
A Predictable Execution Model for COTS-based
Embedded Systems

Research by:

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell,
Marco Caccamo and Russell Kegley

Presented by:
Neda Paryab

Outline

● Problem Statement
● PREM system
● Evaluation
● Critiques

Intro.
Increasing usage of Commercial-Off-The-Shelf (COTS) components

 Why (vs. Customized systems) ?
○ Cheap → massive production
○ General Purpose → flexible for different applications and not binded to

a single SW/HW
○ Less design defects → design for reuse (silver bullet? wrong

assumptions - integration issues)
○ Backward compatible with legacy products
○ High performance

Problems?
- Not suitable for all applications → what about environmental constraints?
such as temperature, radiation exposure and etc.
- Maybe not suitable for safety critical systems, such as flight control or
medical equipment. Not Reliable?

COTS issues for real-time
The main drawback of using COTS components within a real-time system is the
presence of unpredictable timing anomalies.

● Contentions due to initiating access shared resources (such as cache) by
multiple active components (such as CPU cores and I/O peripherals)
○ Leads to timing degradation
○ Low-level arbiters of these shared resources are not typically designed

to provide real-time guarantees
○ Also, each of active devices initiate their access requests independent

(unaware) of each other

● Solution: compute precise bounds on worst-case timing delays caused by
shared resource access contention.
○ How to do it in a realistic way?

Predictable Execution Model (PREM)

● Enforces a high-level co-schedule among CPU tasks and peripherals which
can greatly reduce or outright eliminate low-level contention for shared
resources access.

● Proposes to control the operating point of each shared resources (cache,
memory, interconnection buses, and etc.) to avoid timing delays due to
contention

Advantages
➢ COTS high performance
➢ Real-time predictability

PREM
● Co-schedules (at a high level) all active COTS components in the system

○ predictable, system-wide execution based on a rule set
○ less pessimistic than safe upper bounds (for non-real-time COTS) than some

other approaches

PREM
● Co-schedules (at a high level) all active COTS components in the system

○ predictable, system-wide execution based on a rule set
○ less pessimistic than safe upper bounds (for non-real-time COTS) than some

other approaches

A diagram of the
proposed architecture

PREM HW components
➔ Real-Time Bridge
➔ Peripheral Scheduler

PREM HW components
➔ Real-Time Bridge;

◆ interposes between COTS peripheral and the rest of the system
◆ provides traffic virtualization and isolation

➔ Peripheral Scheduler

Predictability on
memory access

PREM HW components
➔ Real-Time Bridge;

◆ interposes between COTS peripheral and the rest of the system
◆ provides traffic virtualization and isolation

➔ Peripheral Scheduler

Flexibility on
I/O flows

➔ Real-Time Bridge
➔ Peripheral Scheduler

◆ enables system-wide coscheduling after receiving scheduling messages
from CPU

◆ schedules the I/O flows of the bridges

PREM HW components
synchronizes with

CPU

PREM challenges (1/3)

1. unpredictable manner of I/O peripherals with DMA master capabilities to
access shared resources

PREM challenges (1/3)

1. unpredictable manner of I/O peripherals with DMA master capabilities to
access shared resources

PREM challenges (2/3)

2. unpredictable pattern of tasks to do bus and memory access
(in particular, lack of predictable cache fetches in main memory)

PREM challenges (2/3)

2. unpredictable pattern of tasks to do bus and memory access
(in particular, lack of predictable cache fetches in main memory)

PREM introduces a feature:

● Jobs are divided into a sequence of non-preemptive scheduling intervals
○ some of them, named predictable intervals are executed predictable

and without cache misses by prefetching all required data at the
beginning of each of their own intervals

○ their execution times are kept constant

Predictable intervals

● specially compiled to execute
according to the illustrated model

● divided into two different phases:
memory and execution phases

○ during the initial memory
phase, the CPU accesses main
memory to do cache line
fetches and replacement

○ now, all the required cache for
the predictable interval is
available in the last level cache

○ during the execution phase,
useful computation without last
level cache misses will be done

● the length of execution phase is forced to be equal to
 constant

●
● busy-wait until the constant time units have elapsed

since the beginning of the interval
● Predictable intervals do not contain any system call and

cannot be preempted by interrupt handlers,
(guarantees no memory contention within execution
phase)

Predictable intervals

● specially compiled to execute
according to the illustrated model

● divided into two different phases:
memory and execution phases

○ during the initial memory
phase, the CPU accesses main
memory to do cache line
fetches and replacement

○ now, all the required cache for
the predictable interval is
available in the last level cache

○ during the execution phase,
useful computation without last
level cache misses will be done

Question: what about OS system calls?

● the length of execution phase is forced to be equal to
 constant

●
● busy-wait until the constant time units have elapsed

since the beginning of the interval
● Predictable intervals do not contain any system call and

cannot be preempted by interrupt handlers,
(guarantees no memory contention within execution
phase)

The scheduling intervals are classified into:
● Predictable intervals (as discussed until now)
● Compatible intervals

The scheduling intervals are classified into:
● Predictable intervals (as discussed until now)
● Compatible intervals

Properties:
➔ are compiled and executed without any special provision as the other type of

intervals
➔ so, cache misses can happen at any time
➔ OS system calls are allowed to be performed in these intervals

PREM challenges (3/3)

3. low-level COTS arbiters are usually designed to achieve fairness instead of
real-time performance

Solution:
● Peripheral Scheduler!
● Then, within a task’s

predictable interval, the
scheduled peripheral can
access bus and memory
(without cache-miss delay)

System-Level Predictable Schedule

Timing noises issue (Linux)

TURNED
OFF

system partition
(first pair of cores)

real-time partition
(second pair of cores)

Q
67

00
 Q

ua
d-

co
re

 C
P

U

➔ Cache-miss & Cache-prefetch
◆ DES Cypher Benchmark
◆ JPEG Image Encoding Benchmark
◆ Automation Program Group (MIBENCH)

➔ WCET (synthetic applications)
◆ random_access
◆ linear_access

Evaluation (PREM vs. Non-PREM)

Results (Cache-miss & Cache-prefetch)

Critiques
● what I liked, other than the PREM system:

○ both SW and HW issues were monitored together and made the whole execution model more
practical

○ demonstration was done in both ways of running benchmarks and synthetic applications as
well as mathematical analysis

● my questions:
○ probably, no clear decision about the complex code segments if they should be placed in the

compatible intervals, at the same time those intervals should be hold as short as possible…
○ as mentioned, real-time bridges and peripheral scheduler require software drivers, what about

predictability of those tasks?

Thanks!

