm is determining
and inverting the n by n Jacobian matrix, ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

n

n

n n n

n

f f f
x x x

f f f
x x x
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   
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  
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 
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Power Flow Jacobian Matrix, cont’d

i

i

i
1

Jacobian elements are calculated by differentiating 
each function, f ( ),  with respect to each variable.
For example, if f ( ) is the bus i real power equation

f ( ) ( cos sin )
n

i k ik ik ik ik Gi
k

x V V G B P P 
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   

x
x

i

1

i

f ( ) ( sin cos )

f ( ) ( sin cos ) ( )

Di

n

i k ik ik ik ik
i k

k i

i j ik ik ik ik
j

x V V G B

x V V G B j i

 

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
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Line Flows and Losses
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Line Flows and Losses
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Two Bus Newton-Raphson Example

For the two bus power system shown below, use the 
Newton-Raphson power flow to determine the 
voltage magnitude and angle at bus two.  Assume
that bus one is the slack and SBase = 100 MVA. 

2

2

10 10
10 10bus
j j

V j j
    

      
x Y

222 VV


1002002 jS 


0
1 01V

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Two Bus Example, cont’d

i
1

i
1

2 2 1 2
2

2 2 1 2 2

General power balance equations

P ( cos sin )

Q ( sin cos )

Bus two power balance equations
P (10sin ) 2.0 0

( 10cos ) (10) 1.0 0

n

i k ik ik ik ik Gi Di
k
n

i k ik ik ik ik Gi Di
k

V V G B P P

V V G B Q Q

V V

Q V V V

 

 









   

   

  

    




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Two Bus Example, cont’d

2 2 2
2

2 2 2 2

2 2

2 2

2 2

2 2

2 2 2

2 2 2 2

P ( ) (10sin ) 2.0 0

( ) ( 10cos ) (10) 1.0 0
Now calculate the power flow Jacobian

P ( ) P ( )

( )
Q ( ) Q ( )

10 cos 10sin
10 sin 10cos 20

V

Q V V

V
J

V

V
V V









 
 

  

    

  
  
 
  
   
 

    

x

x

x x

x
x x



Slide # 29

Two Bus Example, First Iteration

(0)

2 2(0)
2

2 2 2

2 2 2(0)

2 2 2 2

(1)

0
Set   0, guess 

1
Calculate 

(10sin ) 2.0 2.0
f( )

1.0( 10cos ) (10) 1.0

10 cos 10sin 10 0
( )

10 sin 10cos 20 0 10

0 10 0
Solve

1 0 10

v

V

V V

V
V V





 
 

 
    

   
          

   
        

  
    

x

x

J x

x
1 2.0 0.2

1.0 0.9

     
         



Slide # 30

Two Bus Example, Next Iterations

(1)
2

(1)

1
(2)

0.9(10sin( 0.2)) 2.0 0.212
f( )

0.2790.9( 10cos( 0.2)) 0.9 10 1.0
8.82 1.986

( )
1.788 8.199

0.2 8.82 1.986 0.212 0.233
0.9 1.788 8.199 0.279 0.8586

f(



    
           

 
   

         
                

x

J x

x

(2) (3)

(3)
2

0.0145 0.236
)

0.0190 0.8554
0.0000906

f( ) Done! V 0.8554 13.52
0.0001175

          
      

x x

x
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Two Bus Solved Values

Once the voltage angle and magnitude at bus 2 are 
known we can calculate all the other system values,
such as the line flows and the generator reactive 
power output

0
2 52.13855.0 V


1002002 jS 


3.16820012 jS 


0
1 01V


10020021 jS 


3.680211212 jSSSloss 

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PV Buses

• Since the voltage magnitude at PV buses is fixed 
there is no need to explicitly include these voltages 
in x

 
or write the reactive power balance equations

– the reactive power output of the generator varies 
to maintain the fixed terminal voltage (within 
limits)

– optionally these variations/equations can be 
included by just writing the explicit voltage 
constraint for the generator bus 

|Vi | – Vi setpoint = 0
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Three Bus PV Case Example

Line Z = 0.1j

Line Z = 0.1j Line Z = 0.1j

One Two 1.000 pu
 0.941 pu

 200 MW
 100 MVR

170.0 MW
 68.2 MVR

-7.469 Deg

Three 1.000 pu

  30 MW
  63 MVR

2 2 2 2

3 3 3 3

2 2 2

For this three bus case we have
( )

( ) ( ) 0
V ( )

G D

G D

D

P P P
P P P

Q Q




    
          

     

x
x f x x

x
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Solving Large Power Systems

• The most difficult computational task is inverting the Jacobian 
matrix
– inverting a full matrix is an order n3 operation, meaning 

the amount of computation increases with the cube of the 
size size

– this amount of computation can be decreased substantially 
by recognizing that since the Ybus is a sparse matrix, the 
Jacobian is also a sparse matrix

– using sparse matrix methods results in a computational 
order of about n1.5. 

– this is a substantial savings when solving systems with 
tens of thousands of buses



Slide # 35

Newton-Raphson Power Flow

• Advantages
– fast convergence as long as initial guess is close to 

solution
– large region of convergence

• Disadvantages
– each iteration takes much longer than a Gauss-Seidel 

iteration
– more complicated to code, particularly when 

implementing sparse matrix algorithms
• Newton-Raphson algorithm is very common in power flow 

analysis
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