
00:1

A Comparative Study of Predictable DRAM Controllers

Real-time embedded systems require hard guarantees on task Worst-Case Execution Time (WCET). For
this reason, architectural components employed in real-time systems must be predictable, i.e., allow the
derivation of tight bounds on worst-case latency. However, it has been established that COTS DRAM con-
trollers yield extremely pessimistic latency bounds, leading to high WCET and rendering them unusable
for real-time systems. As a result, the research community has produced several predictable memory con-
troller designs that provide tighter worst-case latency. The proposed controllers significantly differ in terms
of system model, memory configuration, arbitration and command scheduling, latency bounds, general per-
formance, and simulation environment. Due to such differences and the complexity of evaluating designs,
no controller has been properly compared against other proposed solutions, making it difficult to assess the
contribution of each approach. To bridge this gap, this paper provides the first comprehensive evaluation
of state-of-the-art predictable DRAM controllers. We first propose a categorization of available controllers
based on key architectural characteristics and real-time guarantees. We then introduce an analytical perfor-
mance model to compare controllers based on worst-case latency. Finally, we develop a common simulation
platform, conduct extensive evaluation of all state-of-the-art controllers, and discuss findings and recom-
mendations.

1. INTRODUCTION

Modern real-time hardware platforms use memory hierarchies consisting of both on-
chip and off-chip memories that are specifically designed to be predictable. A pre-
dictable memory hierarchy simplifies worst-case execution time (WCET) analysis to
compute an upper bound on the memory access latency incurred by a task’s execution.
This is essential in computing a task’s overall WCET, which is used to ensure that
temporal requirements of the task are never violated. These memory hierarchies are
specially designed for real-time embedded systems because conventional memory hier-
archies are optimized to improve average-case performance, yielding overly pessimistic
WCET bounds [Kim et al. 2014]. Consequently, there has been considerable interest in
the real-time research community in designing memory hierarchies to produce tight
WCET bounds while delivering a reasonable amount of performance.

As of late, the community has focused in making accesses to off-chip dynamic random-
access memories (DRAM)s predictable. This need arose because the data requirement
demands from modern real-time applications greatly exceeded the capacity available
solely with on-chip memories. However, commercial-off-the-shelf (COTS) DRAMs are
unsuitable for real-time embedded systems because their controllers are optimized to
improve average-case performance; thus, rendering either pessimistic WCET bounds
or even no upper bound [Wu et al. 2013]. As a result, we have witnessed several inno-
vations in DRAM memory controller (MC) design in recent years [Paolieri et al. 2009;
Hassan et al. 2015; Li et al. 2014; Wu et al. 2013; Ecco and Ernst 2015; Krishnapillai
et al. 2014; Ecco et al. 2014; Jalle et al. 2014; P et al. 2011]. Each of these designs
trade-off predictability with performance, but they also make it difficult to compare
against each other. This is because the authors of these works use different system
models, assumptions, memory configurations, arbitration and command scheduling al-
gorithms, benchmarks, and simulation environments. A designer or company wishing
to adopt one of these DRAM MCs for their real-time application would have virtually
no scientific method to judiciously select the one that best suits the needs of their ap-
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plication. Moreover, researchers producing novel DRAM MC designs are also unable
to effectively compare against prior state-of-the-arts. We believe that this is detrimen-
tal to future progress in the research and design of DRAM MCs, and its adoption into
main-stream hardware platforms for real-time embedded systems.

To address this issue, in this paper we develop a methodology that enables compar-
ing predictable MCs, and we provide a comprehensive evaluation of the state-of-the-
art predictable DDR SDRAM MCs. More in details, we provide the following main
contributions: 1) We discuss a characterization of existing predictable MCs based on
their key architectural characteristics and real-time properties; 2) We introduce an
analytical performance model that enables a quantitative comparison of existing MCs
based on their worst-case latency; and 3) We develop a common evaluation platform
to provide a fair, standardized experimental comparison of the analyzed MCs. Based
on this platform, we carry out an extensive simulation-based evaluation using embed-
ded benchmarks, and provide insights into the advantage and disadvantages of differ-
ent controller architectures. In particular, we expose and evaluate essential trade-offs
between latency bounds provided to real-time tasks and average memory bandwidth
offered to non real-time tasks.

Our source-code for managing and simulating all considered MC designs is available
at [Authors removed for double-blind review 2015]. To the best of our knowledge, this is
the first work that enables comparing performance of all state-of-the-art architectural
solutions for predictable scheduling of DRAM operations 1. A key result of the evalu-
ation is that the relative performance of different predictable controllers is highly in-
fluenced by the characteristics of the employed DDR memory device; hence, controller
and device should be co-selected.

The rest of the paper is organized as follows. Section II provides the required back-
ground on Dual Data Rate (DDR) DRAM. Section III discusses the structure of pre-
dictable memory controllers and their key architectural characteristics. Section IV
presents related work in general and the evaluated predictable MCs in details, based
on the introduced architectural characteristics. Section V provides the analytical
model of worst-case latency. Section VI discusses our evaluation platform, provides
extensive evaluation of all covered predictable controller, and discusses findings and
recommendations. Finally, Section VII provides concluding remarks.

2. DRAM BACKGROUND

We begin by providing key background details on double data rate synchronous dy-
namic RAM (DDR SDRAM). Most recent predictable MCs are based on JEDEC DDR3
devices. In this evaluation, we focus on both DDR3 and its currently available suc-
cessor standard, DDR4. There are other standards exist, but are not included in this
work. Note that we only consider systems with a single memory channel, i.e., a single
MC and command/data buses. In general, from an analysis point of view, if more than

1Note that our evaluation mainly focuses on solutions for scheduling of DRAM commands, i.e., at the MC
back-end level. We are not concerned with scheduling of memory requests at the core, cache or interconnec-
tion level.
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one channel is present, then each channel can be treated independently; hence, all dis-
cussed predictable MCs are single-channel. Optimization of static channel assignment
for predictable MCs is discussed in [Gomony et al. 2013].

2.1. DRAM Organization

A DRAM chip is a 3-dimensional array of memory cells organized in banks, rows, and
columns. A DRAM chip consists of 8 (DDR3/DDR4) or 16 (DDR4) banks that can be ac-
cessed simultaneously, but share the same command/address and data bus. Each bank
is further organized into rows and columns. Every bank contains a row-buffer, which
temporarily stores the most recently accessed row of memory cells. Data can only be
retrieved once the requested row is placed in the row-buffer. This makes subsequent
accesses to the same row (row locality) quicker to access than different rows. A memory
module, used in a typical computer system comprises either one or multiple indepen-
dent sets of DRAM chips connected to the same buses. Each memory set is also known
as a rank. Figure 1 shows an overview of a DRAM memory module with N ranks, where
each rank includes 8 DRAM chips. In this example, each chip has an 8 bits data bus,
and 8 chips are combined to form an overall data bus with width WBUS = 8 ·8 = 64 bits
for the whole module. While each rank can be operated independently of other ranks,
they all share the same address/command bus, used to send memory commands from
the MC to the device, as well as the same data bus.
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Fig. 1: Architecture of Memory Controller and DRAM memory module.

2.2. DRAM Commands and Timing Constraints

The commands pertinent to memory request latency are as follows: ACTIVATE (ACT),
READ (RD), READA (RDA), WRITE (WR), WRITEA (WRA), PRECHARGE (PRE) and
REFRESH (REF). Other power related commands are out of the scope of this paper.
Each command has some timing constraints that must be satisfied before the command
can be issued to the memory device. A simplified DRAM state diagram, presented
in Figure 2, shows the relationship and timing constraints between device states
and commands. We report the most relevant timing constraints for DDR3-1600H and
DDR4-1600K in Table I, which are defined by the JEDEC standard [JEDEC 2008] .

The ACT command is used to open (retrieve) a row in a memory bank into the row-
buffer. The row remains active for accesses until it is closed by a PRE command. PRE
is used to deactivate the open row in one bank or in all the banks. It writes the data
in the row-buffer back to the storage cells; after the PRE, the bank(s) will become
available for another row activation after tRP . Once the required row is opened in
the row-buffer, after tRCD, requests to the open row can be performed by issuing CAS
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commands: reads (RD) and writes (WR). Since the command bus is shared, only one
command can be sent to the device at a time. If a request accesses a different row in
the bank, a PRE has to be issued to close the open row. In the case of auto precharge,
a PRE is automatically performed after a RD (RDA) or WR (WRA) command. Finally,
a REF command needs to be issued periodically (tREFI ) to prevent the capacitors that
store the data from becoming discharged. REF can only be issued once the device is in
Idle mode for at least tRP after all the banks are precharged. After the refresh cycles
(tRFC) complete, all the banks will be in the precharged (idle) state.
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Fig. 2: DRAM Operation State Machine.

Table I: JEDEC Timing Constraints.
JEDEC Specifications (cycles)

Parameters Description DDR3-1600H DDR4-1600K
tRCD ACT to RD/WR delay 9 11
tRL RD to Data Start 9 11
tRP PRE to ACT Delay 9 11
tWL WR to Data Start 8 9
tRTW RD to WR Delay 7 8
tWTR WR to RD Delay 6 6
tRTP Read to PRE Delay 6 6
tWR Data End of WR to PRE 12 12
tRAS ACT to PRE Delay 28 28
tRC ACT-ACT (same bank) 37 39
tRRD ACT-ACT (diff bank) 5 4
tFAW Four ACT Window 24 20
tBUS Data bus transfer 4 4
tRTR Rank to Rank Switch 2 2
tRFC Time required to refresh 160ns 160ns
tREFI Refresh period 7.8us 7.8ns

A DDR device is named in the format of DDR(generation)-(data rate)(version) such as
DDR(3)-(1600)(H). In each generation, the supported data rate varies. For example, for
DDR3 the data rate ranges from 800 to 2133 MegaTransfers(MT)/s, while for DDR4 the
rate starts from 1600 and goes up to 2400MT/s. Note that since the device operates at
double data rate (2 data transfers every clock cycle), a device with 1600MT/s is clocked
at frequency of 800MHz. Devices operating in the same speed with lower version letter
can execute commands faster than devices with higher version.

Based on the timing constraints in Table I, we make the following three important
observations. 1) While the operation of banks can be in parallel, command and data
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must still be serialized because the MC is connected with the memory devices us-
ing a single command and a single data bus. One command can be transmitted on
the command bus every clock cycle, while each data transmission (read or write) re-
quires tBUS = 4 clock cycles. In this paper, we use a burst length of 8 since it is sup-
ported by both JEDEC DDR3 and DDR4 devices. 2) Since consecutive requests tar-
geting the same row in a given bank do not require ACT and PRE commands, they
can proceed faster than requests targeting different rows; timing constraints that are
required to precharge and reactivate the same bank (tRC , tRAS , tWR, tRTP and tRP )
are particularly long. 3) Switching between requests of different types (read/write) in-
curs extra timing constraints in the form of a read-to-write (tRTW ) and write-to-read
(tWL + tBUS + tWTR) switching delays between CAS commands. Such constraints only
apply to CAS commands targeting banks in the same rank; for CAS commands target-
ing banks in different ranks, there is a single, short timing constraint (tRTR) between
data transmissions, regardless of the request type.

