
PREM-based Optimal Task Segmentation
under Fixed Priority Scheduling
Muhammad R. Soliman
University of Waterloo, Ontario, Canada
mrefaat@uwaterloo.ca

Rodolfo Pellizzoni
University of Waterloo, Ontario, Canada
rpellizz@uwaterloo.ca

Abstract
Recently, a large number of works have discussed scheduling tasks consisting of a sequence of memory
phases, where code and data are moved between main memory and local memory, and computation
phases, where the task executes based on the content of local memory only; the key idea is to prevent
main memory contention by scheduling the memory phase of one task in parallel with computation
phases of tasks running on other cores. This paper provides two main contributions: (1) we present
a compiler-level tool, based on the LLVM intermediate representation, that automatically converts a
program into a conditional sequence of segments comprising memory and computation phases; (2)
we propose an algorithm to find optimal segmentation decisions for a task set scheduled according
to a fixed-priority partitioned scheme. Our evaluation shows that the proposed framework can be
feasibly applied to realistic programs, and vastly overperforms a baseline greedy approach.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases PREM, LLVM, scratchpad memory, scheduling, program segmentation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.23

Funding This work was supported in part by NSERC and CMC Microsystems

1 Introduction

Multi-Processor Systems-on-a-Chip (MPSoCs) are becoming increasingly popular in the real-
time and embedded system community. MPSoCs are characterized by the presence of shared
memory resources. In particular, a single main memory shared by all processing elements
on the chip can constitute a significant performance bottleneck. Even worse, hardware
arbitration schemes used in Commercial-Off-The-Shelf (COTS) systems are optimized for
average-case performance, resulting in extremely high worst-case latency in the presence of
contention for memory access among multiple processors [16,17,30].

Hence, there is a significant interest in the real-time community in controlling the pattern
of accesses in memory to avoid worst-case scenarios. This can be difficult in cache-based
systems, where main memory accesses are generated by misses in last level cache, as the
precise pattern of cache hits and misses is hard to predict. The PRedictable Execution
Model (PREM) first proposed in [22] attempts to solve this issue by dividing the execution
of each software task in two different parts: memory phases where the data and instructions
required by the task are loaded from main memory into local memory (cache or scratchpad),
and computation phases where a processor executes the task based on the content of local
memory only. Since the task does not need to access main memory during its computation
phase, other processors are free to do so without suffering contention.

Based on this core idea, successive works [1–4,7,9,10,12,19–21,23,27,31–34] have proposed
a variety of contentionless approaches 1 targeting different scheduling schemes (preemptive vs

1 Note that the model we are discussing is also referred to as three-phase model or acquisition-execution-
replication model in related work.

© Muhammad R. Soliman and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7732-1131
mailto:mrefaat@uwaterloo.ca
mailto:rpellizz@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

non-preemptive, partitioned vs global) and platforms (general purpose processors vs GPU).
However, the key problem of how to compile a program to execute based on PREM has
received significantly less attention. Due to the complexities inherent in each step, we strongly
believe that an automated tool is required to remove the burden from the programmer.

The main contribution of this paper is a framework for automatically generating PREM-
compatible code for sequential programs running on a general purpose processor; it is largely
agnostic to the programming language being used since it operates on the intermediate
representation of the LLVM compiler infrastructure [18]. In particular, we propose a set
of program transformation constraints that allow us to convert a task into a conditional
sequence of PREM segments. We use a region-based approach to simplify segment creation,
in conjunction with loop splitting and tiling transformations [15] to split large loops into
multiple segments. Based on the proposed framework, we then derive a task segmentation
algorithm that enumerates the best possible conditional segments for a given task on a
platform with fixed-length memory phases [27]. Furthermore, for the case of fixed-priority
partitioned scheduling, we show that applying the algorithm to each task in priority order
leads to a solution that is optimal for the task set.

The rest of the paper is organized as follows. Section 2 summarizes the required background
on PREM and related work. Section 3 introduces our new conditional PREM model and
extends the existing schedulability analysis to cover such model. Section 5 then shows
how to obtain an optimal segmentation for a given task set, while Section 4 describes our
employed compilation framework, and our program segmentation algorithm based on such
framework. Section 6 compares our optimal segmentation approach versus both a previous
greedy approach, and a simple heuristic, using task set parameters extracted from real
programs. Finally, we conclude in Section 7.

2 Background and Related Work

In this section, we introduce existing research based on PREM and discuss required back-
ground and system assumptions. Note that while other predictable management approaches
for local memories exist in the literature, we limit ourselves to PREM-based solutions due to
space limitations. We consider a MPSoC platform comprising a set of possibly heterogeneous
processors. Each processor has a fast private local memory in the form of a last level cache
or ScrachPad Memory (SPM); all processors share the same main memory. As discussed
in Section 1, the goal of PREM is to create a contentionless memory schedule. While the
seminal work in [22] first proposed to split the execution of each application into a memory
and a computation phase, the approach has been refined in successive works [2, 32] into a
three-phase model. Here, two memory phases are considered: an acquisition (or load) phase
that copies data and instructions from main memory into local memory, and a replication
(or unload) phase that copies modified data back to main memory. Memory phases are
scheduled such that a single memory phase is executed at any one time in the entire system.

When the data used by a program is small and deterministic, the task can comprise
a single sequence of load-computation-unload phases. However, the code and data of the
program might be too large to fit in one partition of local memory. Second, it might be
difficult to predict the data accessed by a job before it starts executing, as data accesses
can be dependent on program inputs. To address such issue, the works in [9, 20,22,32] split
a task into a sequence of PREM segments, where each segment has its own memory and
computation phases and is executed non-preemptively.

2.1 Memory and Processor Schedule
The memory scheduling algorithm is different among related work, based on their specific
goals and system assumption. Approaches targeted at multitasking systems optimize task



M.R. Soliman and R. Pellizzoni 23:3

t

memory

task u.a.

other 
tasks

Interval1 Interval2 Interval3 Interval4 Interval5 Interval6

TDMA slot of other core(s)

Unused TDMA slot of the 
core under analysis

Phase using Partition A

Phase using Partition B

Load /Unload Phase

Computation Phase

Figure 1 Example: TDMA memory schedule with M = 2 cores.

