ELE-B7

TRANSMISSION LINES

Development of Line Models

- \Box Goals of this section are
- 1) Develop a simple model for transmission lines
- 2) Gain an intuitive feel for how the geometry of the transmission line affects the model parameters

Primary Methods for Power Transfer

- The most common methods for transfer of electric power are
- 1) Overhead AC
- 2) Underground AC
- 3) Overhead DC
- 4) Underground DC

\Box **Extra-high-voltage lines**

 \Box Voltage: 345 kV, 500 kV, 765 kV

\Box **High-voltage lines**

 \Box Voltage: 115 kV, 230 kV

\Box **Sub-transmission lines**

× Voltage: 46 kV, 69 kV

Distribution lines

- × Voltage: 2.4 kV to 46 kV, with 15 kV being the most commonly used
- \Box **High-voltage DC lines**
	- × \blacksquare Voltage: $\pm 120 \text{ kV}$ to $\pm 600 \text{ kV}$

- \Box Three-phase conductors, which carry the electric current;
- \Box Insulators, which support and electrically isolate the conductors;
- \Box Tower, which holds the insulators and conductors;
- \Box Foundation and grounding; and
- \Box Optional shield conductors, which protect against lightning

Distribution Line

Definition of Parameters

- \Box **Aluminum Conductor ACSR Coductor Steel Reinforced (ACSR);**
- **All Aluminum Conductor (AAC); and**
- **All Aluminum Alloy Conductor (AAAC).**

Insulators

Insulator Chain

Composite insulator.

- \Box (1) Sheds of alternating diameters prevent bridging by ice, snow and cascading rain.
- \Box (2) Fiberglass reinforced resin rod.
- \Box (3) Injection molded rubber (EPDM or Silicone) weather sheds and rod covering.
- \Box (4) Forged steel end fitting, galvanized and joined to rod by swaging process.

•**Figure 4.15 Line post-composite insulator with yoke holding two conductors.**

 (1) is the clevis ball,

- **(2) is the socket for the clevis,**
- **(3) is the yoke plate, and**
- **(4) is the suspension clamp. (***Source***: Sediver)**

Inductance of a Single Wire

- The inductance of a magnetic circuit has a constant permeability can be obtained by determining the following:
- a) Magnetic field intensity H, from Ampere's law.
- b) Magnetic flux density $B(B = \mu H)$
- c) Flux linkage λ
- d) Inductance from flux linkage per ampere $(L{=}\ \lambda{{\rm /}}{\rm I})$

Flux linkages within the wire :

 $§$ *H* ⋅ dl = I_{enclosed}

$$
H_x(2\pi x) = I_x \Rightarrow H_x = \frac{I_x}{2\pi x}
$$

Assume uniform current distribution :

$$
I_x = \left(\frac{x}{r}\right)^2 I \Rightarrow H_x = \frac{xI}{2\pi r^2}
$$

For non - magnetic conductor :

$$
B_x = \mu_0 H_x = \frac{\mu_0 xI}{2\pi r^2}
$$

The differential flux $d\phi$ per unit length is :

 $d\phi = B_x dx$

Since only the fraction $(x/r)^2$ of the total current is linked by the flux :

$$
d\lambda = \left(\frac{x}{r}\right)^2 d\phi = \frac{\mu_0 x^3 I}{2\pi r^4} dx
$$

$$
\lambda_{int} = \int_0^r d\lambda = \frac{1}{2} \times 10^{-7} I \Rightarrow L_{int} = \frac{\lambda_{int}}{I} = \frac{1}{2} \times 10^{-7} H/m
$$

Flux linkages outside of the wire :

 $d\phi = B_x dx$ *x I x I* $B_x = \mu_0 H_x = 4 \times \pi \times 10^{-7} \frac{1}{2\pi x} = 2 \times 10^{-7}$ *x I* $H_x(2\pi x) = I \Rightarrow H_x = \frac{1}{2\pi}$ $\oint H \cdot dl = I_{enclosed}$ The differential flux d ϕ per unit length is : $4\times\pi\times10$ $=\mu_0 H_x = 4 \times \pi \times 10^{-7} \frac{I}{2} = 2 \times 10^{-7}$ π $\mu_0 H_x = 4 \times \pi$ π