3. MEMORY CONTROLLER DESIGN

Based on the background on DDR DRAM provided in Section 2, we now discuss the
design of the memory controller. In particular, in Section 3.1 we describe a common
architectural framework that allows us to categorize different MCs based on their key
architectural features.

3.1. Hardware Architecture

A DRAM memory controller is the interface to the DRAM memory module and governs
access to the DRAM device by executing the requests as required by the timing con-
straints of the DRAM specification. In doing so, the MC performs four essential roles:
address mapping, request arbitration, command generation, and command scheduling
as shown in Figure 3.
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Fig. 3: Architecture of Memory Controller.

— Memory Address Mapping: Address mapping decomposes the incoming physical ad-
dress of a request into rank, bank, row, and column bits. The address translation
determines how each request is mapped to a rank and bank. There are two main
classes of mapping policies.

(1) Interleaved-Banks: each requestor can access any bank or rank in the system.
This policy provides maximum bank parallelism to each individual requestor,
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but suffers from row interference since different requestors can cause mutual
interference by closing each other’s row buffers. Hence, predictable MCs us-
ing interleaving-banks also employ close-page policy, which ignores row locality.
COTS MCs also typically employ interleaved-banks because in the average case,
the row interference is often limited.

(2) Private-Banks: each requestor is assigned its own bank or set of banks. This
allows a predictable MC to take advantage of row locality, since the behavior of
one requestor has no impact on the row buffer of other requestors’ banks. As a
downside, the performance of a requestor executing alone is negatively impacted,
since the number of banks that it can access in parallel is reduced. Sharing data
among requestors also becomes more complex [ZP 2013]. Finally, the number of
requestors can be a concern due to the limited number of ranks and banks. For
example, a DDR3 memory supports only up to 4 ranks and 8 banks per rank, but
a multi-core architecture may have 16 or more memory requestors.

— Request Arbitration: While a MC only needs to schedule individual commands to
meet JEDEC timing constraints, in practice all considered MCs implement an addi-
tional front-end request scheduler that determines the order in which requests are
processed. We consider three main arbitration schemes:

(1) (Non-work Conserving) Time Division Multiplexing (TDM): under TDM, each re-
questor is assigned one or more slots, and its requests can only be serviced during
assigned slot(s). If no request can be served during the assigned slot, then the slot
is wasted.

(2) Round Robin (RR) and Work-conserving TDM: compared to non-work conserving
TDM, unused slots are assigned to the next available requestor.

(3) First-Ready First-Come-First-Serve (FR-FCFS): COTS MCs generally imple-
ment some variation of FR-FCFS scheduling to improve the memory bandwidth.
This scheme prioritizes requests that target an open row buffer over requests
requiring row activation; open requests are served in first-come-first-serve order.
FR-FCFS controllers always implement an open-page policy. As shown in [Wu
et al. 2013], if the MC does not impose any limit to the number of reordered
requests, no upper bound on request latency can be derived. Therefore, based
on experimental evaluation, the analysis in [Kim et al. 2014] derives a latency
bound assuming that at most 12 requests within a bank can be reordered ahead
of a request under analysis.

For general purpose system, the write operations are not in the critical path, there-
fore, some MCs provide high priority for read requests and write requests can be
served when there is no read operation. Most real-time MCs treat these two type of
requests equally and providing individual latency or the maximum between the two.
For the MCs evaluated in this work, we take the maximum latency among the read
and write requests as the worst case request latency.

— Command Generation: Based on the request type (read or write) and the state of the
memory device, the command generation module generates the actual memory com-
mands. The commands generated for a given request depend on the row policy used
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by the MC and the number of CAS commands needed by a request; this is determined
by the data size of the request and the size of each memory access. For instance, for
a WBUS = 16 bits, each operation transfers 16 bytes, thus requiring 4 accesses for
a 64 bytes request; whereas for WBUS = 64 bits, only one access per request would
be needed. The commands for a request can be generated based on two critical pa-
rameters introduced in [Li et al. 2014]: the number of interleaved banks (BI) and the
burst count for one bank (BC). The BI determines the number of banks accessed by
a request and the BC determines the number of CAS commands generated for each
bank. The value for BI and BC depends on the request size and data bus width. Pre-
dictable MCs cover the whole spectrum between close-page policy, open-page policy
and combined hybrid approaches.

(1) Open-Page: allows memory accesses to exploit row locality by keeping the row
accessed by a previous request available in the row-buffer for future accesses.
Hence, if further requests target different column cells in the same row opened in
the row-buffer, then the command generator only needs to generate the required
number of CAS commands, incurring minimum access latency. Otherwise, if the
further requests target different rows, the command generator needs to create
a sequence of commands PRE+ACT and required CAS which results in longer
latency.

(2) Close-Page: transitions the row-buffer to an idle state after every access com-
pletes by using auto-precharge READ/WRITE commands. Hence, subsequent ac-
cesses place data into the row-buffer using an ACT command prior to perform-
ing the read or write operation. The command generator only needs to create a
sequence of ACT and CAS commands. While this does not exploit row locality,
all requests incur the same access latency making them inherently predictable.
Furthermore, the latency of a request targeting a different row is shorter under
close-page policy since the pre-charge operation is carried out by the previous
request.

(3) Hybrid-Page: is a combination of both open and close policy for large requests
that require multiple memory accesses (CAS commands). The CAS commands
for one request can be a sequence of a number of CAS commands to leverage the
benefit of row locality, followed by a CASp command to precharge the open buffer.

— Command Scheduler: The command scheduler ensures that queued commands are
sent to the memory device in the proper order while honouring all timing constraints.
Apart from the page policy, we find that the biggest difference between predictable
MCs is due to the employed command scheduling policy.

(1) Static: Controllers using static command scheduling schedule groups of com-
mands known as bundles. Command bundles are statically created off-line by
fixing the order and time at which each command is issued. Static analysis en-
sures that the commands meet all timing constraints independently of the exact
sequence of requests serviced by the MC at run time. Static command scheduling
results in a simpler latency analysis and controller design, but can only support
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close-page policy since the controller can not distinguish the row state at run
time.

(2) Dynamic: These controller schedule commands individually. The command ar-
biter must include a complex sequencer unit that tracks the timing constraints
at run time, and determines when a command can be issued. Dynamic com-
mand scheduling allows the controller to adapt to varying request types and bank
states; hence, it is often used in conjunction with open-page policy.

Except serving the commands for a memory request, a memory controller is respon-
sible for refreshing the DRAM device. The refresh strategy is different for memory
controller with different page policy because the refresh command requires all the
banks to be precharged before it can be issued. Refresh delay is generally limited to
1% - 5% of total task memory latency [Akesson et al. 2007] and can be easily incor-
porated in WCET analysis, see [Wu et al. 2013] for example.

3.2. Other Features

Outside of the architectural alternatives discusses in Section 3.1, there are a few ad-
ditional key features that distinguish MCs proposed in the literature. First of all, in
some system, requests generated by different requestors can have varying request
sizes. For example, a processor generally makes a memory request in the size of a
cache line, which is 64 bytes in most modern processors. On the other hand, an I/O
device could have memory requests up to KBs. Some MCs are able to natively han-
dle requests of different sizes at the command scheduler level; as we will show in our
evaluation, this allows to trade-off the latency of small requests versus the bandwidth
provided to large requests. Other MCs handle only fixed-size requests, in which case
large requests coming from the system must be broken down into multiple fixed-size
ones before they are passed to the memory controller.

Requestors can be further differentiated by their criticality (temporal requirement)
as either hard real-time (HRT) or soft real-time (SRT). Latency guarantees are the re-
quirement for HRTs, while for SRT, a good throughput should be provided while worst-
case timing is not crucial. In the simplest case, a MC can support mixed-criticality by
assigning higher static priority to critical requests over non-critical ones at both the
request and command scheduling level. We believe that all predictable MCs can be
modified to use the fixed priority scheme. However, some controllers are designed to
support mixed-criticality by using a different scheduling policy for each type of request.

Finally, as we described in the DRAM background, a memory module can be con-
structed with a number of ranks. In particular, a DDR3/DDR4 memory module can
have up to 4 ranks. However, only some controllers distinguish between requests tar-
geting different ranks in the request/command arbitration. Since requests targeting
different ranks do not need to suffer the long read-to-write and write-to-read switch-
ing delays, such controllers are able to achieve tighter latency bounds, at the cost of
needing to employ a more complex, multi-rank memory device.
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4. RELATED WORK

Since memory is a major bottleneck in almost all computing systems, we have observed
a lot of research efforts to address this problem. These efforts inspired many novel
memory controller designs in the recent years, which we categorize into two main
groups. Both groups attempt to address the shortcomings of the commonly-deployed
FR-FCFS; though, each group focuses on different aspects. The first group investi-
gate the effect of FR-FCFS on conventional high-performance multi-core platforms. In
these platforms, FR-FCFS aims to increase DRAM throughput by prioritizing ready ac-
cesses to an already-open row (row htis). This behaviour may lead to unfairness across
different running applications. Applications with large number of ready accesses are
given higher priority; thus, other applications are penalized and may even starve. Re-
searchers attempt to solve these problem by proposing novel scheduling mechanisms
such as ATLAS [Kim et al. 2010], PARBS [Mutlu and Moscibroda 2008], TCM [Kim
et al. 2010], and most-recently BLISS [Subramanian et al. 2016]. The common trend
amongst all these designs is promoting application-aware memory controller schedul-
ing.

On the other hand, fairness is not an issue for real-time predictable memory con-
trollers. In fact, prioritization is commonly adopted by those controllers to favor critical
cores for instance. However, FR-FCFS is not also a perfect match for those controllers,
yet for a different reason. Critical applications executing on real-time systems must
have bounded latency. Because of the prioritization nature of FR-FCFS, it does not
guarantee a bound of the memory latency. Many works have been proposed to provide
guaranteed memory latency bounds [Ecco and Ernst 2015; Ecco et al. 2014; Goossens
et al. 2013; Reineke et al. 2011; Kim et al. 2015; Hassan et al. 2015; Jalle et al. 2014;
Paolieri et al. 2009; Li et al. 2014; Wu et al. 2013; Krishnapillai et al. 2014], of which,
we consider [Ecco and Ernst 2015; Ecco et al. 2014; Hassan et al. 2015; Jalle et al.
2014; Paolieri et al. 2009; Li et al. 2014; Wu et al. 2013; Krishnapillai et al. 2014] in
this comparative study. We briefly discuss the efforts we did not consider in the study
a long with the reasons for this decision. Afterwards, we discuss the MCs we consider
in the study in details in Section 4.1.