5/5s0

9/9s1
11/11s2

6/6s3

12/12s4

4/5s5 5/5s6

2/5s7 ts/max(ts,∆ = 5)

Segment (s)

Figure 2 Example segment DAG (s0 is sbegin and s7 is send).

execution by overlapping the computation of the current job with the memory phase for
the next job to be scheduled on that processor. In essence, one can pipeline computation
and memory phases using a double-buffering technique [12,13, 27, 32], at the cost of halving
the available local memory space. As an example, we detail the approach in [27,32], which
has been designed to schedule a set of fixed-priority, partitioned sporadic tasks, and fully
implemented on an automotive COTS platform. The local memory of each processor is
divided into two equal size partitions. Memory phases are executed by a dedicated DMA
component using a TDMA memory schedule with fixed time slots; the size of each slot is
sufficient to either load or unload the entirety of one partition. Figure 1 shows an example
schedule on one processor; the task under analysis (u.a.) consists of three segments s1, s3 and
s6, while segments s2, s4 and s5 belong to other tasks. The schedule consists of a sequence
of scheduling intervals. Segments are scheduled non-preemptively. During each interval, a
segment of a job (ex: s2 in Interval2) computes using data and instruction in one partition.
At the same time, the DMA unloads the previous segment (s1) and loads the next segment
(s3) in the other partition. Note that the length of each scheduling interval is the maximum
of the computation time for the corresponding segment, and the time required for the load
and unload operations. In the figure, Interval3 is bounded by the memory time, while all
other intervals are bounded by the computation time of the segment. Let M be the number
of cores, and σ the size of each TDMA slot. Then as proven in [27], the worst-case memory
time is equal to ∆ = σ ⋅ (2M + 1): as again shown in Interval3, the previous interval can finish
right after the beginning of a TDMA slot assigned to the core under analysis, forcing that
slot to be wasted. To abstract from the details of the memory schedule, in the rest of the
paper we assume a given bound ∆ on the memory time for any interval. Hence, the length
of an interval is the maximum of ∆ and the computation time of the job in that interval.
Finally, note that two segments of the same task cannot run back-to-back as the computation
phase of a segment and the memory phase of the next one cannot be executed in parallel: in
general, the data required by a segment might not be determined until the previous segment
completes; furthermore, to load a segment we might need to first evict some data and code
of the previous one. To avoid idling the processor while a task loads its next segment, one or
more segments of (possibly lower priority) other tasks are instead scheduled.

A downside of the described approach is that a high priority job can suffer blocking by a
low priority job due to the non-preemptive interval schedule. The works in [21, 33, 34] adopt
preemptive scheduling, but this requires a number of local memory partitions equal to the

ECRTS 2019



23:4 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

number of tasks: otherwise, a memory phase could be “wasted” by loading a job that is
immediately preempted by a higher priority one. Given that local memory is typically a
limited resource, we will not consider such fully-preemptive approaches.

2.2 Program Transformation
We next discuss how a program can be transformed to be PREM-compliant. Most single-
segment works do not require program transformation; instead, the entire memory region
allocated by the OS to the program is loaded in local memory [4, 7, 27, 32]. The seminal
work in [22] introduces a set of macros, which the programmer could add to the program to
both segment it, and mark data structures to be loaded / unloaded. Our experience with
programs of even medium complexity is that this places an undue burden on the programmer,
and it is likely to lead to a sub-optimal transformation. The authors of [12, 13] discuss a
compiler-based approach to transform a GPU kernel. The approach focuses on generating
code for the memory phase. On the other hand, our focus in this paper is how to automate
data usage analysis and task segmentation for sequential programs running on a general
purpose processor. Light-PREM [19] uses run-time profiling to detect memory areas used by
a program to load during memory phases. We find the approach suitable for programs with
highly dynamic data structures, but since it is based on profiling rather than static program
analysis, it cannot guarantee worst-case bounds. Also, it does not discuss how to segment
a task. In our previous work [24], we proposed a program analysis and transformation
technique that uses static analysis to determine data accesses and predictably load/unload
data from SPM while the program is executing. We reuse the same compiler framework in
Section 4 to determine the data to load in each segment. Note that [24] only deals with a
single-task, single processor case, and does not segment the program based on PREM.

The closest related work is [20], where the authors introduce an automated task compil-
ation and segmentation tool. The approach is similar to our work in that is relies on the
LLVM compiler infrastructure, and employs loop splitting and tiling [15] to break loops that
are too large to fit in local memory. However, the paper is focused on the case of a parallel,
single-task system, and the tool employs a “greedy” segmenting approach that results in the
longest possible segments. As we discuss in Section 3 and show in Section 6, such greedy
approach is not suitable for multi-tasking systems where blocking time due to non-preemptive
segments of lower priority tasks is a concern.

Finally, all related work assumes that a task comprises a single segment or a fixed
sequence of segments. However, a program can have multiple execution paths whereas it
accesses different data along each path, and must be PREM-compliant along all valid paths.
Therefore, in Section 3 we introduce a new conditional PREM model in which the fixed
segment sequence is replaced by a Directed Acyclic Graph (DAG) of segments, and we then
show how to compile the program to execute segments conditionally.

3 Task Model and Schedulability Analysis

We consider scheduling a set of sequential, conditional PREM tasks on a multiprocessor.
We assume non-preemptive segment execution, with a fixed memory time ∆ to load/unload
each segment. In details, we consider a set of sporadic tasks Γ = {τ1, . . . , τN}. We use Ti

to denote the period (or minimum inter-arrival time) of task τi, and Di for its relative
deadline. We assume constrained deadline: Di ≤ Ti. τi is further characterized by a DAG
of segments Gi = (Si,Ei), where Si is a set of nodes representing segments, and Ei is a set
of edges representing precedence constraints between segments. We assume that the set
Si contains unique source and sink segments sbegin, send, as we consider programs with a
single entry and exit point. We define the length s.l of a segment s ∈ Si as the maximum



M.R. Soliman and R. Pellizzoni 23:5

length of any scheduling interval for the segment, that is, the maximum between the worst-
case computation time ts of s (including context-switch overheads) and the memory time
∆. In the remaining of the paper, we use p to denote a DAG path, that is, an ordered
sequence of segments; p.I is the number of segments in the path, p.L the sum of their
lengths, and p.end the length of the last segment in the path. We say that a path is
maximal if its first segment is sbegin and its last segment is send. To avoid confusion, in
the rest of the paper we use uppercase letters (P ) to denote maximal paths. Note that
by definition P.end = send.l. Figure 2 shows an example DAG with three maximal paths:
P = {s0, s1, s2, s7}, P ′ = {s0, s3, s4, s7}, and P ′′ = {s0, s3, s5, s6, s7}. Note that we have
P.L = 30, P.I = 4, P ′.L = 28, P ′.I = 4, P ′′.L = 26, P ′′.I = 5, and P.end = P ′.end = P ′′.end = 5.
Finally, we will use the notation p = {p1, ..., pn} to indicate that path p can be obtained as a
sequence of n (sub-)paths. In general, a DAG could have many maximal paths, and a task
could be segmented into many different DAGs. The following definitions will allow us to
restrict the number of paths / DAGs to find a schedulable task system.

