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TRANSMISSION LINES



Development of Line Models
Goals of this section are

1) Develop a simple model for transmission 
lines

2) Gain an intuitive feel for how the geometry of 
the transmission line affects the model 
parameters



Primary Methods for Power Transfer
The most common methods for transfer of 

electric power are 
1) Overhead AC
2) Underground AC
3) Overhead DC
4) Underground DC



Transmission lines and cables
Extra-high-voltage lines

Voltage: 345 kV, 500 kV, 765 kV

High-voltage lines
Voltage: 115 kV, 230 kV

Sub-transmission lines
Voltage: 46 kV, 69 kV

Distribution lines
Voltage: 2.4 kV to 46 kV, with 15 kV being the most 
commonly used

High-voltage DC lines
Voltage: ±120 kV to ±600 kV



Transmission lines and cables
Three-phase conductors, 
which carry the electric 
current;
Insulators, which support 
and electrically isolate the 
conductors;
Tower, which holds the 
insulators and conductors;
Foundation and grounding; 
and
Optional shield conductors, 
which protect against 
lightning



Transmission lines and cables
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Transmission lines and cables

Double circuit
69 kV line

Distribution line
12.47kV

Wooden  tower

Shield
conductor

Distribution Line



Transmission lines and cables

Distribution line

Transformer

240V/120V
insulated line

Transformers

Fuse cutout

Surge arrester

Insulator



Transmission lines and cables

Span

Sag
Insulator

Tension Tower

Supporting
Tower Tension Tower

Definition of Parameters



Aluminum Conductor 
Steel Reinforced 
(ACSR);
All Aluminum 
Conductor (AAC); 
and
All Aluminum Alloy 
Conductor  (AAAC).

ACSR Coductor

Aluminum outer strands
2 layers, 30 conductors

Steel core strands,
7 conductors

Transmission lines and cables



Transmission lines and cables

Locking Key

Insulator's Head

Expansion Layer

Imbedded Sand

Skirt 

Petticoats

Iron Cap

Ball Socket

Compression 
Loading

Cement

Insulating Glass 
or Porcelain

BallCorrosion Sleeve 
for DC Insulators

Steel Pin

Insulators



Transmission lines and cables
Insulator Chain

Line Voltage

Number of Insulators per 
String

69 kV 4–6

115 kV 7–9

138 kV 8–10

230 kV 12

345 kV 18

500 kV 24

765 kV 30–35



Transmission lines and cables
Composite insulator.  

(1) Sheds of alternating diameters prevent bridging by ice, snow and
cascading rain.
(2) Fiberglass reinforced resin rod.
(3) Injection molded rubber (EPDM or Silicone) weather sheds and rod
covering.  
(4) Forged steel end fitting, galvanized and joined to rod by swaging process.  

1 432



Transmission lines and cables

(1) is the clevis 
ball,
(2) is the socket 
for the clevis,
(3) is the yoke 
plate, and 
(4) is the 
suspension clamp. 
(Source: Sediver)•Figure 4.15 Line post-composite 

insulator with yoke holding two 
conductors.



Transmission lines and cables



Transmission lines and cables

Conductor
Conductor shieldInsulation

Insulation shield
Filler

Copper screen
PVC-sheet



Inductance of a Single Wire
The inductance of a magnetic circuit has a constant permeability
can be obtained by determining the following:

a) Magnetic field intensity H, from Ampere’s law.
b) Magnetic flux density B (B = μH)
c) Flux linkage λ
d) Inductance from flux linkage per ampere       

(L= λ/I)



Flux linkages within the wire :
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Flux linkages outside of the wire :
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Total flux linkage:
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Total flux linkage, cont.:
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Inductance of single-phase, two-wire 
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Inductance of three-phase, three-wire 
with equal phase spacing
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Inductance of composite conductors
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Inductance of unequal phase spacing 
The problem with the line analysis we’ve done 

so far is we have assumed a symmetrical tower 
configuration.  Such a tower figuration is 
seldom practical.    

Typical Transmission Tower Configuration

Therefore in
general Dab ≠
Dac ≠ Dbc

Unless something 
was done this would
result in unbalanced
phases



Inductance of unequal phase 
spacing

To keep system balanced, over the length of a transmission 
line the conductors are rotated so each phase occupies each 
position on tower for an equal distance.  This is known as 
transposition.
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Conductor Bundling
To increase the capacity of high voltage transmission
lines it is very common to use a number of conductors per 
phase.  This is known as conductor bundling.  Typical 
values are two conductors for 345 kV lines, three for 500 
kV and four for 765 kV.



Inductance of bundled conductors
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Electric field and voltage: Solid 
cylindrical conductor

The capacitance between conductors in a medium with 
constant permittivity can be obtained by finding the 
following:

a) Electric field from Gauss’s law.

b) Voltage between conductors.

c) Capacitance from charge per unit volt (C = q/V)

Gauss law: the total electric flux leaving a closed surface 
equals the total charge within the volume enclosed by the 
surface.



Electric field and voltage: Solid 
cylindrical conductor
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Electric field and voltage: Solid 
cylindrical conductor
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Capacitance for single phase two wire 
line
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Capacitance for three phase with equal 
phase spacing
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Capacitance for stranded, unequal 
phase spacing and bundled conductors
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Line Resistance

-8

-8

Line resistance per unit length is given by 

R =   where  is the resistivity
A

Resistivity of Copper = 1.68 10  Ω-m

Resistivity of Aluminum = 2.65 10  Ω-m
Example: What is the resistance in Ω / mile of a

ρ ρ

×

×

-8

2

1" diameter solid aluminum wire (at dc)?

2.65 10  Ω-m1609 0.084
0.0127m

mR
mile mileπ
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Line Resistance, cont’d
Because ac current tends to flow towards the 
surface of a conductor, the resistance of a line 
at 60 Hz is slightly higher than at dc.
Resistivity and hence line resistance increase 
as conductor temperature increases (changes is 
about 8% between 25°C and 50°C)
Because ACSR conductors are stranded, 
actual resistance, inductance and capacitance 
needs to be determined from tables.



Tow-Port Network Model
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Short transmission lines
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Medium transmission lines
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Long transmission lines 
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Long transmission lines, cont. 
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Home WorkQ1:



Home WorkQ2:
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