Goossen et al. proposed a mixed-row policy memory controller [Goossens et al. 2013]
that leaves the row open for a fixed amount before closing it. This method requires
aggressive memory accesses to take advantage of the open row access windows, which
normally suit for out-order memory accesses. In our simulations, we proposed that ev-
ery request is in order which may not fully utilize the open windows. Reineke et al.
designed the PRET controller [Reineke et al. 2011] with private bank mapping. This
work is not taken into account because it relies on a specific precision-timed architec-
ture (PTARM [I et al. 2010]), which makes the controller incompatible with standard
cache based architectures. Kim et al. [Kim et al. 2015] designed a mixed criticality
with private bank mapping. The design is very similar to ORP except that it assumes
a non-critical requestor can share the same bank with the critical requestor with lower
priority in the command level.
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4.1. Predictable Memory Controller Analysis

In this section, we summarize the state-of-the-art predictable DRAM memory con-
trollers [Ecco and Ernst 2015; Ecco et al. 2014; Hassan et al. 2015; Jalle et al. 2014;
Paolieri et al. 2009; Li et al. 2014; Wu et al. 2013; Krishnapillai et al. 2014] described
in the literature. In general, we consider as predictable all MCs that are compos-
able. A MC is composable if requestors cannot affect the temporal behaviour of other
requestors [Akesson and Goossens 2012]. This implies that applications running on
different cores have independent temporal behaviours, which allows for independent
and incremental system development [Kim et al. 2014]. However, we notice that com-
posability is used with two different semantics in the literature, which we term ana-
lytically and run-time composable. A MC is analytically composable if it supports
an analysis that produces a predictable upper bound on request latency that is inde-
pendent of the behavior of other requestors. A MC is run-time composable if the
run-time memory schedule for a requestor is independent of the behavior of other re-
questors. Run-time composability implies analytical composability, but not vice-verse.
All the selected designs are analytical composable, however (non work-conserving)
TDM is the only arbitration that supports run-time composability, potentially at the
cost of degrading average-case performance. In Table II, we classify each MC based on
its architectural design choices (address mapping, request arbitration, page policy and
command scheduling) and additional features (variable request size, mixed criticality,
and rank support). Note: the Dirc request scheduler passes the request on top of a
request queue to the backend.

AMC PMC RTMem ORP DCmc ReOrder ROC MCMC
Req. Size N Y Y N N N N N
Mix-Criti. Fix Prio. Req. Sched. N N Fix Prio. N Ranks Fix Prio.
Rank N N N N N Y Y Y
Addr. Map. Intlv. Intlv. Intlv. Priv. Priv. Priv. Priv. Priv.
Req. Sched. RR WC TDM WC TDM Dirc RR Dirc Dirc TDM
Page Policy Close Hybrid Hybrid Open Open Open Open Close
Cmd. Sched. Static Static Dyn. Dyn. Dyn. Dyn. Dyn. Static

Table II: Memory Controllers Summary

4.1.1. Analyzable MC (AMC). AMC [Paolieri et al. 2009] is the first design for pre-
dictable MC which employs the simplest scheduling scheme: static command schedul-
ing with close-page policy is used to construct off-line command bundles for read/write
requests.

4.1.2. Programmable MC (PMC). PMC [Hassan et al. 2015] also employs a static com-
mand scheduling strategy with four static command bundles based on the minimum
request size in the system. For a request size that can be completed within one bundle,
PMC uses close-page policy. However, PMC divides larger requests into multiple bun-
dles using open-page policy. PMC also employs an optimization framework to generate
an optimal work-conserving TDM schedule. The framework supports mixed-criticality
systems, allowing the system designer to specify requirements in terms of either max-
imum latency or minimum bandwidth for individual requestors. The generated TDM
schedule comprises several slots, and requestors are mapped to slots based on an as-
signed period.
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4.1.3. Dynamic Command Scheduling MC (RTMem). RTMem [Li et al. 2014] is a memory
controller back-end architecture using dynamic command scheduling and can be com-
bined with any front-end request scheduler; we decided to implement work-conserving
TDM to better compare against other predictable MCs. RTMem accounts for variable
request size by decoding each size into a number of interleaved banks (BI) and a num-
ber of operations per bank (BC) based on a pre-defined table. The BI and BC values
are selected off-line to minimize the request latency.

4.1.4. Private Bank Open Row Policy MC (ORP). To the best of our knowledge, ORP [Wu
et al. 2013] is the first example of a predictable MC using private bank and open-
page policy with dynamic command scheduling. Latency bounds are derived assuming
that the number of close-row and open-row requests for an application are known,
for example based on static analysis [Bourgade et al. 2008]. The MC uses a complex
FIFO command arbitration to exploit maximum bank parallelism, but still essentially
guarantees RR arbitration for fixed-size critical requests.

4.1.5. Dual-Criticality MC (DCmc). Similar to ORP, DCmc [Jalle et al. 2014] uses a dy-
namic command scheduler with open page policy, but it adds support for mixed-
criticality and bank sharing among requestors. Critical requestors are scheduled ac-
cording to RR, while non-critical requestors are assigned lower priority and scheduled
according to FR-FCFS. The controller supports a flexible memory mapping; requestors
can be either assigned private banks, or interleaved over shared sets of banks. Our
evaluation considers the private-bank configuration since it minimizes latency bounds
for critical requestors.

4.1.6. Rank Switching, Open-row MC (ROC). ROC [Krishnapillai et al. 2014] improves
over ORP using multiple ranks to mitigate the tWTR and tRTW timing constraints. As
noted in Section 2, such timing constraints do not apply to operations targeting differ-
ent ranks. Hence, the controller implements a two-level request arbitration scheme for
critical requestors: the first level performs a RR among ranks, while the second level
performs a RR among requestors assigned to banks in the same rank. ROC’s rank-
switching mechanism can support mixed-criticality applications by mapping critical
and non-critical requestors to different ranks. FR-FCF, can be applied for non-critical
requestors.

4.1.7. Read/Write Bundling MC (ReOrder). ReOrder[Ecco and Ernst 2015; Ecco et al.
2016] improves ORP and ROC by employing CAS reordering techniques to reduce the
access type switching delay. It uses dynamic command scheduler among all the three
DRAM commands such that round-robin for ACT and PRE commands, and read/write
command reorder for the CAS command. The CAS arbiter keeps track the serviced
requestor and the previous issued CAS type (Read/Write) in order to make decision
on the next scheduled CAS command. The CAS reorder can eliminate repetitive CAS
switching timing constraint if the Read and Write commands are scheduled alterna-
tively.

4.1.8. Mixed Critical MC (MCMC). MCMC [Ecco et al. 2014] uses a similar rank-
switching mechanism as in ROC, but applies it to a simpler scheduling scheme using
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static command scheduling with close-page policy. TDM arbitration is used to divide
the timeline into a sequence of slots alternating between ranks. Each slot is assigned
to a single critical requestor and any number of non-critical requestors; the latter are
assigned lower priority. The slot size can be minimized by using a sufficient number of
ranks to mitigate the tWTR/tRTW timing constraints and a sufficient number of slots
to defeat the intra-bank timing constraints. As with TDM arbitration, the main draw-
back of this approach is that bandwidth will be wasted at run-time if no requestor is
ready during a slot.

4.2. Analytical Worst-Case Memory Access Latency

As discussed in Section 4.1, all considered predictable MCs are analytically compos-
able. In particular, all authors of cited papers provide, together with their MC design,
an analytical method to compute a worst case bound on the maximum latency suffered
by memory requests of a task running on a core under analysis, which is considered
one of the memory requestors. This bound depends on the timing parameters of the
employed memory device, any other static system characteristics (such as the number
of requestors), and potentially the characteristics of the tasks (such as the row hit ra-
tio), but does not depend on the activity of the other requestors. To do so, all related
work assume a task running on a fully timing compositional core [Wilhelm et al. 2009],
such that the task can produce only one request at a time, and it is stalled while wait-
ing for the request to complete. The worst-case execution time (WCET) of the task is
then obtained as the computation time of the task with zero-latency memory opera-
tions plus the computed worst-case total latency of memory operations. Note that in
general no restriction is placed on soft or non real-time requestors, i.e., they can be
out-of-order cores or DMA devices generating multiple requests at a time.

In the rest of this section, we seek to formalize a common expression to compute the
memory latency induced by different predictable controllers. Inspired by the WCET
derivation method detailed in [Wu et al. 2013; Kim et al. 2014], we shall use the fol-
lowing procedure: 1) for a close page controller, we first compute the worst case latency
LatencyReq of any request generated by the task, assuming that the request is not in-
terrupted by a refresh procedure. This is because refreshes are infrequent but can stall
the memory controller for a significant amount of time; hence, including the refresh
time in the latency bound would produce an extremely pessimistic bound. Assuming
that the task under analysis produces NR memory requests, the total memory latency
can then be upper bounded by NR · LatencyReq plus the total refresh delay for the
whole task, which can be tightly bounded by the procedure in [Wu et al. 2013; Kim et al.
2014]. 2) For an open page controller, we compute worst case latencies LatencyReq−Open

and LatencyReq−Close for any open and close request, respectively. Assuming that the
task has row hit ratio HR, we can then simply follow the same procedure used for close
page controllers by defining:

LatencyReq = LatencyReq−Open ·HR+ LatencyReq−Close · (1−HR). (1)

Based on the discussion above, Equations 2 and 3 summarize the per-request latency
for a close page and an open page MC, respectively, whereHR is the row hit ratio of the
task and REQr is either the number of requestors in the same rank as the requestor
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under analysis (for controllers with rank support), or the total number of requestors
in the system (for controllers without rank support).

