#### ELE-B7

#### TRANSMISSION LINES

## Development of Line Models

- □ Goals of this section are
- 1) Develop a simple model for transmission lines
- 2) Gain an intuitive feel for how the geometry of the transmission line affects the model parameters

### Primary Methods for Power Transfer

- The most common methods for transfer of electric power are
- 1) Overhead AC
- 2) Underground AC
- 3) Overhead DC
- 4) Underground DC

#### Extra-high-voltage lines

□ Voltage: 345 kV, 500 kV, 765 kV

#### High-voltage lines

□ Voltage: 115 kV, 230 kV

#### Sub-transmission lines

Voltage: 46 kV, 69 kV

#### Distribution lines

- Voltage: 2.4 kV to 46 kV, with 15 kV being the most commonly used
- □ High-voltage DC lines
  - Voltage: ±120 kV to ±600 kV

- Three-phase conductors, which carry the electric current;
- □ Insulators, which support and electrically isolate the conductors;
- □ Tower, which holds the insulators and conductors;
- □ Foundation and grounding; and
- Optional shield conductors, which protect against lightning









#### **Distribution** Line









Definition of Parameters

- Aluminum Conductor ACSR Coductor Steel Reinforced (ACSR);
  Aluminum outer 2 layers, 30 conditioned
- All Aluminum
   Conductor (AAC);
   and
- All Aluminum Alloy Conductor (AAAC).





#### Insulators



#### Insulator Chain

| Line Voltage | Number of Insulators per<br>String |
|--------------|------------------------------------|
| 69 kV        | 4–6                                |
| 115 kV       | 7–9                                |
| 138 kV       | 8–10                               |
| 230 kV       | 12                                 |
| 345 kV       | 18                                 |
| 500 kV       | 24                                 |
| 765 kV       | 30–35                              |



#### Composite insulator.

- □ (1) Sheds of alternating diameters prevent bridging by ice, snow and cascading rain.
- $\Box$  (2) Fiberglass reinforced resin rod.
- □ (3) Injection molded rubber (EPDM or Silicone) weather sheds and rod covering.
- □ (4) Forged steel end fitting, galvanized and joined to rod by swaging process.





•Figure 4.15 Line post-composite insulator with yoke holding two conductors.

- (1) is the clevis ball,
- (2) is the socket for the clevis,
- (3) is the yoke plate, and
- (4) is the suspension clamp. (*Source*: Sediver)





### Inductance of a Single Wire

- The inductance of a magnetic circuit has a constant permeability can be obtained by determining the following:
- a) Magnetic field intensity H, from Ampere's law.
- b) Magnetic flux density B ( $B = \mu H$ )
- c) Flux linkage  $\lambda$
- d) Inductance from flux linkage per ampere  $(L = \lambda/I)$

### Flux linkages within the wire :

 $\oint H \cdot dl = I_{enclosed}$ 

$$H_x(2\pi x) = I_x \Longrightarrow H_x = \frac{I_x}{2\pi x}$$

Assume uniform current distribution :

$$I_x = \left(\frac{x}{r}\right)^2 I \Longrightarrow H_x = \frac{xI}{2\pi r^2}$$

For non - magnetic conductor :

$$B_x = \mu_0 H_x = \frac{\mu_0 x I}{2\pi r^2}$$

The differential flux  $d\phi$  per unit length is :

 $d\phi = B_{\chi}dx$ 

Since only the fraction  $(x/r)^2$  of the total current is linked by the flux :

$$d\lambda = \left(\frac{x}{r}\right)^2 d\phi = \frac{\mu_0 x^3 I}{2\pi r^4} dx$$
$$\lambda_{\text{int}} = \int_0^r d\lambda = \frac{1}{2} \times 10^{-7} I \Longrightarrow L_{\text{int}} = \frac{\lambda_{\text{int}}}{I} = \frac{1}{2} \times 10^{-7} H / m$$



#### Flux linkages outside of the wire :

D2

Х

**D1** 

 $\oint H \cdot dl = I_{enclosed}$   $H_x(2\pi x) = I \Longrightarrow H_x = \frac{I}{2\pi x}$   $B_x = \mu_0 H_x = 4 \times \pi \times 10^{-7} \frac{I}{2\pi x} = 2 \times 10^{-7} \frac{I}{x}$ The differential flux d\u03c6 per unit length is :  $d\phi = B_x dx$ 