I Definition 1. Given two maximal paths P,P ′, we say that P ′ dominates (is worse than or
equal to) P and write P ′ ⪰ P iff: P ′.L ≥ P.L and P ′.I ≥ P.I and P ′.end ≤ P.end. If neither
P ′ ⪰ P nor P ⪰ P ′ holds, we say that the two paths are incomparable.

Since the ⪰ relation defines a partial order between maximal paths, we can characterize a
task based on its set of dominating paths. Formally, given segment DAG G, we use G.C to
denote the Pareto frontier 2 of all maximal paths in G. Intuitively, for a task τi, we will
show that the set Gi.C replaces the concept of worst-case execution time. For example, for
Figure 2, G.C is the set P,P ′′; P ′ is not included since P dominates it; but both P and P ′′

are included since they are incomparable. While P ′.end = P.end for two paths belonging to
the same DAG, we can also use Definition 1 to compare two DAGs for the same program.

I Definition 2. Given two segment DAGs G,G′, we say that G′ dominates (is worse than
or equal to) G and write G′ ⪰ G iff: ∀P ∈ G.C,∃P ′ ∈ G′.C ∶ P ′ ⪰ P . If neither G′ ⪰ G nor
G ⪰ G′ holds, the two DAGs are incomparable.

Note that since G.C is the Pareto frontier, G′ ⪰ G implies that for every path in G, there is
a corresponding path in G′ that dominates it.

3.1 Schedulability Analysis and Preliminaries
We now consider a partitioned system with fixed per-task priority, and extend the analysis
in [27, 32] to support conditional task execution. Since tasks are partitioned among cores
and the effect of the memory schedule is captured by the memory time ∆, each core can
be analyzed independently. Therefore, let Γ = {τ1, . . . , τN} represent the set of tasks on the
core under analysis, ordered by decreasing, distinct priorities, and assume that each task τi

is associated with a given segment DAG Gi. The scheduling algorithm follows the scheme
introduced in Section 2.1, where each SPM is divided in two partitions and the schedule is a
sequence of scheduling intervals. In details: at the beginning of each scheduling interval, we
execute on the processor the segment loaded during the previous interval (if any). In parallel,
we unload and load the other local memory partition with the next segment of the highest
priority ready task.

The critical instant for a task under analysis τ3 (the task arrival pattern that leads to
the worst case response time for the task under analysis), as derived in [32], is depicted in
Figure 3. Since scheduling decisions are only made when an interval starts, the worst case

2 Given a partial order over a set of distinct elements, the Pareto frontier is the subset of elements that
are not dominated by any other element.

ECRTS 2019



23:6 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

t
Segments of lower 

priority tasks

memory

Interval3Interval1 Interval2 Interval4 Interval5 Interval6 Interval7 Interval8 Interval9 Interval10 Interval11

Phase using Partition A

Phase using Partition B

Load /Unload Phase

Computation Phase

Arrival time

Figure 3 Example critical instant.

arrival pattern corresponds to the task under analysis and all higher priority tasks arriving
just after the beginning of an interval for a lower priority task (Interval1 in the figure). As a
consequence, the task under analysis suffers an initial blocking time Bi equal to two intervals:
neither the task under analysis nor higher priority tasks can execute for the first two intervals,
as another lower priority segment loaded during Interval1 executes during Interval2. More in
general, let τi be the task under analysis, and let ll max

i denote the maximum length of any
segment of a lower priority task. Albeit pessimistically, we then bound the blocking time as:

ll max
i = max(∆, max

j=i+1,N
max
s∈Sj

s.l) (1)

Bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 ⋅ ll max
i , if i ≤ N − 2.

ll max
N−1 +∆, if i = N − 1.

∆, if i = N.
(2)

For task τN−1, there is only one lower priority task; hence, the first blocking interval has only
a memory phase and no task computation, while task τN computes in the second blocking
interval. For τN , there is only one initial blocking interval consisting of a memory phase.
Note that in the worst case, each successive segment of τi can suffer a blocking time equal to
ll max
i since two segments of τi cannot be executed back-to-back (Interval6 and Interval8 in
the figure). For τN , we set ll max

i = ∆ since there are no lower priority tasks, but a scheduling
interval with memory only would be needed between successive segments of τN .

Since higher priority tasks arrive synchronously with the task under analysis, the interfer-
ence suffered by τi in an interval of length t is equal to:

Interi(t) =
i−1
∑
j=1

⌈t/Tj⌉ ⋅Lj , (3)

where Lj is the length of the path taken by τj . Since we cannot make any assumption on
path execution, we maximize the interference by considering the path with maximum length:

Lmax
j = max{P.L ∣ P ∈ Gj .C}. (4)

Note that it is sufficient to consider only the maximal paths in Gj .C since each maximal path
in Gj is dominated by a path in Gj .C, and by Definition 1 the dominating path has longer or
equal L. Finally, since segments are executed non-preemptively, a task will complete by its
deadline if its last segment starts execution P.end time units before its deadline. Therefore,
for a maximal path P , the response time Ri(P ) of τi up to its last segment can be computed
as a standard iteration:

Ri(P ) = Bi + (P.I − 1) ⋅ ll max
i + P.L − P.end + Interi(Ri(P )), (5)



M.R. Soliman and R. Pellizzoni 23:7

and the task is schedulable along that path if:

Ri(P ) ≤Di − P.end. (6)

Here, P.L − P.end represents the length of intervals where τi computes (excluding the last
segment), Bi is the blocking suffered by the first segment, (P.I − 1) ⋅ ll max

i is the blocking
suffered by other segments, and Interi(Ri(P )) is the interference of higher priority tasks.
We next prove three key properties of the analysis.

B Property 1. Consider two paths P,P ′ with P ′ ⪰ P . If Equation 6 holds for P ′, then it
also holds for P .

Proof. Note that Equation 3 is increasing in t, and Equation 5 is increasing in P.I and
P.L and decreasing in P.end. Since it holds P ′.L ≥ P.L, P ′.I ≥ P.I, P ′.end ≤ P.end, at
convergence it must hold: Ri(P ′) ≥ Ri(P ).