LatencyReq = BasicAccess+ Interference · (REQr − 1) (2)

LatencyReq = (BasicAccess+RowAccess · (1−HR))+
(Interference+RowInter · (1−HR)) · (REQr − 1)

(3)

In the proposed latency equations, we factored out the terms HR and REQr to repre-
sent the fact that for all considered MCs, latency scales proportionally to REQr and
(1 − HR). The four latency components, BasicAccess, RowAccess, Interference and
RowInter, depend on the specific MC and the employed memory device, but they also
intuitively represent a specific latency source. For a close page controller, BasicAccess
represents the latency encountered by the requests itself, assuming no interference
from other requestors; note that since predictable MCs treat read and write oper-
ations in the same way, their latency is similar and we thus simply consider the
worst case among the two. Interference instead expresses the delay caused by ev-
ery other requestor on the commands of the request under analysis. For an open page
controller, BasicAccess and Interference represent the self-latency and interference
delay for an open request, while RowAccess and RowInter represent the additional
latency/interference for a close request, respectively. We will make use of this intu-
itive meaning to better explain the relative performance of different MCs in Section 5.
When the number of requestors in each rank is the same for rank support MCs, the ex-
pression can be rearranged to be a function of total number of requestors in the system
REQ, instead of using the requestors per rank REQr. The expression is demonstrated
in Equation 4.

LatencyReq = (BasicAccess+RowAccess · (1−HR)) + (Interference+RowInter · (1−HR)) · (REQ
R
− 1)

= (BasicAccess− Interference · (R− 1)

R
) + (RowAccess−RowInter · (R− 1)

R
) · (1−HR)+

(
Interference

R
+
RowInter

R
· (1−HR)) · (REQ− 1)

(4)

We tabulate the values of these four latency terms for all covered MC in Table III.
Equations are derived based on the corresponding worst case latency analysis for each
MC; we refer the reader to [Paolieri et al. 2009; Hassan et al. 2015; Jalle et al. 2014;
Wu et al. 2013; Krishnapillai et al. 2014; Ecco et al. 2014; Kim et al. 2014] for detailed
proofs of correctness and tightness evaluation. We provide the detail proof of the each
MC expression in [omitted for double-blind review 2016]. While the numeric values
in Table III are specific for a DDR3-1600H memory device, the general equations and
related observations hold for all considered memory devices. In the table, the BI and
BC are referred in Section 3.1 . R represents the number of ranks used in the memory
module.

Finally, note that a composable analytical bound for FR-FCFS scheduling with private
bank partition has been proposed in [Kim et al. 2014]. However, we believe that such
a bound is generally over-pessimistic to be usable in practice since the interference
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Table III: MC General Equation Components (K(cond) equals 1 if cond is satisfied and 0 otherwise.)

RowInter Interference BasicAccess RowAccess
AMC NA (15 · K(BI = 8) + 42) · BC (15 · K(BI = 8) + 42) NA

PMC RTMem NA
K(BC = 1)·((15·K(BI = 8)+
42)) +K(BC > 1) · ((4 ·BC +
1) · BI + 13 + 4 · K(BI = 8))

K(BC = 1)·((15·K(BI = 8)+
42)) +K(BC 6= 1) · ((4 ·BC +
1) · BI + 13 + 4 · K(BI = 8))

NA

DCmc 0 28 · BC 13 · BC 18
ORP 7 13 · BC 19 · BC + 6 27
ReOrder 7 + 2R 8R · BC (8R + 12) · BC + 13 31 + 2R

ROC 3 · R + 6 (3 · R + 12) · BC
(
3 · R + 24

)
· BC + 6 3 · R + 27

MCMC NA
Slot · R · BC Slot · R · BC + 22

Where Slot =


42/PE if(REQr ≤ 6) ∧ (R ≤ 2)

9 if(R = 2) ∧ (REQr > 6)

7 Otherwise

NA

FR-FCFS 0 224 · BC 24 · BC 18

component value is much higher than the other predictable MCs as shown in Table III;
hence, in the context of this paper we deem the memory controller with FR-FCFS
arbitration to be non-predictable.

5. EXPERIMENTAL EVALUATION

We next present an extensive experimental evaluation of all considered predictable
MCs. We start by discussing our experimental framework in Section 5.1. Then, we
show results in terms both of simulated latencies and analytical worst case bounds
in Section 5.2. In particular, we start by showing execution time results for a variety
of memory-intensive benchmarks. We then compare the worst case latencies of the
MCs based on the number of requestors and row hit ratio, as modelled in Section
4.2. At last, we evaluate both the latency and bandwidth available to requestors with
different properties (request sizes and criticality) and on different memory modules
(data bus width and speed). Finally, based on the obtained results, Section 5.3 provides
a discussion of the relative merits of the different MCs and their configurations.

5.1. Experimental Framework

The way the discussed MCs have been evaluated in their respective papers is widely
different in terms of selected benchmarks and evaluation assumptions such as the op-
eration of the frontend, the behavior of the requestors, and the pipelining through the
controller. The consequence is that it is not possible to directly compare the evalua-
tion results of these designs with each other. Therefore, we strive to create an eval-
uation environment that allows the community to conduct a fair, and comprehensive
comparison of existing predictable controllers. We select the EEMBC auto benchmark
suite [Poovey 2007] as it is representative of actual real-time applications. Using the
benchmark, we generate memory traces using MACsim architectural simulator [Kim
et al. 2012]. The simulation uses a x86 CPU clocked at 1GHz with private 16KB level
1, 32KB level 2 and 128KB level 3 caches. The output of the simulation is a memory
trace containing a list of accessed memory addresses together with the memory request
type (read or write), and the arrival time of the request to the memory controller. In
Table IV, we present the information for memory traces with bandwidth higher than
150MB/s, which can stress the memory controller with intensive memory accesses. We
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provide the computation time of each application without memory latency, the total
number of requests and the open request (row hit) ratio. An essential note is related

Table IV: EEMBC Benchmark Memory Traces.
Benchmark Computation Time (ns) Number of Requests Bandwidth (MB/s) Row Hit Ratio

a2time 660615 2846 275 0.35
cache 1509308 5503 233 0.18
basefp 1051300 3336 202 0.30
irrflt 1022514 3029 189 0.33
aifirf 1035458 2765 170 0.40

tblook 1152044 2865 159 0.35

to the behaviour of the processor. As discussed in Section 4.2, to obtain safe WCET
bounds for hard real-time tasks, all related work assume a fully timing compositional
core [Wilhelm et al. 2009]. Therefore, we decided to run the simulations under the
same assumption: in the processor simulation, traces are first derived assuming zero
memory access latency. The trace is then fed to a MC simulator that computes the
latency of each memory request. In turn, the request latency is added to the arrival
time of all successive requests in the same trace, meaning a request can only arrive
to the memory controller after the previous request from the same requestor has been
complete. This represents the fact that the execution of the corresponding application
would be delayed by an equivalent amount on a fully timing compositional core.

Each of the considered MCs is designed with a completely different simulator, which
varies in simulation assumption as we described above, and simulation model such as
event-driven or cycle-accurate. In this case, it is very difficult to fairly evaluate the
performance of these controllers by running individual simulators. Therefore, we have
implemented all the designs based on a common simulation engine, which allows us to
realize each memory controller by specifying their memory address mapping, request
scheduler, command generator, and command scheduler.

In this way, we can guarantee that all designs are running with same memory device,
same type of traces, same request interface and no delay through the memory con-
troller. We configured each controller for best performance; AMC, PMC, RTMem are
allowed to interleave up to the maximum number of banks per rank (8) based on the
request size and the data bus width. ROC and MCMC are configured to use up to 4
ranks. In DCmc, we assume no bank sharing is allowed between HRT requestors. For
all analyses and simulations, we use the timing constraints of DDR3-1600H 2GB de-
vice provided in Ramulator. We did not include the impact of refresh to allow a simpler
comparison with the analytical per-request latency bounds, which do not include re-
fresh time as discussed in Section 4.2; in any case, note that the the total refresh time
is a small portion of the execution time of a task, as described in Section 2.

5.2. Evaluation Results

5.2.1. Benchmark Execution Times. We demonstrate the worst case execution time in
Figure 4 for all the selected memory intensive benchmarks. In all experiments in this
section, unless otherwise specified, we set up the system with 8 requestors (REQs),
where REQ0 is considered as the requestor under analysis and is executing one bench-
mark. The other REQs are executing synthetic memory intensive trace to maximize
the interference. We also assume 64 bytes requests with a bus size WBUS = 64 bits. For
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controllers using multiple ranks (ReOrder, ROC and MCMC), requestors are evenly
split among ranks, leading to 4 requestors per rank with 2 ranks, and 2 requestors per
rank with 4 ranks. When measuring the execution time of the benchmark, the simula-
tion will be stopped once all the requests in REQ0 have been processed by the memory
controller. The execution time of each benchmark is normalized based on the analyti-
cal bound of AMC. The color bar represents simulated execution time for the requestor
(benchmark) under analysis and the T-sharp bar represents the analytical worst case
execution time.
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Fig. 4: EEMBC Benchmark WCET with 8 64B REQs and 64bit Data Bus

To best demonstrate the performance for each MC, in the rest of the evaluation, we
use the benchmark with highest bandwidth a2time, and we plot the worst case per-
request latency LatencyReq, so that results are not dependent on the computation time
of the task under analysis. For the analytical case, LatencyReq is derived according to
either Equation 2 or 3, while in the case of simulations, we simply record either the
maximum latency of any request (for close page controllers) or the maximum latencies
of any open and any close request (for open page controllers), so that LatencyReq can
be obtained based on Equation 1.

5.2.2. Number of Requestors. In this experiment, we evaluate the impact of the number
of requestors on the analytical and simulated worst case latency per memory request
of REQ0. Figure 5 and 6 shows the latency of a close request and an open request as
the number of requestors varies from 4 to 162. Furthermore, in Table VI we show the
analytical equation components for all MCs 3. We make the following observations:
1) For interleaved banks MCs (AMC, PMC, and RTMem), latency increases exactly
proportionally to the number of requestors: Interference is equal to RowInterference.
The latency components are also larger than other controllers. This is because these
MCs implement scheduling at the request level through an arbitration between re-
questors. In this case, one requestor gets its turn only when other previously sched-
uled requestors complete their requests. The timing constraint between two requests is
bounded by the re-activation process of the same bank, which is the longest constraint
among all others. Therefore, increasing the number of requestors has a large effect on

2Note that since ORP and DCmc assign one REQ per bank and use a single rank, for the sake of fair
comparison we assume they can access 16 banks even when using DDR3.
3Note that since the request size is 64 bytes and the data bus width is 64 bit, each request can be served by
one CAS command with a burst length of 8. Therefore, the parameter BI and BC is set to 1.
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Table V: WC Latency Components with BI=1, BC=1
AMC/PMC
/RTMem DCmc ORP ReOrder1 ReOrder2 ReOrder4 ROC2 ROC4 MCMC2 MCMC4

