ELE B7 Power Systems Engineering

Newton-Raphson Method



Newton-Raphson Algorithm

e The second major power flow solution method Is
the Newton-Raphson algorithm

» Key idea behind Newton-Raphson is to use
sequential linearization
General form of problem: Find an x such that

f(R) = 0
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Newton-Raphson Method (scalar)

1. For each guess of &, x*), define
AxY) = g - x¥)

2. Represent f (X) by a Taylor series about f (x)

(v)
f(R) = f(x("))+df(dx ) Ax®) 4
X

2 (V) 2
, 4TTx )(Ax(")) + higher order terms
dx?
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Newton-Raphson Method, cont’d

3. Approximate f (X) by neglecting all terms

except the first two

(v
f(R) = 0 ~ f)+ 90D 40

dx

4. Use this linear approximation to solve for AxY)

df (x)

AV = -
dx

-1
f (X(V))

5. Solve for a new estimate of X

X(V+1) — X(V) ‘|‘AX(V)
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Newton-Raphson Example

Use Newton-Raphson to solve f (x) = x*-2=0

The equation we must iteratively solve is
-1

s - 0T o
X

A = | L2 9)
| 2xW)

X(V+1) — X(V) +AX(V)

VA1) (V) 1 (V)2
X = X [Zx()}((x )" -2)
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(v+1) _ (V) (V)12
CEEENT

Newton-Raphson Example, cont’'d

Guess X9 =1. Iteratively solving we get

)
1

1.5
1.41667

1.41422

f (X(V))

-1

0.25
6.953x107

6.024 x107°

AX(V)
0.5
—0.08333

_2.454%x107°
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Seqguential Linear Approximations

10.0°T

T~ At each

Iteration the
-4.00 -2.00 N - R mEth Od

uses a linear
approximation
to determine

Function is f(x) = x2 -2 =0. the next value
Solutions are points where for x
f(x) intersects f(x) = 0 axis

)
e
oo
<
(o]
= o
S
-y
o
S
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Newton-Raphson Comments

When close to the solution the error decreases
quite quickly -- method has quadratic convergence

f(x™) is known as the mismatch, which we would
like to drive to zero

Stopping criteria is when | f(x®) | <

Results are dependent upon the initial guess.
What if we had guessed x(® =0, or x 0 =-17?

A solution’s region of attraction (ROA) is the set
of initial guesses that converge to the particular
solution. The ROA is often hard to determine
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Multi-Variable Newton-Raphson

Next we generalize to the case where x IS an n-
dimension vector, and f(x) Is an n-dimension function

X1 - f(x)
. X:2 f(x) = 5 :(X)
| Xn_ i fi (X)_

Again define the solution x so f(x) =0 and

AX= X—X
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Multi-Variable Case, cont’d

The Taylor series expansion is written for each f; (x)

(x) 5y, ()

f.(x) = f +
1(X) 1(x) ox, o,

AXy +...

oty (x)
OX,,

AX,, + higher order terms

Oy (x) 5y, 4 )

f(x) = f,(x)+
h (X) h (X) ox, o,

AXy +...

of, (x)
OX,,

AX, + higher order terms
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Multi-Variable Case, cont’d

This can be written more compactly in matrix form

f(%) =

f,(x)

| f; (x) _

i fn (X)_

oty (x)
0X%q
of, (x)
0%y

oty (x)
0%y

oty (x)
OX5
of, (x)
OX,

ot (x)
OX,

+ higher order terms

ofy (x) |

OX;,
of»(x)
OX;,

ot (x)
OX;,

AXq
AX,

AX,
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Jacobian Matrix

The n by n matrix of partial derivatives is known
as the Jacobian matrix, J(x)

ofy(x)  ofy(x) ofy (x)
0%y OX, - OX;,
ofy(x)  Ofy(x) o oty (x)
J(x) = | 0% OX5 OX;,

of,(x)  of,(x) oty (x)
0%y OX, OXp,
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Multi-Variable N-R Procedure

Derivation of N-R method is similar to the scalar case
f(x) = f(x)+J(x)Ax+ higher order terms
f(x) = 0 =~ f(x)+J(x)Ax
Ax  ~ —J(x)H(x)
L) ) AL )
<) — (V) —J(X(V))_lf(X(v))
Iterate until Hf (x")