Now by hypothesis it holds: Ri(P ′) ≤ Di − P ′.end, which is equivalent to: Di ≥ Bi +
(P ′.I − 1) ⋅ ll max

i + P ′.L + Interi(Ri(P ′)). But since we have: Bi + (P ′.I − 1) ⋅ ll max
i + P ′.L +

Interi(Ri(P ′)) ≥ Bi + (P.I − 1) ⋅ ll max
i + P.L + Interi(Ri(P )), we obtain: Di − P.end ≥ Bi +

(P.I − 1) ⋅ ll max
i + P.L − P.end + Interi(Ri(P )), completing the proof. J

Based on Property 1, to check the schedulability of τi it is sufficient to test the set of
dominating maximal paths. Hence, the following lemma immediately follows, where ⋀
denotes a logical and.

I Lemma 3. Task τi is schedulable if:

⋀
P ∈Gi.C

Ri(P ) ≤Di − P.end. (7)

B Property 2. According to the analysis: (A) the schedulability of task τi depends on the
maximum length ll max

i of any segment of lower priority tasks τi + 1, . . . τN , but not on any
other parameter of those tasks; (B) if τi is schedulable for a value l of ll max

i , then it is also
schedulable for any other value l′ ≤ l.

Proof. Part (A): by definition of Equations 5, 7. Part (B): since Ri is increasing in ll max
i ,

the response time for ll max
i = l′ cannot be larger than the one for l. J

If the segment DAG Gi for each task τi ∈ Γ is known, then task set schedulability can
be assessed by checking Equation 7 for all tasks in the order τ1, . . . , τN . However, we are
interested in using the response time of tasks τ1, . . . , τi in order to optimize the segmentation
of task τi+1, hence Gi+1, . . . ,GN are not known when analyzing τi. Based on Property 2,
we instead use the analysis to determine the maximum value ll max

i of ll max
i under which

τi is still schedulable. Such value is then used by our segmentation algorithm working on
τi+1, as we detail in the next section: the algorithm considers a segmentation of τi+1 to be
valid only if its maximum segment length is no larger than ll max

i . Note that in theory, one
could determine ll max

i by performing a binary search over Equation 7. However, we show
in technical report [26] that an alternative formulation based on the concept of scheduling
points used in [5] can be used to derive ll max

i directly.

B Property 3. Consider two DAGs Gj ,G
′
j for task τj where 1 ≤ j ≤ i and G′

j ⪰ Gj . If τi is
schedulable for G′

j according to the analysis, then it is also schedulable for Gj .

Proof. Case j = 1, . . . i − 1: since G′
j ⪰ Gj , the value of Lmax

j for Gj is no larger than for G′
j .

Since the interference Interi(t) is increasing in Lmax
j , the resulting response time of τi for Gj

cannot be larger than the one for G′
j .

ECRTS 2019



23:8 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

main(){

X1;

for(..){

X2;

f(..);

X3;

}

}

r3

r5

r4

r2

r1

r0

(a) main pseudo-code

f()

N
= 10t1 = 8

t5 = 5

t4 = 15

r5

r4r3r2

r0

r1

(b) main region tree

ksN − kp − kskp

r5

rpost
2

r5

rmid
2

r5

rpre
2

(c) Loop splitting of r2

f(..){

Y1;

for(..)

Y2;

Y4;

}

if(..)

else

Y3; rf
5

rf
6

rf
4

rf
3

rf
2

rf
1

rf
0

(d) f pseudo-code

Nf
= 100

tf1 = 14 tf3 = 20

tf5 = 10

tf6 = 3
rf

6

rf
3

rf
5

rf
2

rf
4

rf
0

rf
1

(e) f region tree

Mf

kt

klast
t

rf
4t

rf
o

rf
last

rf
e

rf
6rf

o

rf
tile

rf
e

rf
6

rf
t

(f) Loop tiling of rf
4

Figure 4 Region representation (→ ≡ parent-child / ⇢ ≡ sequential regions)

Case j = i: since G′
i ⪰ Gi, for each maximal path P ∈ Gi.C there must exist a maximal

path P ′ ∈ G′
i.C such that P ′ ⪰ P . Now since τi is schedulable for G′

i according to the analysis,
by Equation 7 it must hold Ri(P ′) ≤ Di − P ′.end; then by Property 1, it must also hold
Ri(P ) ≤Di − P.end. This means that Equation 7 holds for Gi, concluding the proof. J

Property 3 shows that the dominance relation indeed corresponds to the notion of a DAG
being better than another from a schedulability perspective. Hence, the objective of our
segmentation algorithm is to find a set of “best” DAGs for a task based on Definition 2.
Intuitively, the rest of the paper proceeds as follows. In Section 4 we present a segmentation
algorithm that explores the set of all valid DAGs for a program, based on a set of constraints
which include the maximum segment length, but quickly cuts dominating (i.e., worse) DAGs
inspired by Property 3. Then, in Section 5 we show that, based on Property 2, we can invoke
the segmentation algorithm on each task in priority order and obtain a set of DAGs (one for
each task) that is optimal from a schedulability perspective.

4 Program Segmentation

In this section, we show how a task is compiled into segments. We start by discussing the
program structure based on regions. After that, we define valid segmentations according
to our compiler framework, which is based on LLVM [18] and the work in [24]. Finally, we
detail our algorithm, which segments the program and returns the set of all DAGs that could
be optimal. Similarly to [24], we assume that the program follows common real-time coding
conventions. Therefore, the code should not use recursion or function pointers and all loops
in the program are bounded. We also assume that the WCET and footprint of any part of
the program are known either using static analysis or measurement.

4.1 Program Structure
We adopt the region-based program structure introduced in [24] which represents each
function in the program as a tree where each node is a region. A region encompasses a



M.R. Soliman and R. Pellizzoni 23:9

sub-graph of the program control flow graph (CFG) with a single entry and a single exit. A
leaf node in the region-tree is denoted as a trivial region and each trivial region comprises a
single basic block or a single function call. Two regions r1 and r2 are sequentially-composed
if the exit of r1 is the entry of r2. An internal node in the region-tree is a non-trivial region
that can represent a loop, a condition, or a maximal set of sequentially-composed regions
(i.e. a sequential region). A non-trivial region ri is the parent of region rj if ri is the closest
region containing rj . Each loop region has one child that represents a single iteration of the
loop. The top level region rf

0 of function f can either be a basic block or a sequential region.
If rf

0 is sequential, then the last region in its children sequence must be a basic block that
returns from f . Each region r in the region tree has WCET tr and a data footprint.