Interference
(per REQ) 42 28 13 8 8 8 9 6 9 7

RowInterfer
(per REQ) NA 0 7 9 6 4 6 5 NA

BasicAccess 42 13 25 33 33 33 27 24 31 29
RowAccess NA 18 27 33 30 28 27 25 NA

the latency. 2) Bank privatized MCs (DCmc, ORP, ReOrder, ROC and MCMC) are less
affected by the number of requestors because each requestor has its own bank and
it only suffers interference from other requestors on different banks. The timing con-
straints between different banks are much smaller than constraints on the same bank.
Dynamic command scheduling is used in DCmc, ORP, ReOrder and ROC to schedule
requestors at the command level. Increasing the number of requestors increases the
latency for each command of a request, therefore, the latency for a request also de-
pends on the number of commands it requires. For example, a close request in open
page MCs can suffer interference from other requestors for PRE, ACT and CAS com-
mands. MCMC uses fixed TDM to schedule requestors at the request level. Increasing
the number of requestors increases the number of TDM slots one requestor suffers.
3) MCs that are optimized to minimized read-to-write and write-to-read penalty (Re-
Order, ROC and MCMC) have much lower interference, especially for open requests,
compared to other controllers. For close requests, MCMC achieves significantly better
results than other controllers, since it does not suffer extra interference on PRE and
ACT commands.
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Fig. 5: WC Latency per Close Request of REQ0 wtih 64Bit Data Bus.
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5.2.3. Row Locality. As we described in Section 3, the row hit ratio is an important
property of the task running as a requestor for MCs with open page policy. In this
experiment, we evaluate the impact of row hit ratio on the worst case latency of open
page MCs ORP, DCmc, ReOrder and ROC. In order to maintain the memory access
pattern, and change the row hit ratio, we synthetically modify the request address
to achieve row hit ratio from 0% to 100%. Instead of showing the worst latency for
both close and open requests, we take the average latency of the application as the
general expression proposed in Section 4.2. As expected, in Figure 7 we observe that
both the analytical latency bound and the simulated latency decrease as the row hit
ratio increases. The impact of row hit ratio can be easily predicted from the equation
based on the RowAccess and RowInter components.
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Fig. 7: Average Request Latency for Open Page MCs

5.2.4. Data Bus Width. In this experiment, we evaluate the request latency by varying
the data bus width WBUS from 32 to 8 bits. Using smaller data bus width, same size of
request is served with either interleaving more banks or multiple accesses to the same
bank. The commands generated by the bank privatized MCs depend on the applied
page policy. For open page private MCs (DCmc, ORP, ReOrder, and ROC), a PRE+ACT
followed by a number of CAS commands are generated for a close request. On the other
hand, MCMC needs to perform multiple close page operations, and each request needs
multiple TDM rounds to be completed. The analytical and simulated worst case latency
per request is plotted in Figure 8, while Table VI shows the analytical components as
a function of the number of interleaved banks BI for interleaved MCs and number of
consecutive accesses to the same bank BC for private bank MCs; for example, with 64
bytes request size and 8 bits data bus, interleaved banks MCs interleave through BI=8
banks and bank privatized MCs require BC=8 accesses to the same bank. We can make

Table VI: WC Latency Components with 8 REQ(Ex = 15 · K(BI = 8))
AMC/PMC
/RTMem DCmc ORP ROC2 ROC4 ReOrder1 ReOrder2 ReOrder4 MCMC2 MCMC4

Interference
(per REQ) 42 + Ex 28BC 13BC 9BC 6BC 8BC 8BC 8BC 9BC 7BC

RowInter
(per REQ) NA 0 7 4 3 9 6 4 NA

BasicAccess 42 + Ex 13BC 19BC+6 21BC+6 18BC+6 33BC 33BC 33BC 31 29
RowAccess NA 18 27 27 26 33 30 28 NA

the following observations: 1) The analytical bound for MCs with interleaving bank
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mapping is not affected by a size of the data bus of 32 or 16 bits because the activation
window for the same bank (tRC) can cover all the timing constraints for accessing up
to 4 interleaved banks. In the case of 8 bits width, the MCs interleave over 8 banks,
resulting in 36% higher latency because of the timing constraints between the CAS
commands in the last bank of a request and the CAS command in the first bank of
next request (such as tWTR). Interleaved Banks MCs can process one request faster
by taking benefit of the bank parallelism for a request, hence leading to better access
latency. 2) Both the analytical bound and the simulation result for MCs with private
bank increase dramatically when the data bus width gets smaller; both Interference
and BasicAccess are linear or almost linear with BC, given that each memory request
is split into multiple small accesses. However, RowInter and RowAccess are unchanged,
since the row must be opened only once per request.
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Fig. 8: Worst Case Latency per Request of REQ0 with 8 REQs.

5.2.5. Memory Device. The actual latency (ns) of a memory request is determined by
both the memory frequency and the timing constraints. In general, the length of tim-
ing constraints in number of clock cycles increases when the memory device gets
faster. Each timing constraint has different impact on MCs designed with different
techniques. For example, the 4-Activation window (t˙FAW) has impact on interleaved
banks MCs if one request needs to interleave over more than 4 banks, and affects pri-
vate bank MCs only if there are more than 4 requestors in the system. In this exper-
iment, we look at the impact of memory devices on both the analytical and simulated
worst case latency. We run each MC with memory devices from DDR3-1066E to DDR3-
2133L which cover a wide range of operating frequencies. We also show the difference
between devices running in same frequency but different timing constraints such as
DDR3-1600K and DDR3-1600H. Figure 9 represents the latency per request for each
MC, and it shows that as the frequency increases, the latency decreases for all the MCs
with private bank mapping and very small change to MCs with interleaved bank. This
is because the interleaved banks MCs are bounded by the re-activation window to the
same bank, which does not change much with the operating frequency.

5.2.6. Large Request Size. In this experiment, we consider different request sizes. We
configure the system to include four requests with request size of 64 bytes (simulat-
ing a typical CPU), and four requestors generating large requests with a size of 2048
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Fig. 9: Worst Case Latency per Request of REQ0
bytes (simulating a DMA device). RTMem and PMC are the only controllers that na-
tively handle varying request sizes. RTMem has a lookup table of BI and BC based
on the request size, while PMC uses a different number of scheduling slots for re-
questors of different types. Overall, we employ the following configuration: (1) AMC
interleaves 4 banks with auto-precharge CAS commands, given that interleaving can
go up to 4 banks without any delay penalty, and performs multiple interleaved ac-
cesses based on the request size; (2) PMC changes the scheduling slot order for differ-
ent requestor types to trade-off between latency and bandwidth; (3) RTMem changes
the commands pattern for large requests; (4) private bank MCs (ORP, DCmc, ReOrder,
ROC and MCMC) do not differentiate the request size, and each large request is served
as a sequence of multiple acccesses, similarly to the previous experiment with small
data bus width. The configuration for AMC, RTMem and PMC is shown in Table VII.
PMC executes all the predefined slot sequences in the configuration and repeats the
same order after all the sequences are processed. In details, the number in each se-
quence is the requestor ID and the order in the sequence is the order of requestor
arbitration. In short, PMC 1 assigns one slot per requestor; PMC 2 assigns double the
number of slots to small requests compared to large requests; and PMC 4 assigns to
small requests four times the number of slots.

Table VII: Large Request Configuration
AMC PMC1 PMC2 PMC3 RTMem4/8 RTMem8/4
BI=4
BC=8 [0 1 2 3 4 5 6 7] [0 1 2 3 4 5]

[0 1 2 3 6 7]
[0 1 2 3 4] [0 1 2 3 5]
[0 1 2 3 6] [0 1 2 3 7]

BI=4
BC=8

BI=8
BC=4

The worst case latency per request for REQ0 with 64 bytes request is shown in Fig-
ure 10 and the bandwidth of REQ 7 with 2048 bytes request is shown in Figure 11. For
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private bank MCs, the access latency for small requests is not affected by the large re-
quests because all the requestors are executed in parallel and the interference is only
caused by memory commands instead of the requests. AMC is not affected because the
slot for each requestor is the same based on the configuration. On the other hand, the
bandwidth for the large requestor is low compared to MCs that take the request size
into consideration. RTMem can switch the command pattern for a large request. The
latency for small requestor is slightly higher when the large request is configured as
[BI=4, BC=8] comparing to [BI=8 and BC=4]. However, the bandwidth is slightly in-
creased. Based on the arbitration scheme of PMC, the latency for small request and
bandwidth for large requestor is greatly affected. The trade of between the latency and
bandwidth is very obvious.

5.2.7. Mixed Criticality. In this case of mixed criticality system, the system is configured
with 8 HRT REQs as before, but on top of that, there are another 8 SRT REQs in the
system. We can observe how much impact the SRT REQs can have on the HRT REQs
and the performance of SRT requestor in each MC. AMC, DCmc, and MCMC assign
priority to HRT over SRT requestors. ROC assigns different ranks to HRT and SRT
REQs. Note that all open page MCs have been configured to apply FR-FCFS for SRT
REQs to maximize the bandwidth 4. ROC and MCMC requires specific assignments of
HRT and SRT requestors to individual ranks; the employed configurations are detailed
in Table VIII. Results are plotted in terms of latency for HRT REQ0 in Figure 12 and

Table VIII: Mixed Critical System Configuration for Multi-Rank MCs
ROC2
ReOrder2

ROC4 1
ReOrder4 1

ROC4 2
ReOrder4 2 MCMC2 MCMC4

R0 8HRT 4HRT 3HRT 4HRT+4SRT 2HRT+2SRT
R1 8SRT 4HRT 3HRT 4HRT+4SRT 2HRT+2SRT
R2 NA 4SRT 2HRT NA 2HRT+2SRT
R3 NA 4SRT 8SRT NA 2HRT+2SRT

bandwidth for SRT REQ8 in Figure 13. For MCs that do not differentiate HRT and
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SRT REQs, the latency is the same as having 16 REQs in the system. The analytical
latency of a HRT request for AMC and DCmc is increased due to the possibility of
scheduling one SRT requestor before a HRT requestor. ROC can trade off the latency

4DCmc [Jalle et al. 2014], ROC [Krishnapillai et al. 2014] and ReOrder [Ecco et al. 2016] specifically mention
such policy for SRT REQs. We have extended ORP and ReOrder with 1 rank to support the same configura-
tion for the sake of fair comparison. We do not apply such policy to close page MCs since it would not yield
any benefit.
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for HRT and the bandwidth for SRT by allocating requestors in different ranks. In
general, open page MCs perform much better in terms of available bandwidth for SRT
REQs compared to close page MCs, since they can take advantage of row hits and
requests reordering in the average case. In particular, note that while MCMC on 2
ranks has the second lowest analytical latency for HRT REQs, it provides almost no
bandwidth to SRT REQs. This is because the slot size for MCMC on 2 ranks is fairly
large, leading to low memory utilization.

5.3. Discussion

Based on the obtained results, we now summarize the key takeaways of the evaluation.

