The Electrical Power Grid: Today and Tomorrow

WATERLOO Brad Fach

uwaterloo.ca

WATERLOO

INTRODUCTION

uwaterloo.ca

Introduction

- Electric Power Systems
 - Fundamental to modern society
 - Basic need for almost all ways of life and commerce
- Power Grid?
 - Network of wires and machines
 - Connects sources to consumers

Introduction

- Electrical Generation (Energy Consumption of the US)
 - 1940 10%, 1970 25%, 2002 40%, ...
- Fundamental Dependence
 - The "Grid" now underlies every aspect of our economy and society
 - Worldwide production in 2008 at 15,000 billion kilowatt-hours (kWh) per year

Introduction - Challenges

- Loosely connected interconnected networks
- Increasing number of distributed resources
- Interconnection complexity
- # of sources, controls and loads growing
- These grids are among the most complex in the world
- Forecast for continued and extreme growth and further share increase of total energy.

Introduction - Challenges

- Over \$1 Trillion investment needed over 10 years
- Three Overall Challenges
 - 1. Organization
 - 2. Ability to meet 25-50 year electricity needs
 - 3. Capacity to increase efficiency

WATERLOO THE GRID

uwaterloo.ca

The Grid

- Commonly referred to incorrectly as the "power lines" between components
- Breakdown
 - Electrical Transmission System
 - Transports electricity from power plants to substations and consumers
 - Power lines
 - Substations
 - Distribution Facilities

The Grid - Stats

- As of 2008
 - In US
 - 15,000 generators, 10,000 power plants
 - 5,600 distribution facilities
 - North America has 339,000 km of high voltage wire. (>230kV)
- Demand since 1990 of +25% while transmission line construction -30%

The Grid - Structure

- Multi scaled, leveled hybrid system
- Levels
 - Transmission Level
 - >300kV and (100-300kV)
 - Subtransmission level
 - (100-300kV) but more medium voltage (5-15kV)
 - Distribution Level
 - (110-115V or 220-240V) and (1-100kV)

The Grid – Disturbances

- Adaptation known as modes
 - Normal
 - Involving Economic Dispatch
 - Load Frequency Control
 - Maintenance
 - Forecasting
- I.e. faults, instability, load shedding

The Grid - Challenges

- Large complexity
- Storage of electricity very difficult
- Instant availability and adaptation
- Generation types:
 - Base load
 - Peaking
 - Intermediate

WATERLOO

uwaterloo.ca

TRANSMISSION

Transmission - Challenges

- Losses up to 7.5%
 - Mostly due to heat
 - Combated by increasing voltage and decreasing current
- Power flowing through line must stay below line capacity to avoid failure
- As lines warm due to heat, they sag

Transmission - Challenges

- Line material
 - Aluminum Conductor Steel Reinforced (ACSR) – *Currently*
 - New materials that transmit more, further with less losses.
- Ultimate goal
 - Transmission power densities for cables and conductors of 50 times ACSR.

WATERLOO

uwaterloo.ca

POWER SYSTEMS PHENOMENA

Power Systems Phenomena – Problems

- Cascading Failures
 - Local failure leads to widespread outage
- Develop better understanding:
 - complex phenomena associated with power network systems
 - Emergency controls and restoration
- Disturbances Costs \$75 to \$180 billion annually

Solutions

- Need to re-think grid structure and design
- Ability to monitor all components
- Ability to act on the monitoring data
- New sensor technology
- Phased approach to adaptation
- Machine automation, Smart Grid

WATERLOO

uwaterloo.ca

SELF HEALING SMART GRID

Self Healing Smart Grid

- Automated control of complex network
- Self-healing with:
 - Instantaneous damage control
 - Flexible
 - Reliable
 - Dynamic load balancing
 - Secure

Self Healing Smart Grid

- Challenges
 - Technological Challenge
 - New hardware
 - Monitoring (current, voltage, phase)
 - Actuation (breakers, switches, etc.)
 - Software
 - Cost

New Hardware

Processor

- One for every component
- Generic and standardized method for connecting all components
 - i.e. Breaker, switch, transformer and busbar
- Contains the permanent information on device parameters and status
- When connected automatically reports itself to central control

WATERLOO

Failure Communication

- Today
 - Some computerized control
 - Mostly manual telephone calls
 - >30s delay assessing system
- Smart
 - Automatic
 - Fast
 - Best solution

Failure Response

- Today
 - Isolation "islands"
 - Island must fend for itself
- Smart
 - All components communicate
 - Coordination during failure
 - Efficient use of available resources until link(s) restored

WATERLOO

uwaterloo.ca

FSM – FAST SIMULATION AND MODELING

FSM

- Self-awareness and Reliance by:
 - Faster-than-real-time look-ahead simulations
 - By performing what-if analyises
 - Integrated view of all data sources and their effects on the system
- Minimize severity/size of outages
- Shorten duration of brownouts/blackouts
- Enable rapid/efficient restoration

Research for CASs

- Complex Adaptive Systems (CASs)
- CASs developed via research in:
 - Nonlinear dynamic systems
 - Artificial intelligence
 - Game Theory
 - Software Engineering

Smart Grid vision

- Awake
- Responsive
- Adaptive
- Price/Eco Smart
- Real-time
- Flexible
- Interconnected

WATERLOO TECHNOLOGIES

uwaterloo.ca

Technologies

- Sensors
- Biotechnology
- Smart Materials
- Nanotechnology
- Fullerenes
- Information Technology

Sensors

- Wide range of chemical sensors needed
 - Air
 - Water (inlet and outlet)
- Electrical
 - phase/current/voltage

Smart Materials

- Monitoring of remaining "life"
- Fault Tolerant, Agent-based collaborative intelligence
- Function autonomously in a almost biological manner
- i.e. Piezoelectric polymers, shape-memory alloys, hydrogels, fiber optics, etc.
- FACTS

Flexible ac transmission (FACTS)

- Solid state
- Link integrated circuits
 Scaled up by factor of 500 Million
- Power control devices
 - Voltage

UNIVERSITY OF

WATERLOO

- Impedance
- Phase angle of high voltage lines

Advanced Hardware

- Meters
- Sensors/monitors
- Motors Superconducting
- Transformers Universal?
- Computer and networks
- Mobile devices
- Smart equipment and appliances

Nanotechnology

- Two focused directions
 - Energy Storage
 - Expectation that storage issue solvable
 - Larger energy densities possible than current batteries
 - Energy Saving
 - Small dimensions, better contact
 - Thermal conductivity improvements

Fullerenes

- Carbon molecule type
- High strength
- Toughness
- Highly conductive
- Future uses for transportation
 - Long fine "tubes" that are extremely strong and versatile

Future?

- Low-cost, practical electric and thermal storage
- Microgrids
- Advanced devices
- Fail-safe communications
- Cost-competitive fuel cell

Future?

- Low-cost sensors
- Cost-effective thermal storage
- Thermal appliances plug and play
- High efficiency lighting/motors
- Enhanced portability through improved storage and power conversion devices

Conclusion

- Paradoxes
 - Technical
 - Supply and demand instantaneous
 - System complex, time-consuming
 - Economic
 - Deregulation often leads to system degregation
 - Lower price, high profit using existing system to limits, under investment

Conclusion

- Status quo not sustainable
- Evolution necessary to maintain
 - Quality of life
 - Economic Feasibility
 - Forecast Growth
- Risk of 20th century relic if nothing done

UNIVERSITY OF WATERLOO

uwaterloo.ca