Figure 4 shows an example of a program with two functions: main() in Figure 4a and
f() in Figure 4d. Figure 4b shows the region tree of main(). Region r0, which is the top
level region of main(), is a sequential region with regions r1 to r4 as its children. Region
r2 is a loop with child r5 representing one iteration. All leaf regions r1, r3, r4 and r5 are
trivial regions. Region r3 is a call to f() . Figure 4e is the region tree of f() where rf

0 is the
top level region with rf

1 to rf
3 as its sequentially-composed children. Region rf

2 is an if-else
statement with region rf

4 as the true path and region rf
5 as the false path.

Loop transformations can be applied to loop regions that otherwise could not fit in a
segment. A loop transformation must be legal, i.e. it preserves the temporal sequence of all
dependencies and hence the result of the program. We are interested in two transformations:
loop splitting and loop tiling. Loop splitting breaks the loop into multiple loops which have
the same bodies but iterate over different contiguous portions of the index range. Figure 4c
shows an example of splitting loop region r2 in main() that has N iterations by expanding the
loop region into three nodes: pre-loop node with kp iterations, mid-loop node with N −kp−ks

iterations, and post-loop node with ks iterations. Loop tiling combines strip-mining and loop
permutation of a loop nest to create tiles of loop iterations which may be executed together.
A n-level tiled loop nest, which means that the n outer loops are tiled, is divided into n
tiling loops that iterate over tiles and n element loops that execute a tile. Note that the
data footprint of a tile is derived in terms of the tile sizes. An example for tiling a 1-level
loop is depicted in Figure 4f. In the figure, rf

4 is a tiling loop region that has Nf iterations
with tile size kt. The number of tiles is ⌈Nf /kt⌉ with Mf = ⌈Nf /kt⌉ − 1 complete tiles and a
last tile klast

t ≤ kt such that klast
t = Nf −Mf ∗ kt. In Figure 4f, rf

t is the tiling loop with Mf

iterations over the element loop rf
e . Note that, adding a tiling loop adds an overhead which

is represented as rf
o ; we use ttile to denote the WCET of the overhead region. The last tile is

separated in rf
last, where a tile of size klast

t is executed after all complete tiles.

4.2 Valid Segmentation
Program segmentation is the process of assigning each part of the program code to a segment.
In this paper, we restrict the parts of the program that can be assigned to a segment to be a
region or a sequence of regions. A segmentation is valid if it satisfies the footprint constraint,
the (optional) length constraint and the compilation constraints. The footprint constraint
states that the footprint of each segment, i.e. the code and data of regions assigned to the
segment must fit in the available SPM size. The length constraint states that the length
of each segment must be at most lmax. As discussed in Section 3, this is done to limit the
blocking time imposed on higher priority tasks; setting lmax = +∞ is equivalent to removing
the constraint. Note that creating a segment incurs a segmentation overhead tseg which
contributes to the segment length. That is, if region r with WCET tr is assigned to segment
s, then s.l = max(tr + tseg,∆). If multiple regions in sequence are assigned to a segment s,
then s.l = max ((∑r tr) + tseg,∆). We further assume that the regions’ WCETs satisfy the
following property, which we argue is required for the WCET values to be sound:

ECRTS 2019



23:10 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

B Property 4. If r is a conditional region, then tr is equal to the WCET of its longer children.
If r is a sequential region or tiled loop, then its WCET is less than or equal to the sum of
the WCETs of its children or tiles.

The compilation constraints are related to how the code is modelled and transformed.
A necessary compilation constraint on a segment is that the data used by the segment is
known before executing the segment. This implies that if a pointer is used to access a data
object in a segment, the object(s) that the pointer may refer to must be known before the
segment. In this paper, we add the following compilation constraints based on the region
structure to develop a systematic segmentation process:

A region cannot be assigned to more than one segment. If a region is assigned to a
segment, all its children are assigned to the same segment.
Each basic block region must be assigned to a segment.
For all regions except function calls, we say that a region is mergeable if it satisfies the
footprint and length constraints and all the children of the region are mergeable.
A function is mergeable if the top level region of the function is mergeable. Accordingly,
a function call region is mergeable if the called function is mergeable.
A set of mergeable regions that are sequentially-composed can be combined in a multi-
region segment that satisfies the length and footprint constraints.
A loop can be divided into multiple segments using loop tiling and loop splitting. A loop
region is splittable if its child that represents a single iteration of the loop is mergeable.
A loop region that represents the outermost loop of a loop nest is tileable if it is legal to
tile and a single iteration of the innermost loop of the tiling loops is mergeable. Note
that a splittable loop is always tileable based on this definition. If a loop is tiled, then
each tile must be assigned to a segment that comprises that tile only and the loop node
represents a sequence of segments. Tiling allows combining multiple loop iterations in a
repeatable segment by inserting the segmentation instruction around the element loop.

Based on the introduced constraints, we say that a set of regions in the tree constitute
a region sequence if it comprises either: a single mergeable region, or a tiled loop, or a
sequence of mergeable regions and/or splittable regions and tiles. Note that all regions in a
sequence have the same parent. We say that a region sequence R is maximal if no children
of its parent that is not in R can be merged with a region in R to form a segment. Our
program segmentation produces a segmented tree T , that is, a tree where every node is a
set of segment paths P. In particular, the segmented tree for a program is obtained by
substituting region sequences in the region tree with sets of paths. A path p ∈ P for region
sequence R is a sequence of segments, to which the regions and tiles in R are assigned. The
segmented tree is derived inter-procedurally, i.e. for a call to a function that is not mergeable,
the segmented tree of that function is duplicated in place of the call region. If there are
multiple calls to the function, the segmented tree for all the calls must be the same. The
segmented tree of the program is accordingly the segmented tree of the main function.

A segmented tree T implicitly generates a set G of segment DAGs: each DAG in G is
constructed by taking one path out of each path set and joining them according to the
segmented tree hierarchy. A maximal path in the DAG thus comprises a sequence of paths
{p1, p2, ..., pn} for some n, where p1 encompasses sbegin and pn encompasses send and hence
the last region in the program rend. Note that for a function that has multiple calls, a path
that is chosen to construct a DAG from the path set of a region sequence in the function
must be used for all the function calls as the region sequence represents the same code.