5.3.1. Memory Configuration. The characteristics of the employed memory module: data
bus width, memory device speed, and number of ranks, have a significant impact on
the relative performance of the tested MCs. Out of the three main characteristics, the
data bus width seems by far the most important. A memory device with smaller data
bus can be better utilized by MCs with interleaved banks because each request can be
served by accessing a number of banks in parallel. On the other hand, private banks
MCs can have better memory access latency when wider data bus is used, where a
memory request can be served with less accesses to the same bank. In general, private
banks MCs perform better for bus width of 32 bits and above, while interleaved banks
MCs pull ahead at widths of 16 bits and below. At the same time, it is important to
recognize that bus width is the major factor in the cost of the main memory subsystem:
while doubling the data bus width or doubling the number of ranks both requires
doubling the number of DRAM chips, an enlarged data bus width also requires adding
extra physical pins to the memory controller, which can be expensive. In addition,
private banks MCs show moderate improvements in latency on faster devices, and
significant improvements in both latency and bandwidth from increasing the number
of ranks (see also Section 5.3.2). However, the impact of faster memories is negligible
for interleaved banks MCs since the bounding constraint of re-activation to the same
bank is almost constant through all devices.

In summary, based on performance alone, we believe that interleaved banks MCs are
suitable for simple microcontrollers, employing small bus width of 8 or 16 bits and
slow, single rank devices, while private banks MCs allow improved performance at
higher cost on more complex systems. However, outside of the performance/cost trade
off, it is also important to recognize that private banks MCs impose a more complex
system configuration: main memory must be partitioned among requestors. Note that
if data must be shared among multiple HRT requestors, such data can be allocated to
a shared bank [Jalle et al. 2014], but the resulting latency bound for accesses to shared
data then becomes similar to AMC as the controller cannot avoid row conflicts.

5.3.2. Write-Read Switching. Among private banks MCs, the latency bounds for Re-
Order, ROC and MCMC are generally significant better than ORP and Dcmc: this is
because the arbitration schemes used by the former are designed to minimize the im-
pact of the long read-to-write and write-to-read switching delays, either by reordering
CAS commands, or by switching between ranks. Among the three MCs, MCMC shows
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the smallest latencies, followed by ROC and ReOrder. Given that the main difference
between MCMC and ROC is the page policy (close vs open), a relevant takeaway is
that based on current analysis technology, there seems to be no advantage in employ-
ing open page policy for latency minimization: based on Table VI, for open requests
ROC performs slightly better than MCMC, but it suffers a heavy penalty hit for close
requests. This is because MCMC can construct an efficient, TDM-like memory sched-
ule that effectively pipelines the delays suffered by the PRE, ACT and CAS commands,
while the analysis for open page controllers requires adding the interference on PRE,
ACT and CAS: again looking at Table VI, ROC and MCMC have the same Interference
term, but ROC suffers from an additional RowInter term which adds an extra 55-66%
latency for close page accesses.

On the other hand, among the three MCs, ReOrder has the least requirements in terms
of system configuration, since it does not require extra ranks or complex requestors to
rank assignments. It also offers average bandwidth for SRT and large size requestors
comparable to ROC. MCMC shows poor performance in terms of provided bandwidth
to both SRT and large size requestors, especially for the 2 ranks case, due to poor
average memory utilization and close page policy. It also imposes the most constraints
on the system by requiring TDM arbitration: a SRT requestor cannot be assigned to
more than one slot, meaning than with 8 HRT requestors, no SRT requestor could
consume more than 1/8 of the provided throughput under any circumstance. This could
be a significant issue for devices such as GPU which can typically saturate memory
bandwidth even when running alone. Finally, we need to notice that the evaluation has
been conducted using the tRTR (rank-to-rank switching) timing constraint suggested
by Ramulator, which is 2 for all devices. For memory modules with larger values of
tRTR [Ecco et al. 2016], the performance of both ROC and MCMC would rapidly drop,
since the Interference term for both MCs cannot be smaller than tBUS + tRTR.

5.3.3. Latency and Bandwidth Trade-offs. When a system is characterized by different size
of requests or mixed temporal criticality requirements, a trade-off between latency
and bandwidth must be considered by the designer as shown in the experiments in
Section 5.2.6 and 5.2.7. In general, PMC appears more suitable for handling system
with various request sizes because it can be explicitly configured to handle the trade
off. RTMem provides the best bandwidth to large requests, but it does so at the cost of
increasing latency for small requests compared to AMC by 100%. For SRT requestors,
the fixed priority mechanism employed by AMC, Dcmc, ORP, ReOrder and MCMC can
strongly limit the bandwidth of SRT requestors depending on the workload of the HRT
requestors; in general, no guarantee can be made on minimum bandwidth offered to
SRT requestors. Apart from PMC, ROC can also provide guaranteed bandwidth to SRT
requestors by allocating them to dedicated ranks, at the cost of increased latency for
HRT requestors.

5.3.4. Analytical Bounds vs Simulation Results. We can make three important observations
regarding the difference between the analytical latency and the simulated worst case
latency in the provided experiments: (1) they are identical for MCs with static com-
mand scheduling and close page policy (AMC, PMC, MCMC) because the schedule slot
is calculated based on the worst timing constraints in all situations; (2) they have
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slight difference for the only MC with dynamic command scheduling and close page
(RTMem) because the scheduler can differentiate the type of commands and the loca-
tion the command targets. The opportunity for the worst case scenario to happen is
highly depending on the actual memory request pattern; (3) they have relative large
difference for MCs with dynamic command scheduling and open page policy (DCmc,
ORP, ReOrder and ROC). We believe this indicates that the analyses for these con-
trollers are fundamentally pessimistic, especially for close page accesses. As noted in
Section 5.3.2, the analysis derives the bound by adding together the maximum delays
suffered by each command of a request, but this cannot happen in reality: if a request
suffers maximum interference on its ACT command, then it should not be able to suf-
fer maximum interference on its CAS command as well (see also [Yun et al. 2015] for
an in-depth discussion on the problem). Hence, we believe it is important to focus on
deriving tighter analysis for MCs with dynamic command scheduling. An approach
based on model-checking is proposed in [Li et al. 2016] and applied to RTMem, but
its high computational complexity seem to make it inapplicable to large number of
requestors and open page MCs.

6. CONCLUSIONS

The performance of real-time multicore systems can be highly impacted by the behav-
ior of the memory controller. A large number of design proposal [Hassan et al. 2015;
Li et al. 2014; Wu et al. 2013; Krishnapillai et al. 2014; Ecco et al. 2014; Jalle et al.
2014] for predictable DRAM controllers have been recently proposed in the literature;
however, due to the complexity of comparing multiple controllers on an even ground,
there is a significant lack of experimental evaluation. This paper has attempted to
bridge such gap by both comparing state-of-the-art predictable controllers based on
key configuration parameters, and by proposing an experimental and analytical eval-
uation based on memory traces generated using EEMBC benchmarks. We believe our
results show that there is no universally better controller; rather, the choice of con-
troller should be guided by the desired memory configuration, analytical guarantees
and application characteristics.

REFERENCES

B Akesson and K Goossens. 2012. Memory Controllers for Real-Time Embedded Systems. Springer.
B Akesson, K Goossens, and M Ringhofer. 2007. Predator: a predictable SDRAM memory controller. In

Hardware/software codesign and system synthesis. 251–256.
Authors removed for double-blind review. 2015. Predictable DRAM Controllers Evaluation Code. Technical

Report. University of Waterloo. URL removed for double-blind review.
R Bourgade, C Ballabriga, H Cass, C Rochange, and P Sainrat. 2008. Accurate analysis of memory latencies

for WCET estimation. In 16th International Conference on Real-Time and Network Systems.
L Ecco and R Ernst. 2015. Improved DRAM Timing Bounds for Real-Time DRAM Controllers with

Read/Write Bundling. In Real-Time Systems Symposium. 53–64.
L Ecco, A Kostrzewa, and R Ernst. 2016. Minimizing DRAM Rank Switching Overhead for Improved Timing

Bounds and Performance. In 28th Euromicro Conference on Real-Time Systems.
L Ecco, S Tobuschat, S Saidi, and R Ernst. 2014. A Mixed Critical Memory Controller Using Bank Privatiza-

tion and Fixed Priority Scheduling. In Embedded and Real-Time Computing Systems and Applications.
M. Gomony, B. Akesson, and K. Goossens. 2013. Architecture and optimal configuration of a real-time multi-

channel memory controller. In Design, Automation Test in Europe Conference Exhibition. 1307–1312.
S Goossens, B Akesson, and K Goossens. 2013. Conservative Open-page Policy for Mixed Time-Criticality

Memory Controllers. In Design, Automation and Test in Europe Conference.



A Survey of Design and Performance Evaluation of Predictable DRAM Controllers 0:25

M Hassan, H Patel, and R Pellizzoni. 2015. A Framework for Scheduling DRAM Memory Accesses for Multi-
Core Mixed-time Critical Systems. In Real-Time and Embedded Technology and Applications Sympo-
sium.

Liu I, Reineke J, and Lee E. 2010. A PRET Architecture Supporting Concurrent Programs with Composable
Timing Properties. In Signals, Systems and Computers (ASILOMAR). 2111–2115.
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A. APPENDIX A

This appendix discussed the analytical latency used in the evaluation for ReOrder con-
troller [Ecco and Ernst 2015]. The authors of [Ecco and Ernst 2015] make a different
assumption on the arrival time of CAS commands compared to our work. In particular,
in Lemma 1 in [Ecco and Ernst 2015], the authors show that the worst case latency for
a RD command happens when a request is served at the beginning of a round, and a
new request arrives immediately after the data is transferred as shown in Figure 14.
The worst case latency is then derived as follows:
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LRD = (tRound0 − tdelay)+ + tRound1, (1)

where:

tRound0 = (tRTW − 1) + (N − 2) · tCCD, (2)

tRound1 = (N − 1) · tCCD + tWR−to−RD, (3)

tdelay = tRL + tBus. (4)

The tWR−to−RD refers to the delay from a WR command to RD command, equivalent
as tWL + tBus + tWTR. However, this is the worst case pattern only when requests are
sent in burst, such that one request arrives immediately after the previous one from
the same requestor. We argue that if the ready time of the RD command is not known,
which is the assumption that we make in this paper, then the worst case access pattern
should be derived according to Figure 15, where a RD becomes ready and inserted into
the command register just after the type switching within a round. In the example,
Round0 begins at time 0, with pending WR commands in icr0 and icr1. The current
bundling-type is Read because the previous round last issued a RD from icr2. However,
once Round0 starts, because there is no RD command in the command registers and
there are pending WR in icr0 and icr1, then the bundling type must switch to WR.The
scheduler starts executing WR commands after checking timing constraints. Once the
scheduler starts waiting for switching delay (tRTW ), cr becomes pending with a RD.
Since by this time the bundling type has been switched to WR, the RD request of cr
cannot be serviced in the current round. Scheduling Round0 is complete once all WR
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commands are executed. Then a new round Round1 starts and resets the served flags
without changing the bundling type, as there are still pending WR commands in icr0,
icr1 and icr2. After the WR commands are executed, cr will finally be served after
the bundling type is switched back to RD. Therefore, the RD under analysis can be
blocked twice by each competing command register. The worst case latency for a RD is
then given as follows:

LRD = tRound0 + tRound1, (5)

where:

tRound0 = (tRTW − 1) + (N − 2) · tCCD, (6)

tRound1 = (N − 1) · tCCD + tWR−to−RD. (7)

We can observe that the only difference between the two modes is that when requests
are executing in burst, the intra-bank timing constraints of a request can be sub-
stracted from the delay in Round0. However, without such assumption, a command
can become ready at any time. Then the worst case we described in Figure 15 can oc-
cur, leading to a higher latency. The same assumption and latency computation can
also be applied to WR command. This assumption can also be applied when there are
multiple ranks. The remaining delay components used to derive the worst-case latency
for a request are not affected.