Since the entire current is linked by the flux outside the conductor :

$$d\lambda = d\phi = 2 \times 10^{-7} \frac{I}{x} dx$$
  
$$\lambda_{12} = \int_{D1}^{D2} d\lambda = 2 \times 10^{-7} I \times \ln\left(\frac{D1}{D2}\right) \Longrightarrow L_{12} = \frac{\lambda_{12}}{I} = 2 \times 10^{-7} \ln\left(\frac{D1}{D2}\right) H / m$$

#### Total flux linkage:

Total flux linkage  $\lambda_p$  linking the conductor out to external point P at distance D is the sum of the interanl and external flux linkages. Since  $D_1 = r$  and  $D_2 = D$ , then

$$\lambda_p = \frac{1}{2} \times 10^{-7} \,\mathrm{I} + 2 \times 10^{-7} \,\mathrm{I} \times \ln\left(\frac{D}{r}\right) = 2 \times 10^{-7} \,\mathrm{I} \times \left(\ln e^{1/4} + \ln\frac{D}{r}\right) = 2 \times 10^{-7} \,\mathrm{I} \times \ln\frac{D}{r'}$$

where :  $r' = e^{-1/4}r$ 

$$L_p = \frac{\lambda_p}{I} = 2 \times 10^{-7} \ln\left(\frac{D}{r}\right) H / m$$

### Total flux linkage, cont.:

Finally, consider the array of M solid conductors. Assume each conductor m carries current  $I_m$  and the sum of the conductor currents is zero, then :

the flux linkage  $\lambda_{kPk}$  which links conductor k out to point P due to current I<sub>k</sub>

$$\lambda_{kpk} = 2 \times 10^{-7} \,\mathrm{I_k} \times \ln \frac{D_{Pk}}{r_k}$$

and  $\lambda_{kPm}$  which links conductor k out to point P due to current Im is :

$$\lambda_{kpm} = 2 \times 10^{-7} \,\mathrm{I_m} \times \ln \frac{D_{Pm}}{D_{km}}$$

After some mathematical manipulation :

$$\lambda_k = 2 \times 10^{-7} \sum_{m=1}^{M} I_m \times \ln \frac{1}{D_{km}}$$

where :  $\lambda_k$  gives the total flux linking conductor k in an array of M conductors



#### Inductance of single-phase, two-wire

Since the sum of the two currents is zero the previous relation is valid and hence :

$$\begin{aligned} \lambda_{x} &= 2 \times 10^{-7} \left( I_{x} \times \ln\left(\frac{1}{D_{xx}}\right) + I_{y} \times \ln\left(\frac{1}{D_{xy}}\right) \right) \\ \lambda_{x} &= 2 \times 10^{-7} \left( I \times \ln\left(\frac{1}{r_{x}}\right) - I \times \ln\left(\frac{1}{D}\right) \right) \\ \lambda_{x} &= 2 \times 10^{-7} I \times \ln\left(\frac{D}{r_{x}}\right) \\ \text{where } : r_{x}^{'} &= e^{-1/4} r_{x} \quad similarly \\ \lambda_{y} &= -2 \times 10^{-7} I \times \ln\left(\frac{D}{r_{y}^{'}}\right) \\ L_{x} &= \frac{\lambda_{x}}{I_{x}} = 2 \times 10^{-7} \ln\left(\frac{D}{r_{x}^{'}}\right) H / m \quad \text{per conductor, and } L_{y} = \frac{\lambda_{y}}{I_{y}} = 2 \times 10^{-7} \ln\left(\frac{D}{r_{y}^{'}}\right) \\ L &= L_{x} + L_{y} = 2 \times 10^{-7} \ln\left(\frac{D}{r_{x}^{'}} + \frac{D}{r_{y}^{'}}\right) = 2 \times 10^{-7} \ln\left(\frac{D^{2}}{r_{x}r_{y}^{'}}\right) = 4 \times 10^{-7} \ln\left(\frac{D}{\sqrt{r_{x}r_{y}^{'}}}\right) \\ \text{If } r_{x}^{'} &= r_{y}^{'} = r_{y}^{'} \Rightarrow L = 4 \times 10^{-7} \ln\left(\frac{D}{r_{y}^{'}}\right) \end{aligned}$$



