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Intro.

Increasing usage of Commercial-Off-The-Shelf (COTS) components
Why (vs. Customized systems) ?

o Cheap — massive production

o General Purpose — flexible for different applications and not binded to
a single SW/HW

o Less design defects — design for reuse (silver bullet? wrong
assumptions - integration issues)

o Backward compatible with legacy products

o High performance

Problems?

- Not suitable for all applications — what about environmental constraints?
such as temperature, radiation exposure and etc.

- Maybe not suitable for safety critical systems, such as flight control or
medical equipment. Not Reliable?



COTS issues for real-time

The main drawback of using COTS components within a real-time system is the
presence of unpredictable timing anomalies.

e Contentions due to initiating access shared resources (such as cache) by
multiple active components (such as CPU cores and I/O peripherals)
o Leads to timing degradation
o Low-level arbiters of these shared resources are not typically designed
to provide real-time guarantees
o Also, each of active devices initiate their access requests independent
(unaware) of each other

e Solution: compute precise bounds on worst-case timing delays caused by
shared resource access contention.
o How to do it in a realistic way?



Predictable Execution Model (PREM)

e Enforces a high-level co-schedule among CPU tasks and peripherals which
can greatly reduce or outright eliminate low-level contention for shared
resources access.

e Proposes to control the operating point of each shared resources (cache,
memory, interconnection buses, and etc.) to avoid timing delays due to
contention

Advantages
> COTS high performance
> Real-time predictability



PREM

e (Co-schedules (at a high level) all active COTS components in the system
o predictable, system-wide execution based on a rule set
o less pessimistic than safe upper bounds (for non-real-time COTS) than some
other approaches
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PREM HW components

-=> Real-Time Bridge
=> Peripheral Scheduler
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PREM HW components

=> Real-Time Bridge;

€ interposes between COTS peripheral and the rest of the system
€ provides traffic virtualization and isolation

Predictability on
memory access
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PREM HW components

=> Real-Time Bridge;

€ interposes between COTS peripheral and the rest of the system

€ provides traffic virtualization and isolation
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PREM HW components

=> Peripheral Scheduler

synchronizes with

CPU

€ enables system-wide coscheduling after receiving scheduling messages

from CPU

€ schedules the I/0O flows of the bridges

[ COTS |
Peripheral ]

Real-Time

P Bridge
COTS Real-Time
[Peripheral 0 Bridge _
:
COTS Real-Time

[

Peripheral

J-

Bridge

COTS
Motherboard

CPU




PREM challenges (1/3)

1. unpredictable manner of I/O peripherals with DMA master capabilities to
access shared resources



PREM challenges (1/3)

1.

access shared resources
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PREM challenges (2/3)

2. unpredictable pattern of tasks to do bus and memory access
(in particular, lack of predictable cache fetches in main memory)



PREM challenges (2/3)

2. unpredictable pattern of tasks to do bus and memory access
(in particular, lack of predictable cache fetches in main memory)

PREM introduces a feature:

e Jobs are divided into a sequence of non-preemptive scheduling intervals
o some of them, named predictable intervals are executed predictable
and without cache misses by prefetching all required data at the
beginning of each of their own intervals
o their execution times are kept constant



Predictable intervals

e specially compiled to execute
according to the illustrated model

e divided into two different phases:
memory and execution phases
o during the initial memory
phase, the CPU accesses main
memory to do cache line
fetches and replacement
o now, all the required cache for
the predictable interval is
available in the last level cache
o during the execution phase,
useful computation without last
level cache misses will be done

execution
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e busy-wait until the constant time units have elapsed
since the beginning of the interval

e Predictable intervals do not contain any system call and
cannot be preempted by interrupt handlers,
(guarantees no memory contention within execution
phase)



Predictable intervals

e specially compiled to execute
according to the illustrated model

Cache fetches and
replacements

e divided into two different phases:
memory and execution phases
o during the initial memory
phase, the CPU accesses main
memory to do cache line
fetches and replacement
o now, all the required cache for
the predictable interval is
available in the last level cache
o during the execution phase,
useful computation without last
level cache misses will be done

Question: what about OS system calls?
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The scheduling intervals are classified into:

e Predictable intervals (as discussed until now)
e Compatible intervals



The scheduling intervals are classified into:

e Compatible intervals

Properties:

=> are compiled and executed without any special provision as the other type of
intervals

=> S0, cache misses can happen at any time
=> OS system calls are allowed to be performed in these intervals



PREM challenges (3/3)

3.

low-level COTS arbiters are usually designed to achieve fairness instead of
real-time performance

Solution:

Peripheral Scheduler!
Then, within a task’s
predictable interval, the
scheduled peripheral can
access bus and memory
(without cache-miss delay)
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System-Level Predictable Schedule
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Timing noises issue (Linux)
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Evaluation (PREM vs. Non-PREM)

=> Cache-miss & Cache-prefetch

& DES Cypher Benchmark
€ JPEG Image Encoding Benchmark
€ Automation Program Group (MIBENCH)

= WCET (synthetic applications)

€ random_access
€ linear _access



Results (Cache-miss & Cache-prefetch)

Input bytes 4K 8K 32K 128K 512K IM
Non-PREM miss | 151 277 1046 4144 16371 32698
PREM prefetch 255 353 1119 4185 16451 32834
PREM exec-miss 1 1 1 1 1 104

TABLE 1
DES BENCHMARK CACHE MISSES.

PREM Non-PREM
prefetch  exec-miss  time(us) miss  time(us)

JPEG(1 Mpix) 810 13 778 588 797

JPEG(8 Mpix) 1736 19 3039 1612 3110

gsort 3136 3 2712 3135 2768

susan_smooth 313 2 7159 298 7170

susan_edge 680 4 3089 666 3086

susan_corner 3286 3 341 598 232
TABLE II

MIBENCH RESULTS WITHOUT PERIPHERAL TRAFFIC.



Critiques

e what I liked, other than the PREM system:
o both SW and HW issues were monitored together and made the whole execution model more
practical
o demonstration was done in both ways of running benchmarks and synthetic applications as
well as mathematical analysis

e my questions:
o probably, no clear decision about the complex code segments if they should be placed in the
compatible intervals, at the same time those intervals should be hold as short as possible...
o as mentioned, real-time bridges and peripheral scheduler require software drivers, what about
predictability of those tasks?



Thanks!