B. EQUATION FORMAT

In this section, we demonstrate the essential steps to convert the request latency equa-
tions proposed in the related works to the general expression we showed in this paper.
We assume that the total number of requestors N is in power of two, and the DDR
device used as an example is DDR3-1600H. Since the latency of a request depends on
many conditions, we use the notation K(cond) such that it equals 1 if cond is satisfied
and 0 otherwise

B.1. AMC, RTMem, PMC

Since AMC is analyzed using DDR2 device and many features in DDR3 is not con-
sidered such as the tFAW and 8 banks, we apply the analysis in PMC when BC = 1.
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RTMem applies dynamic scheduling for commands of request and computes the worst
case execution time based on the memory access pattern, but under the worst case
access pattern, any consecutive request can access a different row in the same bank,
therefore, the latency equation is the same as the PMC. These controllers handle large
requests differently, as the described in the following: 1) As AMC applies close-page
policy with auto-precharge for every CAS command, a large request that requires ac-
cesses to more than 8 banks will be divided into BC several small requests. Each small
request can maximally interleave over 8 banks. Therefore, every small request can be
delayed by REQr− 1 other requestors in the system. 2) PMC first interleaves through
8 banks, and if the request is larger than one access to each bank, another set of ac-
cess to each bank will be performed. and 3) RTMem has dynamic setting for BI and
BC. PMC and RTMem issue all the commands for a large request in a sequence, then
switch to schedule another request.

We first demonstrate the latency equation for each bundle in PMC. The bundles must
satisfied the following three conditions between two consecutive requests: 1) minimum
interval time between two consecutive ACTs to the same bank tIB , ) the delay caused
by ACT commands and 3) the switching delay caused by CAS commands.

We first present the equation for Bundle1. Condition1 must be satisfied by Equation 1
for a read request and 2 for a write

tACTrd = max(tRCD +max(tBUS + tRTP ) + tRP , tRC) = max(9 + 6 + 9, 37) = 37 (1)

tACTwr = max(tRCD+tWL+tBUS+tWR+tRP , tRC) = max(9+8+4+12+9, 37) = 42 (2)

Condition2 must be satisfied by Equation 3

tACTfaw =


0 if BI < 4;

tFAW = 24 if 4 ≤ BI < 8;

2 · tFAW = 48 if BI = 8;

(3)

Condition3 must be satisfied by Equation 4 for a request request followed by write and
Equation 5 for a write request followed by read.

tCASrd = tRTW +

{
tRRD · (BI − 1) = 5 · (BI − 1) + 6 ≤ 21 if BI ≤ 4;

tFAW + tRRD · (BI − 5) = 45 if BI = 8;
(4)

tCASwr = tWL + tBUS + tWTR +

{
tRRD · (BI − 1) = 5 · (BI − 1) + 18 ≤ 33 if BI ≤ 4;

tFAW + tRRD · (BI − 5) = 57 if BI = 8;
(5)

As a result,

tBundle1 = max(tACTrd, tACTwr, tACTfaw, tCASrd, tCASwr) =

{
42 if BI ≤ 4;

57 if BI = 8;
(6)

The latency for bundle1 can be further presented as tBundle1 = 42 + 15 · K(BI = 8)

The other PMC bundles are presented as the following:

tBundle2 = tRCD+tCCD+

{
tRRD · (BI − 1) = 5 · (BI − 1) + 13 if BI ≤ 4;

tRRD · (BI − 1) + (tFAW − 4 · tRRD) = 5 · (BI − 1) + 17 if BI = 8;

(7)
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The latency for bundle2 can be further presented as tBundle2 = 5 ·BI+8+4 ·K(BI = 8)

tBundle3 = tCCD ·BI = 4 ·BI (8)

tBundle4 = tCCD · (BI−1)+

{
(tRTW − tRCD)+ == 4 · (BI − 1) if read;

tWL + tBUS + tWTR − tRCD = 4 · (BI − 1) + 9 if write;
(9)

The latency for bundle4 can be further presented as tBundle4 = 4 ·BI + 5

In summary, the latency for AMC is presented in Equation 10. We assume that a
request arrive right after the previous request has data transferred, therefore the re-
quest under analysis suffers the auto-precharge delay first before delayed by other
requestors.

LAMC = tBundle1 · (REQr − 1) + tBundle1 ·REQr · (BC − 1) + tBundle1

= tBundle1 ·REQr − tBundle1 + tBundle1 ·REQr ·BC − tBundle1 ·REQr + tBundle1

= tBundle1 ·BC · (REQr − 1) + tBundle1 · (BC − 1) + tBundle1

= tBundle1 ·BC · (REQr − 1) + tBundle1 ·BC (10)

The latency equation can be divided into the general expression components

Interference = tBundle1 ·BC
= (42 + 15 · K(BI = 8)) ·BC (11)

basicAccess = tBundle1 ·BC
(12)

The latency for PMC and RTMem can be presented as a combination of the four bun-
dles based on the BI and BC. Because each request will be complete, and the request
under analysis also takes a slot to process data, therefore, the latency from request ar-
rive to data transfer is: The length of one request slot can be computed in Equation 13

DPMC = tBundle1 · K(BC = 1)+

K(BC > 1) · (tBundle2 + tBundle3 · (BC − 2) + tBundle4)

= K(BC = 1) · (42 + 15 · K(BI = 8))+

K(BC > 1) · (5 ·BI + 8 + 4 · K(BI = 8) + (4 ·BI) · (BC − 2) + 4 ·BI + 5)

= K(BC = 1) · (42 + 15 · K(BI = 8))+

K(BC > 1) · (4 · K(BI = 8) + (4 ·BC + 1) ·BI + 13) (13)

LPMC = (REQr − 1) ·DPMC +DPMC (14)

The latency equation can be divided into the general expression components

Interference = BasicAccess = DPMC (15)

B.2. MCMC

Because MCMC is scheduled with non-work conserving TDM. The length of the slots
must cover all the intra-bank timing constraints of re-activating a same bank and the
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CAS switching delay between banks in the same rank. The slot can be computed based
on the following three conditions: 1) reactivate the same bank; 2) CAS switching delay
covered by rank switching; and 3) the minimum rank switching delay.

slot = max


dD

sameBank

N e = d 42N e
max(tRTW ,tWL+tBUS+tWTR)

R = 18
R

max(tBUS + tRTR, tRL − tWL + tBUS + tRTR, tWL − tRL + tBUS + tRTR) = max(6, 7, 5)

(16)
If the request is large and divided into several small request of one memory access,
then the latency equation can be represented in Equation 17. The first access of a
large request can miss its own slot, and the following small request does not miss the
slot, and delayed by all other requestors.

LLrgReq = slot ·REQ ·BC + tRCD + tRL + tBUS

= slot ·REQr ·R ·BC + 22

= slot ·R ·BC · (REQr − 1) + slot ·R ·BC + 22 (17)

The interference and basic access can be represented as

Interference = slot ·R ·BC (18)

BasicAccess = slot · ((R− 1) ·BC + 1) + 22 (19)

B.3. ORP

We will refer to the equations in the original paper and convert into the expression to
better show the insight of parameters change. The notation Eq represents the equa-
tions used in the original paper. According to Eq3, the latency of PRE command can be
presented in the following

LPRE = REQr − 1 = 1 · (REQr − 1) (20)

According to Eq5, the latency of ACT command can be presented in the following

LACT = (tFAW − 4 · tRRD) + bREQr − 1

4
c · tFAW + ((REQr − 1)mod4) · tRRD)

= tRRD · (REQr − 1) + dREQr − 1

4
e · (tFAW − 4 · tRRD)

= tRRD · (REQr − 1) + (REQr + 2)

= (tRRD + 1) · (REQr − 1) + 3

= 6 · (REQr − 1) + 3 (21)

Since we are assuming that number of requestors is in the power of 2. Therefore
bN−12 c = N−2

2 and dN−12 e = N
2 . According Equation 10 and 11 in [Wu et al. 2013],

the latency is shown as the time from when the CAS command becomes ready and the
data is transferred. In our expression, the interference represents the time from the
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CAS is ready until it is issued. Therefore, tR/WL is subtracted from both equations.

LRD = bREQr − 1

2
c · (tWTR + tRTW ) + dREQr − 1

2
e · (tWL + tBUS) + (tWTR + tRL + tBUS)

=
REQr − 2

2
· (13) + REQr

2
· (12) + (19)

= 12.5 · (REQr − 1) + 18.5 < 13 · (REQr − 1) + 19 (22)

LWR = bN
2
c · (tRTW + tWTR) + d

N

2
e · (tWL + tBIS)

=
N

2
· (13) + N

2
· (12)

= 12.5 · (REQr − 1) + 12.5 < 13 · (REQr − 1) + 12.5 (23)

The delay before the request can be processed as the following

DClose = tWR + tRP + tRCD = 30 (24)

DOpenRD = tWTR = 6 (25)

DOpenWR = 0 (26)

Convert into the general expression, read request has larger latency comparing to
write. If a large request requires BC number of memory accesses. The latency can be
represented in Equation 27 for open request and 28 for a close request.