Figure 5 illustrates an example segmentation of the program introduced in Figure 4. Let
the maximum segment length be lmax = 35, the memory time ∆ = 23, the segmentation
overhead tseg = 5, and the tiling overhead ttiling = 3. We assume for this example that all the
data of the program fits in the SPM, so the footprint constraint is always satisfied. Given



M.R. Soliman and R. Pellizzoni 23:11

64

Mf

28/28 35/35

19/23

20/23

25/25

15/23

11
35/35 35/35 11/23

12
32/32 32/32 20/23

rf
4t

rf
lastrf

t

rf
5

rf
3rf

2

rf
0

rf
1

rmid
2rpre

2 r4

r0

r1

(a) Segmented Tree

28/28 35/35 19/23 11

15/23

35/35 35/35 11/23
25/25 20/23

(67,2) (23,1) (25,1) (23,1)

(23,1)

(408,12)

G

t + tseg/max(t + tseg,∆)

(p.L, p.I) Path (p)

Segment (s)

P

Maximal Path (P )

28/28 35/35 19/23 12

15/23

32/32 32/32 20/23
25/25 20/23

(67,2) (23,1) (25,1) (23,1)

(23,1)

(407,13)

G′

P ′

(b) DAGs

Figure 5 Segmentation Example

the times for each basic block t in Figure 4b and Figure 4d, regions {r1, r4, r
f
1 , r

f
3 , r

f
5} are

mergeable regions. However, loop regions {r2, r
f
4} are not mergeable. Assume that we applied

loop splitting on r2 that has 10 iterations such that it is split to two loops: pre-loop with 4
iterations and mid-loop with 6 iterations. In Figure 5a, the region sequence {r1, r

pre
2 , rmid

2 }
is replaced by a path set with a single path that has 2 segments and a total length 67. The
first segment combines r1 and r2

pre while the second segment is r2
mid. As region r3 is a call

to a non-mergeable function, it is replaced by a duplicate of the segmented tree of f . The
segmented tree of f has two regions rf

1 and rf
3 each wrapped in a segment. Region rf

2 is a
conditional that is not mergeable, so the false path rf

5 is wrapped in a segment while the
true path rf

4 which is a loop with 100 iterations is tiled. There are many possible tiling
options that would satisfy the max segment length. We choose two of them based on the
tiling algorithm in the next section. The first path has length p.l = 408 and number of
segments p.I = 12. The first 11 segments are complete tiles each with size kt = 9 and length
max(9 ∗ 3 + ttiling + tseg,23) = 35, and the last segment is the last tile klast

t = 100 − 11 ∗ 9 = 1
with length max(1 ∗ 3 + ttiling + tseg,23) = 23. Similarly, the other path has length p.l = 497
and number of segments p.I = 13. The first 12 segments are complete tiles each with size
kt = 8 and with length max(8 ∗ 3 + ttiling + tseg,23) = 32, and the last segment is the last
tile klast

t = 100 − 12 ∗ 8 = 4 with length max(4 ∗ 3 + ttiling + tseg,23) = 23. The two DAGs
generated from the segmented tree are shown in Figure 5b.

4.3 Segmentation Algorithm
The example in Section 4.2 shows that different segmentation decisions can result in incom-
parable maximal paths according to Definition 1 as in Figure 5b: for the path P , we have
P.L = 547, P.I = 17 and P.end = 23, while for the path P ′, we have P ′.L = 546, P ′.I = 18
and P ′.end = 23. Since a DAG generated from the segmented tree T includes either P or
P ′, the resulting two DAGs G and G′ are also incomparable. This means that without
considering the other tasks in the system, we cannot determine whether G or G′ is better from
a schedulability perspective. Hence, to guarantee that we can find an optimal segmentation
for the task set, we need to consider both G and G′. On the other hand, if G′ ⪰ G, we can
safely ignore G′ based on Property 3. This is formally captured by the following definition.

I Definition 4. Let G be the set of all valid DAGs for a program according to a set of
constraints, and let G′ be the set of DAGs returned by a segmentation algorithm for that
program. We say that the algorithm preserves optimality iff for any program: G′ is valid
according to the constraints, and ∀G ∈ G,∃G′ ∈ G′ ∶ G ⪰ G′.

ECRTS 2019



23:12 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

Algorithm 1 Segmentation Algorithm
1: function SegmentTask(τ)
2: if r0 is mergeable then
3: Create DAG G with a single segment comprising r0, return G = {G}
4: Generate DAG set G from T = Segment(r0), return G
5: function Segment(r)
6: Initialize R = ∅ ▷ A set of sequential regions.
7: Initialize T to be the subtree whose root is r
8: for all rc ∈ children(r) do
9: if r is sequential and rc is mergeable or splittable loop then

10: Add rc to R
11: else if rc is mergeable then ▷ r is not sequential
12: Replace rc with P = {p}, where p is single-segment path
13: else
14: Replace regions in R with SegmentSequence(R), empty R
15: if rc is a tileable loop then
16: Replace rc with Tile(rc).
17: else if rc is a call to f then
18: Replace rc with Segment(rf

0 )
19: else
20: Replace rc with Segment(rc)
21: If R ≠ ∅, replace regions in R with SegmentSequence(R)
22: return T

Based on Definition 4, a naive optimality-preserving algorithm could proceeds as follows:
first, enumerate all valid DAGs in G. Then, cut dominating DAGs based on the dominance
relation. However, due to possible variations of loop tiling/splitting and multi-region segments,
this is practically unfeasible as the set G is too large. Therefore, we propose a much faster
segmentation Algorithm 1 that preserves optimality according to Definition 4 but removes
dominating DAGs without enumerating G; instead, the algorithm explores the segmented
tree recursively and removes unneeded paths from the path set P of each region sequence R.
Note that the length, footprint and compilation constraints are implied in all the following
algorithms whenever a region is checked to be mergeable, splittable, or tileable and whenever
a segment is checked to be valid.

Algorithm 1 starts with a call to SegmentTask function. Then Segment(r0) is called
on r0, the top level region of main, hence returning the segmented subtree for the whole
program. Finally, a DAG set G is generated from the segmented tree and returned as a result
of SegmentTask. Note that if r0 is mergeable, then the segmented tree is composed of
a single, maximal region sequence R that comprises r0 only; hence, in this case we simply
return a DAG with r0 as its single segment.

Function Segment(r) segments a subtree of the region tree and returns a segmented
subtree with r as its root. The function traverses this subtree from its root r in depth-first
order preserving the topological order between sequentially-composed children. If r is a
sequential region, then a set of children in sequence that are mergeable or splittable loops
may be combined in multi-region segments. This is achieved by adding these children to a
region sequence R until a child that is not mergeable or splittable is found or until all children
are traversed. Note that based on the compilation constraints, no children outside R can be
combined with a region in R to form a segment; hence, the obtained R is maximal. Then,
the regions in R are replaced by a set of valid paths P that are generated using function
SegmentSequence(R). If r is not sequential, a mergeable child rc is directly replaced by a



M.R. Soliman and R. Pellizzoni 23:13

path of one segment, as rc is a maximal region sequence by itself. If child rc is not mergeable,
then it has three cases: 1) rc is a tileable loop, then a set of paths are generated by tiling the
loop using function Tile(rc); 2) rc is a call to a function f , then the segmented tree of f is
duplicated in place of rc; 3) rc is not a tileable loop or a function call, then it is segmented
by recursively calling Segment(rc).