Since the entire current is linked by the flux outside the conductor:

$$
d\lambda = d\phi = 2 \times 10^{-7} \frac{I}{x} dx
$$

\n
$$
\lambda_{12} = \int_{D1}^{D2} d\lambda = 2 \times 10^{-7} I \times \ln\left(\frac{D1}{D2}\right) \Rightarrow L_{12} = \frac{\lambda_{12}}{I} = 2 \times 10^{-7} \ln\left(\frac{D1}{D2}\right) H/m
$$

rxD₁ D₂

Total flux linkage:

is the sum of the interanl and external flux linkages. Since D_1 = r and D_2 = D, then Total flux linkage $\lambda_{\rm p}$ linking the conductor out to external point P at distance D

$$
\lambda_p = \frac{1}{2} \times 10^{-7} \text{I} + 2 \times 10^{-7} \text{I} \times \ln\left(\frac{D}{r}\right) = 2 \times 10^{-7} \text{I} \times \left(\ln e^{1/4} + \ln \frac{D}{r}\right) = 2 \times 10^{-7} \text{I} \times \ln \frac{D}{r}
$$

where : $r = e^{-1/4}r$ $i' = e^{-1/4}$

$$
L_p = \frac{\lambda_p}{I} = 2 \times 10^{-7} \ln \left(\frac{D}{r} \right) H/m
$$

Total flux linkage, cont.:

current I_m and the sum of the conductor currents is zero, then : Finally, consider the array of M solid conductors. Assume each conductor m carries

the flux linkage λ_{k} which links conductor k out to point P due to current I_k

$$
\lambda_{kpk} = 2 \times 10^{-7} I_k \times \ln \frac{D_{Pk}}{r_k}
$$

and $\lambda_{\rm kPm}$ which links conductor k out to point P due to current Im is :

$$
\lambda_{kpm} = 2 \times 10^{-7} \,\mathrm{I_m} \times \ln \frac{D_{Pm}}{D_{km}}
$$

After some mathematical manipulation :

$$
\lambda_k = 2 \times 10^{-7} \frac{M}{\sum_{m=1}^{M} I_m} \times \ln \frac{1}{D_{km}}
$$

conductor k in an array of M conductors where : λ_k gives the total flux linking

Inductance of single-phase, two-wire

Since the sum of the two currents is zero the previous relation is valid and hence :

$$
\lambda_x = 2 \times 10^{-7} \left(I_x \times \ln \left(\frac{1}{D_{xx}} \right) + I_y \times \ln \left(\frac{1}{D_{xy}} \right) \right)
$$

\n
$$
\lambda_x = 2 \times 10^{-7} \left(I \times \ln \left(\frac{1}{r} \right) - I \times \ln \left(\frac{1}{D} \right) \right)
$$

\n
$$
\lambda_x = 2 \times 10^{-7} I \times \ln \left(\frac{D}{r} \right)
$$

\nwhere : $r_x = e^{-1/4} r_x$ similarly
\n
$$
\lambda_y = -2 \times 10^{-7} I \times \ln \left(\frac{D}{r_y} \right)
$$

\n
$$
L_x = \frac{\lambda_x}{I_x} = 2 \times 10^{-7} \ln \left(\frac{D}{r_x} \right) H / m \text{ per conductor, and } L_y = \frac{\lambda_y}{I_y} = 2 \times 10^{-7} \ln \left(\frac{D}{r_y} \right)
$$

\n
$$
L = L_x + L_y = 2 \times 10^{-7} \ln \left(\frac{D}{r_x} + \frac{D}{r_y} \right) = 2 \times 10^{-7} \ln \left(\frac{D^2}{r_x r_y} \right) = 4 \times 10^{-7} \ln \left(\frac{D}{\sqrt{r_x r_y}} \right)
$$