LOpenRD = DOpenRD + LRD) ·BC
= 6 + (13 · (REQr − 1) + 19) ·BC
= 13 ·BC · (REQr − 1) + 19 ·BC + 6 (27)

LCloseRD = DClose + LPRE + LACT + LRD ·BC
= 30 + (6 + 1) · (REQr − 1) + 3 + 13 ·BC · (REQr − 1) + 19 ·BC
= 27 + 7 · (REQr − 1) + 13 ·BC · (REQr − 1) + 19 ·BC + 6 (28)

Based on the latency equation, the equation can be broken into the following terms

Interference = 13 ·BC (29)

RowInter = 7 (30)

BasicAccess = 19 ·BC + 6 (31)

RowAccess = 27 (32)

B.4. DCmc

According to Equations 2,4,11,12, 13 and 23 in [Jalle et al. 2014], we can express the
components as the following

DPRE = 1 (33)
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DCAS = max(tWL+ tBus+ tWTR, tRTW ) = max(18, 7) = 18 (34)

DACT = max(tRRD, tFAW − 3 · tRRD) = max(5, 24− 15) = 9 (35)

LCloseRD = tRP + tRCD + tRL+ tBus = 31 (36)

LOpenRD = tRL+ tBus = 13 (37)

The latency equation for an open and a close request can be presented in Equations 38
and 39.

LDCmc
Open = (LOpenRD + (REQr − 1) · (DPRE +DACT +DCAS)) ·BC

= 13 ·BC + 28 · (REQr − 1) ·BC (38)

LDCmc
Close = LCloseRD + LOpenRD · (BC − 1) + (REQr − 1) · (DPRE +DACT +DCAS) ·BC

= 31 + 13 · (BC − 1) + 28 · (REQr − 1) ·BC
= 18 + 13 ·BC + 28 · (REQr − 1) ·BC (39)

Convert into the general expression

Interference = (DPRE +DACT +DCAS) ·BC = 28 ·BC (40)

RowInter = 0 (41)

BasicAccess = LOpenRD = 13 ·BC (42)

RowAccess = LCloseRD − LOpenRD = 18 (43)

B.5. ROC

The bus conflict delay was defined in Equation 3 in [Krishnapillai et al. 2014] as the
following

αPA(K) = K + d K

tBUS − 1
e

= K +
K

tBUS − 1
+
tBUS − 2

tBUS − 1

= K +
K

3
+

2

3
=

4

3
·K +

2

3
(44)

Based on this simplified equation, Equation 4 in [Krishnapillai et al. 2014] can be
computed as Equation 45.

tIP = αPA(R ·REQr)− 1

= (R ·REQr) · 4
3
+

2

3
− 1

=
4 ·R
3
· (REQr − 1) +

4 ·R− 1

3
(45)
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The worst case value for tIA of Equation 5 in [Krishnapillai et al. 2014] can be broken
into the following format

δIA = αPA(R)− 1

=
4R

3
+

2

3
− 1

=
4 ·R− 1

3
(46)

tIA = dREQr − 1

4
e · (tFAW − 4 · tRRD) + (REQr − 1) · tRRD +REQr · δIA

= dREQr − 1

4
e · (24− 5 · 4) + 5 · (REQr − 1) +REQr · 4 ·R− 1

3

= 4 · (REQr − 1

4
+

3

4
) + 5 · (REQr − 1) +

4 ·R− 1

3
·REQr

= (REQr − 1) + 3 + 5 · (REQr − 1) +
4 ·R− 1

3
· (REQr − 1) +

4 ·R− 1

3

= (1 + 5 +
4 ·R− 1

3
) · (REQr − 1) + 3 +

4 ·R− 1

3

= (
4 ·R+ 17

3
) · (REQr − 1) +

4 ·R+ 8

3
(47)

We then put the value of timing constraints into Equation 7, 8, 9 and 10 to get the
following equations

tWRD = max(R · (tBUS + tRTR), tWTR + tRL + 2 · tBUS + tRTR − 1)

= max(R · 6, 6 + 9 + 8 + 2− 1)

= max(6 ·R, 24) (48)

Since R ≤ 4 for ROC, then 6 ·R ≤ 24, therefore, tWRD = 24.

tRWD = max(R · (tBUS + tRTR), tRTW + tWL − tRL + tBUS + tRTR − 1)

= max(R · 6, 7 + 8− 9 + 4 + 2− 1)

= max(6 ·R, 11) (49)

Since R ≥ 2 for ROC, then it always hold that 6 ·R ≥ 11, therefore, tRWD = 6 ·R.

tRD = max(tRL + tBUS − 1 +R · (tBUS + tRTR), tWTR + tRL + 2 · tBUS + tRTR − 1)

= max(12 +R · 6, 6 + 9 + 8 + 2− 1)

= max(12 + 6 ·R, 24) (50)

Since R ≥ 2 for ROC, then it always hold that 12+6 ·R ≥ 24, therefore, tRD = 12+6 ·R.

tWD = tRL + tBUS − 1 +R · (tBUS + tRTR) = 12 + 6 ·R (51)
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As we assume that REQr is even, dREQr−1
2 e = REQr

2 and bREQr−1
2 c = REQr−2

2 . With
this simplified equations, we can derive the latency for read and write as the following

tWrite = dREQr − 1

2
e · tRWD + bREQr − 1

2
c · tWRD + tRD

=
REQr

2
· (6 ·R) + REQr − 2

2
· (24) + 12 + 6 ·R

= 3 ·R ·REQr + 12 · (REQr − 2) + 12 + 6 ·R
= 3 ·R · (REQr − 1) + 3R+ 12 · (REQr − 1)− 12 + 12 + 6 ·R
= (3 ·R+ 12) · (REQr − 1) + 9 ·R (52)

tRead = dREQr − 1

2
e · tRWD + bREQr − 1

2
c · tWRD + tRD

=
REQr

2
· 24 + REQr − 2

2
· (6 ·R) + 12 + 6 ·R

= 12 ·REQr + (REQr − 2) · 3 ·R+ 12 + 6 ·R
= 12 · (REQr − 1) + 12 + 3 ·R · (REQr − 1)− 3 ·R+ 12 + 6 ·R
= (3 ·R+ 12) · (REQr − 1) + 3 ·R+ 24 (53)

If the request is divided into BC small request, then the read (read latency is larger)
latency can be presented in

LRead
Open = tWTR + (tRead) ·BC

= 6 + ((3 ·R+ 12) · (REQr − 1) + 3 ·R+ 24) ·BC
= 6 + (3 ·R+ 12) ·BC · (REQr − 1) + (3 ·R+ 24) ·BC

(54)

LRead
Close = tWR + tRP + tRCD + tIP + tIA + (LRead

Open − tWTR)

= (30− tWTR) +
4 ·R
3
· (REQr − 1) +

4 ·R− 1

3
+ (

4 ·R+ 17

3
) · (REQr − 1) +

4 ·R+ 8

3
+ LRead

Open

= (
4 ·R
3

+
4 ·R+ 17

3
) · (REQr − 1) + (

4 ·R− 1

3
+

4 ·R+ 8

3
) + LRead

Open

= (
8 ·R+ 17

3
) · (REQr − 1) +

8 ·R+ 7

3
+ 24 + LRead

Open (55)

Based on the latency equation, we can break the equation into the individual terms

Interference = (12 + 3R) ·BC (56)

RowInter =
8 ·R+ 17

3
< (3R+ 6) (57)

BasicAccess = (3 ·R+ 24) ·BC + 6 (58)

RowAccess =
8 ·R+ 7

3
+ 24 = 3R+ 27 (59)

B.6. rankReOrder

Summarize the switching time between different ranks for CAS commands
tWRRD = tWL − tRL + tBUS + tRTR = 8− 9 + 4 + 2 = 5
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tWRWR = tBUS = 4
tRDWR = tRL − tWL + tBUS + tRTR = 7
tRDRD = tBUS + tRTR = 6
WTR = tWL + tBUS + tWTR = 18

Considering the non-burst mode demonstrated in Appendix A, the command can arrive
1 CYCLE after the switching to different type round (tRTW should be considered) and
suffer 2(REQr-1) write commands

LCAS = switchi + ccdsi + switchi+1 + ccdsi+1 − 1

= max(tRDRD · (R− 1) + tRDWR, tRTW ) + (R− 1) · tWRWR +R · tCCD · (REQr − 2)+

max(tWRWR · (R− 1) + tWRRD,WTR) + (R− 1) · tRDRD + (R− 1) · tCCD · (REQr − 2) + tCCD · (REQr − 1)− 1

= 6 · (R− 1) + 7 + 4 · (R− 1) + 4R · (REQr − 2)+

18 + 6 · (R− 1) + 4(R− 1) · (REQr − 2) + 4 · (REQr − 1)− 1

= 16(R− 1) + 8R · (REQr − 2)− 4 · (REQr − 2) + 4 · (REQr − 1) + 24

= 16R− 16 + 8R · (REQr − 1)− 8R− 4REQr + 8 + 4REQr − 4 + 24 = 8R · (REQr − 1) + 8R+ 12
(60)

Since max(tRDRD · (R− 1)+ tRDWR, tRTW ) = tRDRD · (R− 1)+ tRDWR = 6 · (R− 1)+ 7
and max(tWRWR · (R−1)+ tWRRD,WTR) =WTR = 18, remains the same for less than
4 ranks. The equation applies for 1, 2 and 4 ranks.

The other interference for close request comes from PRE andACT . For the bus conflict,
we assume that PRE and ACT can suffer 1 cycle.

LPRE = (REQr − 1) · (1 + 1) + (R− 1) ·REQr = 2(REQr − 1) +R ·REQr −REQr
= REQr − 2 +R ·REQr = (R+ 1)(REQr − 1) + (R− 1) (61)

LACT = dREQr − 1

4
e · (tFAW − 4 · tRRD) + (REQr − 1) · (tRRD + 1) + (R− 1) ·REQr

= (tRRD + 1 +R− 1) · (REQr − 1) + (R− 1) + 4 · (REQr − 1

4
+

3

4
)

= (tRRD +R) · (REQr − 1) + (R− 1) + (REQr − 1) + 3

= (tRRD +R+ 1) · (REQr − 1) + (R− 1) + 3

= (6 +R) · (REQr − 1) + (R+ 2) (62)

We first combine the equations to show the worst case latency for a read request with
BI = 1 and BC = requestsize

dataperaccess .

LOpenR = (LCAS + tRL + tBUS) ·BC
= 8R ·BC(REQr − 1) + (8R+ 25) ·BC (63)

LCloseR = tWR + LPRE + tRP + LACT + tRCD + LOpenR

= 30 + (R+ 1)(REQr − 1) + (R− 1) + (6 +R) · (REQr − 1) + (R+ 2) + LOpenR

= (7 + 2R) · (REQr − 1) + (30 + 2R+ 1) + LOpenR (64)
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Convert into the general expression

Interference = 8R ·BC (65)

RowInter = 7 + 2R (66)

BasicAccess = (8R+ 25) ·BC (67)

RowAccess = 31 + 2R (68)


