A Predictable Execution Model for COTS-based
Embedded Systems

Research by:
Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell,
Marco Caccamo and Russell Kegley

Presented by:
Neda Paryab

Outline

Problem Statement
PREM system
Evaluation
Critiques

Intro.

Increasing usage of Commercial-Off-The-Shelf (COTS) components
Why (vs. Customized systems) ?

o Cheap — massive production

o General Purpose — flexible for different applications and not binded to
a single SW/HW

o Less design defects — design for reuse (silver bullet? wrong
assumptions - integration issues)

o Backward compatible with legacy products

o High performance

Problems?

- Not suitable for all applications — what about environmental constraints?
such as temperature, radiation exposure and etc.

- Maybe not suitable for safety critical systems, such as flight control or
medical equipment. Not Reliable?

COTS issues for real-time

The main drawback of using COTS components within a real-time system is the
presence of unpredictable timing anomalies.

e Contentions due to initiating access shared resources (such as cache) by
multiple active components (such as CPU cores and I/O peripherals)
o Leads to timing degradation
o Low-level arbiters of these shared resources are not typically designed
to provide real-time guarantees
o Also, each of active devices initiate their access requests independent
(unaware) of each other

e Solution: compute precise bounds on worst-case timing delays caused by
shared resource access contention.
o How to do it in a realistic way?

Predictable Execution Model (PREM)

e Enforces a high-level co-schedule among CPU tasks and peripherals which
can greatly reduce or outright eliminate low-level contention for shared
resources access.

e Proposes to control the operating point of each shared resources (cache,
memory, interconnection buses, and etc.) to avoid timing delays due to
contention

Advantages
> COTS high performance
> Real-time predictability

PREM

e (Co-schedules (at a high level) all active COTS components in the system
o predictable, system-wide execution based on a rule set
o less pessimistic than safe upper bounds (for non-real-time COTS) than some
other approaches

PREM

e (Co-schedules (at a high level) all active COTS components in the system
o predictable, system-wide execution based on a rule set
o less pessimistic than safe upper bounds (for non-real-time COTS) than some
other approaches

COTS Real-Time RAM
Peripheral Bridge J\
B COTS
[COTS { (Real-Time Motherboard
Peripheral J : |_Bridge ™
_ y CPU
Y] 4 South
COTS Real-Time PCI X
. . Bridge
Peripheral Bridge

PREM HW components

-=> Real-Time Bridge
=> Peripheral Scheduler

I cots |, [Real-Time \ RAM
Peripheral Bridge
. 7 COTS
COTS 0 Real-Time Motherboard
. : - a
Peripheral) : |_Bridge
_ y CPU
6. Vg South
COTS Real-Time PCI Bridge
Peripheral l Bridge

PREM HW components

=> Real-Time Bridge;

€ interposes between COTS peripheral and the rest of the system
€ provides traffic virtualization and isolation

Predictability on
memory access

I cots |, [Real-Time \ RAM
Peripheral Bridge
. B COTS
[cots |, [Real-Time N Motherboard

Peripheral) : |_Bridge
A

_ ' CPU
1 - » South
COTS l Real-Time PCI Bridge
Peripheral Bridge

PREM HW components

=> Real-Time Bridge;

€ interposes between COTS peripheral and the rest of the system

€ provides traffic virtualization and isolation

COTS |
Peripheral

Real-Time

Bridge

~Na

Flexibility on
I/O flows

<
COTS Real-Time
[Peripheral 0 Bridge _
y
COTS Real-Time PCI

[

Peripheral

J-

Bridge

COTS
Motherboard

CPU

PREM HW components

=> Peripheral Scheduler

synchronizes with

CPU

€ enables system-wide coscheduling after receiving scheduling messages

from CPU

€ schedules the I/0O flows of the bridges

[COTS |
Peripheral]

Real-Time

P Bridge
COTS Real-Time
[Peripheral 0 Bridge _
:
COTS Real-Time

[

Peripheral

J-

Bridge

COTS
Motherboard

CPU

PREM challenges (1/3)

1. unpredictable manner of I/O peripherals with DMA master capabilities to
access shared resources

PREM challenges (1/3)

1.

access shared resources

COTS
Peripheral

bridge
<

S

,‘//

/
4/‘
/
/

Real-time }‘

COTS / Real-time
Peripheral / bridge
/ e

[
!) yd

4

Reservation
Controller —

CPU

RAM

COTS
Motherboard
North
South
v
Real-time COTS
bridge Peripheral

unpredictable manner of I/O peripherals with DMA master capabilities to

E—

COTS |. |Real-Time RAM
Peripheral | | Bridge
B coTS
[coTs)./ [Real-Time Motherboard
Peripheral] : |_Bridge
pr— \p?:. North FSB
cots Real-Time PCI Bs:;gg;
Peripheral Bridge

PREM challenges (2/3)

2. unpredictable pattern of tasks to do bus and memory access
(in particular, lack of predictable cache fetches in main memory)

PREM challenges (2/3)

2. unpredictable pattern of tasks to do bus and memory access
(in particular, lack of predictable cache fetches in main memory)