\nIf $r_x = r_y = r = \lambda = 4 \times 10^{-7} \ln \left(\frac{D}{r_x} \right)$

⎟ ⎟ ⎟

⎞

⎟ ⎟

⎞

D

⎠

D

⎠

Inductance of three-phase, three-wire with equal phase spacing

⎟ ⎟

⎞

⎠

⎠

Since the sum of the three currents is zero the previous relation is valid and hence:

$$
\lambda_a = 2 \times 10^{-7} \left(I_a \times \ln \left(\frac{1}{r} \right) + I_b \times \ln \left(\frac{1}{D} \right) + I_c \times \ln \left(\frac{1}{D} \right) \right)
$$

\n
$$
\lambda_a = 2 \times 10^{-7} \left(I_a \times \ln \left(\frac{1}{r} \right) + (I_b + I_c) \times \ln \left(\frac{1}{D} \right) \right)
$$

\n
$$
\lambda_a = 2 \times 10^{-7} \left(I_a \times \ln \left(\frac{1}{r} \right) - I_a \times \ln \left(\frac{1}{D} \right) \right)
$$

\n
$$
\lambda_a = 2 \times 10^{-7} I_a \times \ln \left(\frac{D}{r} \right)
$$

\n
$$
L_a = 2 \times 10^{-7} \ln \left(\frac{D}{r} \right)
$$

Inductance of composite conductors

The total flux ϕ_k linking subconductor k of conductor X is :

$$
\phi_k = 2 \times 10^{-7} \left[\frac{I}{N} \sum_{m=1}^{N} \ln \frac{1}{D_{km}} - \frac{I}{M} \sum_{m=1}^{M} \ln \frac{1}{D_{km}} \right]
$$

the flux linkage of λ_k subconductor k is : Since only the fraction $(1/N)$ of the total current I is linked by this flux,

$$
\lambda_{\mathbf{k}} = \frac{\phi_{k}}{N} = 2 \times 10^{-7} I \times \left[\frac{1}{N^{2}} \sum_{m=1}^{N} \ln \frac{1}{D_{km}} - \frac{1}{NM} \sum_{m=1}^{M} \ln \frac{1}{D_{km}} \right]
$$

The total flux linkage of conductor x is:

$$
\lambda_{x} = \sum_{k=1}^{N} \lambda_{k} = 2 \times 10^{-7} I \times \sum_{K=1}^{N} \left[\frac{1}{N^{2}} \sum_{m=1}^{N} \ln \frac{1}{D_{km}} - \frac{1}{NM} \sum_{m=1}^{M} \ln \frac{1}{D_{km}} \right]
$$

\n
$$
\lambda_{x} = 2 \times 10^{-7} I \times \ln \prod_{k=1}^{N} \frac{\left(\prod_{m=1}^{M} D_{km} \right)^{1/NM}}{\left(\prod_{m=1}^{N} D_{km} \right)^{1/N^{2}}}
$$

\n
$$
L_{x} = \frac{\lambda_{x}}{I} = 2 \times 10^{-7} \ln \frac{D_{xy}}{D_{xx}} \quad \text{where: } D_{xy} = M \sqrt{\prod_{k=1}^{N} \prod_{m=1}^{M} D_{km}} = GMD \text{ and } D_{xx} = N \sqrt{\prod_{k=1}^{N} \prod_{m=1}^{N} D_{km}} = GMR
$$

Inductance of unequal phase spacing

 \Box The problem with the line analysis we've done so far is we have assumed a symmetrical tower configuration. Such a tower figuration is seldom practical. Therefore in

Typical Transmission Tower Configuration

general ${\rm D}_{\rm ab}$ ≠ $D_{ac} \neq D_{bc}$

Unless something was done this wouldresult in unbalancedphases

Inductance of unequal phase spacing

 \Box To keep system balanced, over the length of a transmission line the conductors are rotated so each phase occupies each position on tower for an equal distance. This is known as transposition.