 $\frac{D}{r'_y}$ 

xr v

# Inductance of three-phase, three-wire with equal phase spacing

Since the sum of the three currents is zero the previous relation is valid and hence :

$$\begin{split} \lambda_a &= 2 \times 10^{-7} \left( I_a \times \ln\left(\frac{1}{r}\right) + I_b \times \ln\left(\frac{1}{D}\right) + I_c \times \ln\left(\frac{1}{D}\right) \right) \\ \lambda_a &= 2 \times 10^{-7} \left( I_a \times \ln\left(\frac{1}{r}\right) + (I_b + I_c) \times \ln\left(\frac{1}{D}\right) \right) \\ \lambda_a &= 2 \times 10^{-7} \left( I_a \times \ln\left(\frac{1}{r}\right) - I_a \times \ln\left(\frac{1}{D}\right) \right) \\ \lambda_a &= 2 \times 10^{-7} I_a \times \ln\left(\frac{D}{r}\right) \\ L_a &= 2 \times 10^{-7} \ln\left(\frac{D}{r}\right) \end{split}$$



#### Inductance of composite conductors

The total flux  $\phi_k$  linking subconductor k of conductor X is :

$$\phi_k = 2 \times 10^{-7} \left[ \frac{I}{N} \sum_{m=1}^{N} \ln \frac{1}{D_{km}} - \frac{I}{M} \sum_{m=1'}^{M} \ln \frac{1}{D_{km}} \right]$$

Since only the fraction (1/N) of the total current I is linked by this flux, the flux linkage of  $\lambda_k$  subconductor k is :

$$\lambda_{\rm k} = \frac{\phi_k}{N} = 2 \times 10^{-7} \, I \times \left[ \frac{1}{N^2} \sum_{m=1}^N \ln \frac{1}{D_{km}} - \frac{1}{NM} \sum_{m=1'}^M \ln \frac{1}{D_{km}} \right]$$

The total flux linkage of conductor x is:

$$\lambda_{\rm x} = \sum_{k=1}^{N} \lambda_{\rm k} = 2 \times 10^{-7} I \times \sum_{K=1}^{N} \left[ \frac{1}{N^2} \sum_{m=1}^{N} \ln \frac{1}{D_{km}} - \frac{1}{NM} \sum_{m=1'}^{M} \ln \frac{1}{D_{km}} \right]$$

$$\lambda_{\rm x} = 2 \times 10^{-7} I \times \ln \prod_{k=1}^{N} \frac{\left( \prod_{m=1'}^{M} D_{km} \right)^{1/N^2}}{\left( \prod_{m=1}^{N} D_{km} \right)^{1/N^2}}$$

$$L_{x} = \frac{\lambda_{x}}{I} = 2 \times 10^{-7} \ln \frac{D_{xy}}{D_{xx}} \quad \text{where : } D_{xy} = MN \sqrt{\prod_{k=1}^{N} \prod_{m=1'}^{M} D_{km}} = GMD \text{ and } D_{xx} = N_{v}^{2} \sqrt{\prod_{k=1}^{N} \prod_{m=1}^{N} D_{km}} = GMR$$



## Inductance of unequal phase spacing

The problem with the line analysis we've done so far is we have assumed a symmetrical tower configuration. Such a tower figuration is seldom practical.
Therefore in



Typical Transmission Tower Configuration

Therefore in general  $D_{ab} \neq D_{bc}$ 

Unless something was done this would result in unbalanced phases

# Inductance of unequal phase spacing

To keep system balanced, over the length of a transmission line the conductors are rotated so each phase occupies each position on tower for an equal distance. This is known as transposition.





## Conductor Bundling

To increase the capacity of high voltage transmission lines it is very common to use a number of conductors per phase. This is known as conductor bundling. Typical values are two conductors for 345 kV lines, three for 500 kV and four for 765 kV.



#### Inductance of bundled conductors

# Electric field and voltage: Solid cylindrical conductor

- The capacitance between conductors in a medium with constant permittivity can be obtained by finding the following:
- a) Electric field from Gauss's law.
- b) Voltage between conductors.
- c) Capacitance from charge per unit volt (C = q/V)

<u>Gauss law:</u> the total electric flux leaving a closed surface equals the total charge within the volume enclosed by the surface.