<
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Multi-Variable Example

Solve for x =

f (x)=2% + x5 -8=0

f)(X)=X{ — X5 + XX, —4=0
First symbolically determine the Jacobian

J(x) =

such that f(x) =0 where

I of (x) of;(x) ]

0%y OX,
0fy(x)  Of5(x)
0%y OX,
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Multi-variable Example, cont’d

J(x) =

Then

AXq
AX,

Arbitrarily guess x(% =

@O

1

44

2% + X

44

22X+ Xy

X; = 2X;

X; = 2Xp

2 X5

2 X5

I fl(X)_
i f (X)_

5 17

1.3
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Multi-variable Example, cont’d

(2) 217 840 2.60 T'[2511 [1.8284
X — — _

13| |550 -050| |[1.45| [1.2122
Each iteration we check [f(x)| to see if it is below our

specified tolerance ¢
0.1556 |
1 0.0900

If £ = 0.2 then we would be done. Otherwise we'd

f(x'9) =

continue Iterating.
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NR Application to Power Flow

We first need to rewrite complex power equations
as equations with real coefficients

*

n n
S = Vil; = Vi(ZYika] =V; > ViV

k=1 k=1
These can be derived by defining
Yik = Gik + IBj
Vi = ’Vi‘ej& =V;|£6
Ok = 6, =6

Recall e!? =cos@+ jsing
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Real Power Balance Equations

n n . -
Si = P+JQ =V > ik = > VIV, | eV (G, — jBy)
k=1 =1

= iMM\ (Cosby + JsinGy ) (G — JBi)
=

Resolving into the real and imaginary parts

P = ViV (Gj cos8y + By sinby ) = Ps; — Py

Q; Vi Vi (Gy sin@yy — By, cos by ) = Qgi — Qp;

n
2.
k=1
n
2.
k=1
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Newton-Raphson Power Flow

In the Newton-Raphson power flow we use Newton's
method to determine the voltage magnitude and angle

at each bus In the power system.
We need to solve the power balance equations

N
P = D Vi Vk|(Gj cos 6y + By sin6y ) = Ps; — Py,
k=1

Qi = D M|V (G sinéy — By cosby ) =Qgi — Qp
k=1
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Power Flow Variables

Assume the slack bus is the first bus (with a fixed
voltage angle/magnitude). We then need to determine
the voltage angle/magnitude at the other buses.

 1(x) =

AP(x)

AQ(x)_

| P,(x)-Fs, + Py, )

PXx)-P,, +P,,
Q,(x)—Qg, +Qp

_Qn (X) R QGn + QDn i
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N-R Power Flow Solution

The power flow is solved using the same procedure
discussed last time:

Setv = 0; make an initial guess of x, x'*)
While|f(x"))

X(v+1)

‘>5 Do

_ xW) —J(X(V))_lf(x(v))
V = Vv+1
End While
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Power Flow Jacobian Matrix

The most difficult part of the algorithm is determining

and inverting the n by n Jacobian matrix, J(x)
I ofy (x) |

J(x)

of; (x)
0%y
oty (x)
0%

Oty (x)
0%y

ofy (x)
OX,
ot (x)
0X,

Oty (x)
OX,

OX;,
ot (x)
OX;,

Oty (x)
OX;,
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Power Flow Jacobian Matrix, cont’d

Jacobian elements are calculated by differentiating
each function, f;(x), with respect to each variable.
For example, If f;(x) Is the bus 1 real power equation

f; (x)

of; (x)
00,

of (x)
00;

J

= Z‘VHVK‘(leCOSQK+Bksm‘9|k) PGI+PDI

k=1
n

= > ViV (=Gj sin 6y + By, cos Gy )

k=1
€4

Vi Vj Gy sin 6y — By cosy ) (j =)
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Line Flows and Losses

» After solving for bus voltages and angles, power flows
and losses on the network branches are calculated

Transmission lines and transformers are network branches

The direction of positive current flow are defined as follows for a
branch element (demonstrated on a medium length line)

Power flow is defined for each end of the branch
m Example: the power leaving bus i and flowing to bus ;

Bus i Bus j
'LJ'-_.
| I{;‘ V, I, i {f? I

> > «
| I If[} {fﬂ I

Yio Yo

<+ m.ﬁ
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Line Flows and Losses

« current and power flows:

1 — ] Jj—1i

I=I,+1,=y, —I{,)+ VoV |1,=-L+1,=y,V.-V.)+y,V,
S, =V, I =V (v, +vo) ~V,yi VIS, =V. I, =V y, +v,o) -V, v. V/

« power loss: Stossy =S +5;
Bus i Bus j
KRG a
> <
|1, N
Yio -«1"::'0
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Two Bus Newton-Raphson Example

For the two bus power system shown below, use the
Newton-Raphson power flow to determine the
voltage magnitude and angle at bus two. Assume
that bus one is the slack and Sg,, = 100 MVA.