Conductor Bundling

To increase the capacity of high voltage transmission lines it is very common to use a number of conductors per phase. This is known as conductor bundling. Typical values are two conductors for 345 kV lines, three for 500 kV and four for 765 kV.

Inductance of bundled conductors

$$
L = 2 \times 10^{-7} \ln \frac{D_{eq}}{D_{SL}}
$$
 where:
\n
$$
D_{eq} = \sqrt[3]{D_{12}D_{23}D_{31}}
$$
 and D_{SL} is calculated as follows:
\n
$$
D_{SL} = \sqrt[4]{(D_S \times d)^2} = \sqrt{(D_S \times d)}
$$
\n
$$
D_{SL} = \sqrt[9]{(D_S \times d \times d)^3} = \sqrt[3]{(D_S \times d^2)}
$$
\n
$$
D_{SL} = \sqrt[16]{(D_S \times d \times d \times d)^3} = \sqrt[36]{(D_S \times d^2)}
$$
\n
$$
D_{SL} = \sqrt[16]{(D_S \times d \times d \times d \times d)^2} = 1.091\sqrt[4]{(D_S \times d^3)}
$$

Electric field and voltage: Solid cylindrical conductor

- The capacitance between conductors in a medium with constant permittivity can be obtained by finding the following:
- a) Electric field from Gauss's law.
- b) Voltage between conductors.
- c) Capacitance from charge per unit volt $(C = q/V)$

Gauss law: the total electric flux leaving a closed surface equals the total charge within the volume enclosed by the surface.

Electric field and voltage: Solid cylindrical conductor

Electric field and voltage: Solid cylindrical conductor

Assume each conductor m has a charge q_m C/m, the voltage $\bm{\mathsf{V}}_{\mathsf{kim}}$ between conductors $\bm{\mathsf{k}}$ and $\bm{\mathsf{i}}$ due to the charge q_m acting alone is:

$$
V_{kim} = \frac{q_m}{2\pi\varepsilon} \ln \frac{D_{im}}{D_{km}}
$$

Using superposit iion, the voltage V_{ki} due to all charges is given by :

$$
V_{ki} = \frac{1}{2\pi\varepsilon} \sum_{m=1}^{M} q_m \ln \frac{D_{im}}{D_{km}}
$$

Capacitance for single phase two wire line

Assume conductor x has a uniform charge q C/m and conductor y has –q. Using the previous last equation with $k = x$, $i = y$ and $m = x$, y

$$
Vxy = \frac{1}{2\pi\varepsilon} \left[q \ln \frac{D_{yx}}{D_{xx}} - q \ln \frac{D_{yy}}{D_{xy}} \right] = \frac{q}{2\pi\varepsilon} \ln \frac{D_{yx}D_{xy}}{D_{xx}D_{yy}}
$$

Using $D_{xy} = D_{yx} = D, D_{xx} = r_x$ and $D_{yy} = r_y$, then

$$
Cxy = \frac{q}{Vxy} = \frac{\pi\varepsilon}{\ln \left(\frac{D}{\sqrt{r_x r_y}} \right)}
$$

And if $r_x = r_y = r$, then

rx D

⎟ ⎠ $\left(\frac{D}{2}\right)$ ⎝ $\big($ = *rD* $Cxy = \frac{R}{\sqrt{2}}$ lnπε

Capacitance for three phase with equal phase spacing

$$
Vab = \frac{1}{2\pi\varepsilon} \left[q_a \ln \frac{D_{ba}}{D_{aa}} + q_b \ln \frac{D_{bb}}{D_{ab}} + q_c \ln \frac{D_{bc}}{D_{ac}} \right]
$$