# Electric field and voltage: Solid cylindrical conductor





# Electric field and voltage: Solid cylindrical conductor

Assume each conductor m has a charge  $q_m C/m$ , the voltage  $V_{kim}$  between conductors k and i due to the charge  $q_m$  acting alone is:



$$V_{kim} = \frac{q_m}{2\pi\varepsilon} \ln \frac{D_{im}}{D_{km}}$$

Using superposit iion, the voltage  $V_{ki}$  due to all charges is given by :

$$V_{ki} = \frac{1}{2\pi\varepsilon} \sum_{m=1}^{M} q_m \ln \frac{D_{im}}{D_{km}}$$

# Capacitance for single phase two wire line

Assume conductor x has a uniform charge q C/m and conductor y has -q. Using the previous last equation with k = x, i = y and m = x, y

$$Vxy = \frac{1}{2\pi\varepsilon} \left[ q \ln \frac{D_{yx}}{D_{xx}} - q \ln \frac{D_{yy}}{D_{xy}} \right] = \frac{q}{2\pi\varepsilon} \ln \frac{D_{yx}D_{xy}}{D_{xx}D_{yy}}$$
  
Using D<sub>xy</sub> = D<sub>yx</sub> = D, D<sub>xx</sub> = r<sub>x</sub> and D<sub>yy</sub> = r<sub>y</sub>, then  
$$Cxy = \frac{q}{Vxy} = \frac{\pi\varepsilon}{\ln\left(\frac{D}{\sqrt{r_x r_y}}\right)}$$

And if  $r_x = r_y = r$ , then







# Capacitance for three phase with equal phase spacing

$$Vab = \frac{1}{2\pi\varepsilon} \left[ q_a \ln \frac{D_{ba}}{D_{aa}} + q_b \ln \frac{D_{bb}}{D_{ab}} + q_c \ln \frac{D_{bc}}{D_{ac}} \right]$$
  
Using  $D_{ab} = D_{ca} = D_{cb} = D, D_{aa} = D_{yy} = r$ , then  
$$Vab = \frac{1}{2\pi\varepsilon} \left[ q_a \ln \frac{D}{r} + q_b \ln \frac{r}{D} + q_c \ln \frac{D}{D} \right] = \frac{1}{2\pi\varepsilon} \left[ q_a \ln \frac{D}{r} + q_b \ln \frac{r}{D} \right]$$

similarly

$$Vac = \frac{1}{2\pi\varepsilon} \left[ q_a \ln \frac{D}{r} + q_c \ln \frac{r}{D} \right]$$

$$V_{ab} + V_{ac} = 3V_{an}$$

$$V_{an} = \frac{1}{3} \left( \frac{1}{2\pi\varepsilon} \right) \left[ 2q_a \ln \frac{D}{r} + (q_b + q_c) \ln \frac{r}{D} \right]$$
and with  $q_b + q_c = -q_a$ 

$$V_{an} = \frac{1}{2\pi\varepsilon} \left[ q_a \ln \frac{D}{r} \right]$$

$$C_{an} = \frac{2\pi\varepsilon}{\ln(D/r)}$$



# Capacitance for stranded, unequal phase spacing and bundled conductors

 $C = \frac{2\pi\varepsilon}{\ln(D_{eq}/D_{sc})}$   $D_{eq} = \sqrt[3]{D_{ab}D_{bc}D_{ac}}$   $D_{sc} = \sqrt{rd} \quad \text{for two - conductor bundle}$   $D_{sc} = \sqrt[3]{rd^2} \quad \text{for three - conductor bundle}$   $D_{sc} = 1.091\sqrt[4]{rd^3} \quad \text{for four - conductor bundle}$ 

#### Line Resistance

Line resistance per unit length is given by

R =  $\frac{\rho}{A}$  where  $\rho$  is the resistivity Resistivity of Copper =  $1.68 \times 10^{-8} \Omega$ -m Resistivity of Aluminum =  $2.65 \times 10^{-8} \Omega$ -m Example: What is the resistance in  $\Omega$  / mile of a 1" diameter solid aluminum wire (at dc)?

$$R = \frac{2.65 \times 10^{-8} \ \Omega - m}{\pi \times 0.0127 \text{m}^2} 1609 \frac{m}{\text{mile}} = 0.084 \frac{\Omega}{\text{mile}}$$

#### Line Resistance, cont'd

- Because ac current tends to flow towards the surface of a conductor, the resistance of a line at 60 Hz is slightly higher than at dc.
- Resistivity and hence line resistance increase as conductor temperature increases (changes is about 8% between 25°C and 50°C)
- Because ACSR conductors are stranded, actual resistance, inductance and capacitance needs to be determined from tables.