V, =120° V, =V, /8,

Z=0.1]
O,

\J

S, =200+ j100
0, —j10  j10 "
X = Yhys = : :
Vol - J100 —j10_
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Two Bus Example, cont’d

General power balance equations

n
P, = > VMV |(Gj cosby + By sin6y ) = Pg; — Py
k=1
N

Qi = D MMk (Gy sin 6y — By, cosby) = Qg; — Qp
=

Bus two power balance equations
P, = V,|V;/(10sind,)+2.0 = O

Q,= N,|Vy[(~10c0s6,) +V,[* (10) +1.0=0
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Two Bus Example, cont’d

PZ(X) — V2 (105”1 92)4—20 =0

Q,(x) = VM, (~10c0s6,)+V,* (10) +1.0=0
Now calculate the power flow Jacobian

Py (x)  OPy(x)
J(x) = 0, 6’\/‘2
0Q,(x) 0Q,(x)
_ 00, 8’\/‘2 |
10V, cosé, 10sing,
) ' 10\V,|sin@, —10cosé, +20V,
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Two Bus Example, First lteration

0
Setv = 0, guess x\¥ = X
Calculate
(x0) V, (10sin8,) +2.0
|V, (—10¢086,) + V,[* (10) +1.0 |
@) 10V, |cos 6, 10sin 6,
' 10V,|sin@, —10cosd, +20V,|
o [0] [0 0720
Solve x*7/ =| |-
1] |0 10| [10

1.0
10
0
—0.2

0.9

0"

-
10
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Two Bus Example, Next Iterations

() i 0.9(10sin(-0.2)) + 2.0 | {0,212}
X' )= —
0.9(-10c0s(—0.2)) + 0.9 x10+1.0 | [ 0.279

8.82 —-1.986
-1.788 8.199

2 |02 8.82 -1.986]'[0.212 —0.233
X = — =
0.9 -1.788 8.199 0.279 0.8586
10.0145 o ~0.236
X —
10.0190 0.8554

J (x(l)) =

"0.0000906
f(x3) = Done!  V, =0.8554/—13.52°
0.0001175
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Two Bus Solved Values

Once the voltage angle and magnitude at bus 2 are
known we can calculate all the other system values,
such as the line flows and the generator reactive
power output

— —

S, =200+ j168.3 S,, =—200- j100
H &
V, =1£0° V, =0.855/ —13.52°

Siostz = Siz + S5, =0+ }68.3

(© — l

S, =200+ j100
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PV Buses

 Since the voltage magnitude at PV buses Is fixed
there iIs no need to explicitly include these voltages
In x or write the reactive power balance equations

— the reactive power output of the generator varies
to maintain the fixed terminal voltage (within
limits)

— optionally these variations/equations can be
Included by just writing the explicit voltage
constraint for the generator bus

Vil-V =

| setpoint —
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Three Bus PV Case Example

For this three bus case we have

0, Py(x)—Psy +Ppy
X = | 0 f(x) = | B(x)-Fs3+Pp3 [=0
_‘Vz‘_ - Q(x)+Qpy

LD D—Dp—p

0.941 pu
One 1.000 pu Two ~7.469 Deg
170.0 MW igg vaR
68.2 MVR [ Line z=0.1j

L L

Three
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Solving Large Power Systems

e The most difficult computational task is inverting the Jacobian
matrix
— inverting a full matrix is an order n3 operation, meaning
the amount of computation increases with the cube of the
Size size
— this amount of computation can be decreased substantially
by recognizing that since the Y, . Is a sparse matrix, the
Jacobian is also a sparse matrix

— using sparse matrix methods results in a computational
order of about nt~,

— this Is a substantial savings when solving systems with
tens of thousands of buses
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Newton-Raphson Power Flow

« Advantages

— fast convergence as long as initial guess is close to
solution

— large region of convergence
« Disadvantages

— each iteration takes much longer than a Gauss-Seidel
Iteration

— more complicated to code, particularly when
Implementing sparse matrix algorithms

* Newton-Raphson algorithm is very common in power flow
analysis
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