Since Algorithm 1 depends on SegmentSequence and Tile, we first state a key property
of both functions, which will be detailed in Algorithms 2 and 3. Since the functions return a
path set P, we begin by defining a concept of domination among paths and path sets.

I Definition 5. Given two paths p, p′, we say that p′ dominates p and write p′ ⪰ p iff:
p′.L ≥ p.L and p′.I ≥ p.I.

Note that Definition 5 is similar to Definition 1 for maximal paths, except that we do not
consider the last segment, since its length is only relevant in the case of send. We can relate
the two definitions through the following lemma.

I Lemma 6. Consider two maximal paths P = {p1, ..., pk, ..., pn}, P ′ = {p′1, ..., p′k, ..., p′n}
obtained by joining n paths. If p′n.end = pn.end and ∀k = 1...n ∶ p′k ⪰ pk, then P ′ ⪰ P .

Proof. Note by construction P.L = ∑k=1...n pk.L,P
′.L = ∑k=1...n p

′
k.L. From p′k ⪰ pk it

follows p′k.L ≥ pk.L, hence P ′.L ≥ P.L. In the same manner, we obtain P ′.I ≥ P.I. Finally,
since p′n and pn contain the last segments in their corresponding maximal paths P ′ and P ,
p′n.end = pn.end implies P ′.end = P.end. Then by Definition 1 we have P ′ ⪰ P . J

I Definition 7. Given two path sets P,P ′ for the same region sequence R, we say that
P ′ dominates P and write P ′ ⪰ P iff: ∀p′ ∈ P ′,∃p ∈ P ∶ p′ ⪰ p, and if rend ∈ R, then
p′.end = p.end.

B Property 5. Let R be a region sequence and P ′ the set of all valid paths for R. Then
SegmentSequence(R) returns a set of paths P such that P ⊆ P ′ and P ′ ⪰ P.

B Property 6. Let rc be a tilable loop with Nr iterations and P ′ the set of all valid paths
for rc. Then Tile(rc) returns a set of paths P such that P ⊆ P ′ and P ′ ⪰ P.

Intuitively, this implies that Tile and SegmentSequence return a set of best path
for the corresponding region sequence / loop. Based on Properties 5, 6, we next prove in
Theorem 11 that Algorithm 1 preserves optimality. We start by showing that the algorithm
can stop traversing the tree at mergeable regions, i.e. if a region is mergeable we do not need
to segment its children.

I Lemma 8. Consider a region r that is either mergeable (possibly after splitting) or a tile,
and a valid DAG G′ for the program where r is not assigned to a segment. Then there exists
a valid DAG G where r is assigned to a segment and G′ ⪰ G.

Proof. Consider any maximal path P ′ in G′ of the form P ′ = {pbegin, p
′, pend}, where p′ is

a path through the descendants of r (note that no path of the form P ′ = {pbegin, p
′} can

exist, since the last region of main rend, and thus the program, is a basic block with no
descendants). Note that in case of conditional regions, there could be multiple such p′, and
hence maximal paths P ′ with the same pbegin and pend. Example: consider the conditional
region rf

2 in Figure 5; a valid DAG G′ has two maximal paths P ′ through the descendants of
rf

2 : one for the true path, and one for the false path.
Now consider a valid DAG G obtained by replacing all such maximal paths P ′ with a

path P = {pbegin, p, pend}, where p comprises a single segment that includes r only; note the
DAG is valid since r is mergeable or a tile. Since p.I = 1, it immediately follows p′.I ≥ p.I.
Based on Property 4, there must also exist one path p′ with p′.L ≥ p.L. By Lemma 6, we
then proved that there must exist a maximal path P ′ such that P ′ ⪰ P . By definition, this
implies G′ ⪰ G, completing the proof. J

ECRTS 2019



23:14 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

I Lemma 9. Consider a segmented tree T where all region sequences are maximal, and the
path set P ′ for each region sequence R includes all valid paths for R. Then the DAG set
generated from T preserves optimality.

Proof. First note that by definition, each path p ∈ P ′ is a sequence of segments, to which
the regions and tiles in R are assigned, i.e. P ′ does not include (still valid) paths that would
segment the descendants of a region in R.

By the compilation constraints and definition of maximal region sequence R, it follows
that any region that is in R cannot be merged in a segment with a region that is not in R.
Hence, any valid maximal path for the program that includes segments of n region sequences
can be constructed by joining n paths: P = {p1, ..., pk, ..., pn}. By Lemma 8, we can restrict
each pk to be a path in P ′ (where each region r ∈ R is assigned to a segment) and for each
valid DAG G′, generate a DAG G such that G′ ⪰ G. By Definition 4, this means that
generating DAGs from T preserves optimality. J

Lemma 9 shows that to preserve optimality, it is sufficient to return a single segmented
tree with maximal region sequences, which is what Algorithm 1 builds by construction.
Finally, we show that instead of generating the set P ′ of all valid paths for each region
sequence R, we can use a dominated subset P.

I Lemma 10. Consider a segmented tree T as in Lemma 9. Let T denote the segmented tree
obtained by replacing, for each maximal region sequence R in T , the set P ′ of all valid paths
with a set P such that P ⊆ P ′ and P ′ ⪰ P. Then the DAG set generated from T preserves
optimality.

Proof. Since for all regions P ⊆ P ′, DAGs generated from T are still valid. Consider any
DAG G′ generated from T , and a maximal path P ′ of G′ through n region sequences:
P ′ = {p′1, ..., p′k, ..., p′n}. Since for all regions P ′ ⪰ P, then for every p′k there exists another
path pk in T such that p′k ⪰ pk, and furthermore p′n.end = pn.end since the last region
sequence in any maximal path must include the last region in the program rend. By Lemma 6,
this means that we can find a maximal path P = {p1, ..., pk, ..., pn} for T such that P ′ ⪰ P .
Since this is true for any maximal path through a given set of region sequences, and both T
and T have the same set of (maximal) region sequences, we have shown that T can generate
a DAG G such that for every maximal path P ∈ G, there is a maximal path P ′ ∈ G′ with
P ′ ⪰ P . This implies G′ ⪰ G, and since by Lemma 9 T preserves optimality, it thus follows
that the DAG set generated from T also preserves optimality according to Definition 4. J

I Theorem 11. If Properties 5, 6 hold, Algorithm 1 preserves optimality based on the
footprint, length and compilation constraints.