#### Tow-Port Network Model



$$V_{S} = AV_{R} + BI_{R}$$
$$I_{S} = CV_{R} + DI_{R}$$
$$AD - BC = 1$$

#### Short transmission lines



#### Medium transmission lines

$$V_{S} = V_{R} + Z\left(I_{R} + \frac{V_{R}Y}{2}\right) = \left(1 + \frac{YZ}{2}\right)V_{R} + ZI_{R}$$

$$I_{S} = I_{R} + \frac{V_{R}Y}{2} + \frac{V_{S}Y}{2}, \text{ subsitute the value of } V_{S}$$

$$I_{S} = Y\left(1 + \frac{YZ}{4}\right)V_{R} + \left(1 + \frac{YZ}{2}\right)I_{R}$$

$$A = D = 1 + \frac{YZ}{2}$$

$$B = Z$$

$$C = Y\left(1 + \frac{YZ}{4}\right)$$

 $V_{R}$ 

### Long transmission lines



$$z = R + j\omega L \quad \Omega/m$$
  
 $y = G + j\omega C \quad S/m$ 

#### Long transmission lines, cont.

 $V(x + \Delta x) = V(x) + (z\Delta x)I(x)$  $\frac{V(x + \Delta x) - V(x)}{\Delta x} = zI(x)$ Taking the limit as  $\Delta x$  approaches zero :  $\frac{dV(x)}{dx} = zI(x)$  $I(x + \Delta x) = I(x) + (y\Delta x)V(x + \Delta x)$  $\frac{I(x + \Delta x) - I(x)}{\Delta x} = yV(x)$ Taking the limit as  $\Delta x$  approaches zero :  $\frac{dI(x)}{dx} = yV(x)$  $\frac{d^2 V(x)}{dx^2} = z \frac{dI(x)}{dx} = zyV(x)$  $\frac{d^2 V(x)}{dx^2} - zyV(x) = 0$ 

$$V(x) = A_{1}e^{\gamma x} + A_{2}e^{-\gamma x}$$
  

$$\gamma = \sqrt{zy} \quad \text{is called the propagation constant}$$
  

$$\frac{dV(x)}{dx} = \gamma A_{1}e^{\gamma x} - \gamma A_{2}e^{-\gamma x} = zI(x)$$
  

$$I(x) = \frac{A_{1}e^{\gamma x} - A_{2}e^{-\gamma x}}{Z_{c}}$$
  

$$Z_{c} = \sqrt{\frac{z}{y}} \quad \text{is called the characteristic impedance.}$$
  
Since  $V_{R} = V(0) = A_{1} + A_{2}$  and  $I_{R} = I(0) = \frac{A_{1} - A_{2}}{Z_{c}}$   

$$A_{1} = \frac{V_{R} + Z_{c}I_{R}}{2} \quad \text{and} \quad A_{2} = \frac{V_{R} - Z_{c}I_{R}}{2}$$
  
so:  

$$V(x) = \cosh(\gamma x)V_{R} + Z_{c}\sinh(\gamma x)I_{R}$$
  

$$I(x) = \frac{1}{Z_{c}}\sinh(\gamma x)V_{R} + \cosh(\gamma x)I_{R}$$

#### Home Work

A 300 km, completely transposed 60 Hz, three phase line has flat horizontal phase spacing with 10 m between adjacent phases, as shown in Fig. (1). Each phase consists of a three-bundle conductor, with outside radius of 0.014 m, a GMR,  $D_s = 0.0115$  m, and a bundle spacing of 0.4 m.

- b- Calculate the positive-sequence inductive reactance of the line. [4 Marks]
- c- Calculate the positive-sequence shunt capacitive susceptance of the line. [4 Marks]
- d- Assume that the line has an X/R ratio of 5 and negligible shunt conductance. Find the exact value of the parameter A of the line. [4 Marks]
- e- If the no load receiving end voltage of the line is 348 kV (line to line), find the value of the sending end voltage. [4 Marks]



Q1:

#### Home Work

Consider a 500-kV, 60 Hz three-phase transmission line modeled using the ABCD parameters as follows:

$$V_s = AV_r + BI_r$$
$$I_s = CV_r + AI_r$$
$$A^2 - BC = 1$$

Results of tests conducted at the receiving end the line involving open circuit ( $I_r = 0$ ) and short circuit ( $V_r = 0$ ) are given by:

$$Z_{oc} = \frac{V_s}{I_s} \bigg|_{I_r=0} = 820 \angle -88.8^{\circ}$$
$$Z_{sc} = \frac{V_s}{I_s} \bigg|_{V_r=0} = 200 \angle 78^{\circ}$$

Find the line parameters A, B, and C. [10 Points]

Q2:

Suppose that the load at the receiving end of the line of part b is 750 MVA at nominal voltage, and lagging power factor of 0.83 at rated voltage. Determine the sending end voltage, current, active and reactive power and power factor. [5 points]