Using $D_{ab} = D_{ca} = D_{cb} = D, D_{aa} = D_{yy} = r$, then

$$
Vab = \frac{1}{2\pi\varepsilon} \left[q_a \ln \frac{D}{r} + q_b \ln \frac{r}{D} + q_c \ln \frac{D}{D} \right] = \frac{1}{2\pi\varepsilon} \left[q_a \ln \frac{D}{r} + q_b \ln \frac{r}{D} \right]
$$

imilarly *s*

 $ln(D/r)$

$$
Vac = \frac{1}{2\pi\varepsilon} \left[q_a \ln \frac{D}{r} + q_c \ln \frac{r}{D} \right]
$$

\n
$$
V_{ab} + V_{ac} = 3V_{an}
$$

\n
$$
V_{an} = \frac{1}{3} \left(\frac{1}{2\pi\varepsilon} \right) \left[2q_a \ln \frac{D}{r} + (q_b + q_c) \ln \frac{r}{D} \right]
$$

\nand with $q_b + q_c = -q_a$
\n
$$
V_{an} = \frac{1}{2\pi\varepsilon} \left[q_a \ln \frac{D}{r} \right]
$$

\n
$$
C_{an} = \frac{2\pi\varepsilon}{\ln(D/a)}
$$

Capacitance for stranded, unequal phase spacing and bundled conductors

1.091 ∇ rd² for four - conductor bundle for three - conductor bundle $D_{\rm sc} = \sqrt{rd}$ for two-conductor bundle $\ln(D_{ea}/D_{sc})$ 2 $D_{sc} = 1.091 \sqrt[4]{rd^3}$ $D_{sc} = \sqrt[3]{rd^2}$ $D_{eq} = \sqrt[3]{D_{ab}D_{bc}D_{ac}}$ $D_{\rho\alpha}$ / D *C sceq* = = = πε

Line Resistance

Line resistance per unit length is given by

Resistivity of Copper = 1.68×10^{-8} Ω-m Resistivity of Aluminum = 2.65×10^{-8} Ω-m $R = \frac{P}{A}$ where ρ is the resistivity Example: What is the resistance in Ω / mile of a ρ ρ 1" diameter solid aluminum wire (at dc)?

$$
R = \frac{2.65 \times 10^{-8} \, \Omega \text{-m}}{\pi \times 0.0127 \, \text{m}^2} 1609 \frac{m}{mile} = 0.084 \, \frac{\Omega}{mile}
$$

Line Resistance, cont'd

- \Box Because ac current tends to flow towards the surface of a conductor, the resistance of a line at 60 Hz is slightly higher than at dc.
- Resistivity and hence line resistance increase as conductor temperature increases (changes is about 8% between 25 °C and 50 °C)
- □ Because ACSR conductors are stranded, actual resistance, inductance and capacitance needs to be determined from tables.

Tow-Port Network Model

$$
V_s = AV_R + BI_R
$$

$$
I_s = CV_R + DI_R
$$

$$
AD - BC = 1
$$

Short transmission lines

Medium transmission lines

 L_{Line}

 $I_{\rm R}$

 $Y/2$

 V_R

$$
V_s = V_R + Z \left(I_R + \frac{V_R Y}{2}\right) = \left(1 + \frac{YZ}{2}\right) V_R + Z I_R
$$

\n
$$
I_s = I_R + \frac{V_R Y}{2} + \frac{V_s Y}{2}
$$
, substitute the value of V_s
\n
$$
I_s = Y \left(1 + \frac{YZ}{4}\right) V_R + \left(1 + \frac{YZ}{2}\right) I_R
$$

\n
$$
A = D = 1 + \frac{YZ}{2}
$$

\n
$$
B = Z
$$

\n
$$
C = Y \left(1 + \frac{YZ}{4}\right)
$$

Long transmission lines

$$
z = R + j\omega L \quad \Omega/m
$$

$$
y = G + j\omega C \quad S/m
$$

Long transmission lines, cont.