PREM introduces a feature:

e Jobs are divided into a sequence of non-preemptive scheduling intervals
o some of them, named predictable intervals are executed predictable
and without cache misses by prefetching all required data at the
beginning of each of their own intervals
o their execution times are kept constant

Predictable intervals

e specially compiled to execute
according to the illustrated model

e divided into two different phases:
memory and execution phases
o during the initial memory
phase, the CPU accesses main
memory to do cache line
fetches and replacement
o now, all the required cache for
the predictable interval is
available in the last level cache
o during the execution phase,
useful computation without last
level cache misses will be done

execution
phase

CPU Execution ' ‘/ﬁ Q ﬁ jjjjjﬁﬁjﬁjjjjﬁﬁﬁﬁﬁ
Cache fetches and
AT AN N

memory
phase

replacements

Peripheral data _

transfers 3 e;ff;"“ H eif’/_‘*“ |
) e: (constant)
2 L 2

e the length of execution phase is forced to be equal to
e;,jconstant

. ey = CTm ey

e busy-wait until the constant time units have elapsed
since the beginning of the interval

e Predictable intervals do not contain any system call and
cannot be preempted by interrupt handlers,
(guarantees no memory contention within execution
phase)

Predictable intervals

e specially compiled to execute
according to the illustrated model

Cache fetches and
replacements

e divided into two different phases:
memory and execution phases
o during the initial memory
phase, the CPU accesses main
memory to do cache line
fetches and replacement
o now, all the required cache for
the predictable interval is
available in the last level cache
o during the execution phase,
useful computation without last
level cache misses will be done

Question: what about OS system calls?

CPU Execution

Peripheral data
transfers

memory execution
phase phase
QAT AN A
mem exec
L. i~.j ol el./ o
: e; ;(constant)
: *

the length of execution phase is forced to be equal to
e;,jconstant

= ey +egye

busy-wait until the constant time units have elapsed
since the beginning of the interval

Predictable intervals do not contain any system call and
cannot be preempted by interrupt handlers,
(guarantees no memory contention within execution
phase)

€i,j

The scheduling intervals are classified into:

e Predictable intervals (as discussed until now)
e Compatible intervals

The scheduling intervals are classified into:

e Compatible intervals

Properties:

=> are compiled and executed without any special provision as the other type of
intervals

=> S0, cache misses can happen at any time
=> OS system calls are allowed to be performed in these intervals

PREM challenges (3/3)

3.

low-level COTS arbiters are usually designed to achieve fairness instead of
real-time performance

Solution:

Peripheral Scheduler!
Then, within a task’s
predictable interval, the
scheduled peripheral can
access bus and memory
(without cache-miss delay)

COTS _| Real-Time 9 RAM
Peripheral] | _Bridge
. ‘ coTS
[COTS { (Real Tnme Motherboard
Peripheral Bndge
\p?;u North FSB
" South
COTS Real Ti PCI Bridge
Peripheral Bridge -

System-Level Predictable Schedule

S1,1 81,2 S1,3

bk e

3|2,1 82,2 fzsl S|2,4

T

A | 11

|]
[7 T

1/0 T :‘a‘lﬁtI °“;§;‘;T ‘

Tl J‘ Jl .]Q 1h JU >
AIIIITIIllllIllllllllllllllllllllf

73/° a1 m . 1w 1

T T T T T T T T T T T T I T T T T T T T T T I T T T T T TTT]

(o] 10 20 30 40 S0 60

i : compatible : memory ﬁ : execution :1/0 flow
interval phase phase

Timing noises issue (Linux)

Q6700 Quad-core CPU

-

>

<

N

TURNED
OFF

N

~/

YV
system partition
(first pair of cores)

N\

real-time partition
(second pair of cores)

Evaluation (PREM vs. Non-PREM)

=> Cache-miss & Cache-prefetch

& DES Cypher Benchmark
€ JPEG Image Encoding Benchmark
€ Automation Program Group (MIBENCH)

= WCET (synthetic applications)

€ random_access
€ linear _access

Results (Cache-miss & Cache-prefetch)

Input bytes 4K 8K 32K 128K 512K IM
Non-PREM miss | 151 277 1046 4144 16371 32698
PREM prefetch 255 353 1119 4185 16451 32834
PREM exec-miss 1 1 1 1 1 104

TABLE 1
DES BENCHMARK CACHE MISSES.

PREM Non-PREM
prefetch exec-miss time(us) miss time(us)

JPEG(1 Mpix) 810 13 778 588 797

JPEG(8 Mpix) 1736 19 3039 1612 3110

gsort 3136 3 2712 3135 2768

susan_smooth 313 2 7159 298 7170

susan_edge 680 4 3089 666 3086

susan_corner 3286 3 341 598 232
TABLE II

MIBENCH RESULTS WITHOUT PERIPHERAL TRAFFIC.

Critiques

e what I liked, other than the PREM system:
o both SW and HW issues were monitored together and made the whole execution model more
practical
o demonstration was done in both ways of running benchmarks and synthetic applications as
well as mathematical analysis

e my questions:
o probably, no clear decision about the complex code segments if they should be placed in the
compatible intervals, at the same time those intervals should be hold as short as possible...
o as mentioned, real-time bridges and peripheral scheduler require software drivers, what about
predictability of those tasks?

Thanks!