 $\frac{(x)}{2} - zyV(x) = 0$ $\frac{(x)}{2} = z \frac{dI(x)}{dx} = zyV(x)$ $\frac{(x)}{x} = yV(x)$ Taking the limit as Δx approaches zero : $\frac{(x + \Delta x) - I(x)}{\Delta x} = yV(x)$ $I(x + \Delta x) = I(x) + (y\Delta x)V(x + \Delta x)$ $\frac{(x)}{x} = zI(x)$ Taking the limit as Δx approaches zero : $\frac{(x + \Delta x) - V(x)}{\Delta x} = zI(x)$ $V(x + \Delta x) = V(x) + (z\Delta x)I(x)$ 2 2 $-zyV(x) =$ $= z \longrightarrow z$ $\frac{+\Delta x)-I(x)}{y} = yV(x)$ $\frac{+\Delta x)-V(x)}{2} = zI(x)$ *dx* $d^2V(x)$ $\frac{dI(x)}{dx} = zyV(x)$ *z dx* $d^2V(x)$ $\frac{dI(x)}{dx} = yV(x)$ *x* $I(x + \Delta x) - I(x)$ *dxxdV x* $V(x+\Delta x)-V(x)$

$$
V(x) = A_1 e^{\gamma x} + A_2 e^{-\gamma x}
$$

\n
$$
\gamma = \sqrt{zy}
$$
 is called the propagation constant
\n
$$
\frac{dV(x)}{dx} = \gamma A_1 e^{\gamma x} - \gamma A_2 e^{-\gamma x} = zI(x)
$$

\n
$$
I(x) = \frac{A_1 e^{\gamma x} - A_2 e^{-\gamma x}}{Z_c}
$$

\n
$$
Z_c = \sqrt{\frac{z}{y}}
$$
 is called the characteristic impedance.
\nSince $V_R = V(0) = A_1 + A_2$ and $I_R = I(0) = \frac{A_1 - A_2}{Z_c}$
\n
$$
A_1 = \frac{V_R + Z_c I_R}{2}
$$
 and $A_2 = \frac{V_R - Z_c I_R}{2}$
\nso:
\n
$$
V(x) = \cosh(\gamma x) V_R + Z_c \sinh(\gamma x) I_R
$$

\n
$$
I(x) = \frac{1}{Z_c} \sinh(\gamma x) V_R + \cosh(\gamma x) I_R
$$

Q1: Home Work

A 300 km, completely transposed 60 Hz, three phase line has flat horizontal phase spacing with 10 m between adjacent phases, as shown in Fig. (1). Each phase consists of a threebundle conductor, with outside radius of 0.014 m, a GMR, $D_s = 0.0115$ m, and a bundle spacing of 0.4 m.

- b- Calculate the positive-sequence inductive reactance of the line. [4 Marks]
- c- Calculate the positive-sequence shunt capacitive susceptance of the line. [4 Marks]
- d- Assume that the line has an X/R ratio of 5 and negligible shunt conductance. Find the exact value of the parameter A of the line. [4 Marks]
- exact value of the parameter rise and the terms of the line is 348 kV (line to line), find the value of the sending end voltage. [4 Marks]

Q2: Home Work

Consider a 500-kV, 60 Hz three-phase transmission line modeled using the ABCD parameters as follows:

$$
V_s = AV_r + BI_r
$$

\n
$$
I_s = CV_r + AI_r
$$

\n
$$
A^2 - BC = 1
$$

Results of tests conducted at the receiving end the line involving open circuit ($I_r = 0$) and short circuit ($V_r = 0$) are given by:

$$
Z_{oc} = \frac{V_s}{I_s}\Big|_{I_r = 0} = 820 \angle -88.8^{\circ}
$$

$$
Z_{sc} = \frac{V_s}{I_s}\Big|_{V_r = 0} = 200 \angle 78^{\circ}
$$

Find the line parameters A, B, and C. [10 Points]

Suppose that the load at the receiving end of the line of part b is 750 MVA at nominal voltage, and lagging power factor of 0.83 at rated voltage. Determine the sending end voltage, current, active and reactive power and power factor. [5 points]