Proof. By construction, the algorithm creates a segmented tree T of maximal region se-
quences. Let P ′ to denote the set of all valid paths for each region R. The actual path set P
used for R is generated at line 12, 16 or 21. At line 12, region rc is not sequential. Hence,
R = {rc} is a maximal region. The algorithm generates a path comprising a single segment
for rc, which is the only valid path for R; thus we have P = P ′. At line 16 and 21, the path
set P is generated by calling either SegmentSequence(R) or Tile(rc); by Properties 5, 6
and Lemma 10, in both cases P ⊆ P ′ and P ′ ⪰ P hold. In summary, Lemma 10 applies to all
maximal regions, hence the algorithm preserves optimality. J

4.3.1 Tiling Algorithm
We now discuss how to optimize the tile size for a 1-level tiled loop r, similarly to the
example in Section 4.1. Note that while we present the case of 1-level tiling for simplicity, in
practice 2-level tileable loops are common in embedded programs. Hence, our framework



M.R. Soliman and R. Pellizzoni 23:15

Algorithm 2 1-Level Tiling
1: function Tile(r)
2: Compute kmax

t , P = ∅
3: for all kt ≤ kmax

t do
4: Generate p(kt) and add it to P if it is valid
5: Filter P by removing dominating paths based on Definition 5
6: return P

also implements a more general algorithm that can find tile sizes for 2-level tiling; due to
space limitations, we detail it in the provided technical report [26].

Given an execution time for one iteration of t1, a number of iterations Nr and a tile size
kt with M = ⌈Nr/kt⌉ − 1 and klast

t = Nr −M ∗ kt, tiling results in a path p(kt) comprising M
segments of length max(∆, kt ∗ t1 + ttile + tseg), and one segment of length max(∆, klast

t ∗ t1 +
ttile + tseg). Algorithm 2 simply iterates over kt starting with kmax

t , the maximum value of kt

such that the length of any segments in p(kt) is less than or equal to lmax and its footprint
is less than or equal to the SPM size. It then generates each path p(kt) and adds it to P if
it is valid. Finally, based on Definition 5, it removes any path p(k′t) from P if there exists
another path p(kt) ∈ P with p(k′t) ⪰ p(kt). The following lemma then easily follows.

I Lemma 12. Algorithm 2 satisfies Property 6.

Proof. First note that r cannot be rend, since the last region in a program must be a basic
block and not a loop. By the compilation constraints, every generated tile must be assigned
to a segment that comprises the tile only. Then by the footprint and length constraints, any
path p(kt) with kt > kmax

t cannot be valid. Also since the algorithm adds all valid paths
p(kt) with kt ≤ kmax

t to P, before executing line 5, P contains all valid paths for r. Since
furthermore the filtering on line 5 respects Definition 7, Property 6 holds. J

4.3.2 Region Sequence Segmentation
Next, we consider Algorithm 3 that generates a path set P from a region sequence R. The
algorithm iterates over each region r in R, incrementally constructing a set of paths P̄ for
the sub-sequence that includes all regions from the beginning of R up to r. For simplicity of
notation, for a path p̄ ∈ P̄ , we use p̄.tend to denote the WCET of the regions included in the
last segment of p̄, such that p̄.end = max(∆, p̄.tend + tseg). At each step of the algorithm, for
a region r with computation time tr, a new set of paths is constructed by taking each path p̄
in P̄ and adding r to it. Note that when doing so, two new paths might be generated in the
following way:
1. Add a new segment comprising r to p̄ to construct a new path p̄n such that p̄n.I = p̄.I + 1,

p̄n.tend = tr, and p̄n.L = p̄.L + p̄n.end. Note that p̄n is always valid, since r is mergeable.
2. Add r to the last segment 3 of p̄ to construct a new path p̄m such that p̄m.I = p̄.I,

p̄m.tend = p̄.tend + tr, and p̄m.L = p̄.L − p̄.end + p̄m.end. Note that p̄m might not be valid
according to the constraints; so, it is only added to the new set of paths if valid.

The process continues until after we reach the last region in R; at that point, we return the
final path set P̄.

Note that if we do not apply loop splitting, then there are 2m−1 possible paths for m
mergeable regions in sequence. An enumeration of these ways is possible as m is usually
small. However, adding loop splitting and tiling greatly increases the number of paths. We

3 Note that adding a region r to a segment s implies that the footprint of the resulting segment is the
union of the footprints of r and of the regions in s.

ECRTS 2019



23:16 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

Algorithm 3 Segment a Region Sequence
Require: A region sequence R and the last basic block region rend

1: function SegmentSequence(R)
2: P̄ = {p̄ = ∅}, Pnext = ∅
3: for all r ∈ R do ▷ Traverse the sequence in topological order.
4: if r is a splittable loop then
5: for all kp, ks do:
6: Split r to rp, rt and rs

7: P̄loop = CreatePaths(rp, P̄)
8: P̄loop = generate all paths by joining P̄loop with Tile(rt)
9: P̄loop = CreatePaths(rs, P̄loop)

10: P̄next = P̄next⋃Ploop

11: else ▷ r is a mergeable region that is not a splittable loop
12: P̄next = CreatePaths(r, P̄)
13: P̄ = P̄next, P̄next = ∅
14: If rend ∉ R, Filter P̄ by removing dominating paths based on Definition 5
15: return P̄
16: function CreatePaths(r, P̄)
17: P̄tmp = ∅
18: for all p̄ in P̄ do
19: Create p̄m by adding r to the last segment in p̄, add p̄m to P̄tmp if valid
20: Create p̄n by adding new segment using r to p̄, add p̄n to P̄tmp

21: return P̄tmp

tackle this complexity in the extended technical report [26] by introducing a set of conditions
that allows us to prune the generated paths from P̄ at each step while preserving optimality
and hence improve the segmentation time.

In details, Algorithm 3 traverses the regions in R in topological order. If the current
region r is not a splittable loop, then new paths p̄m and p̄n are generated by adding r to
each previous path in function CreatePaths. The new paths are placed in P̄next, before
becoming the set of paths P̄ at the next iteration. If r is a splittable loop, then before
generating a new path, the loop must be split to pre-loop region rp, mid-loop region rt and
post-loop region rs. Note that all combinations of pre-loop kp and post-loop ks splits are
visited. For each (kp, ks), paths P̄loop for rp are generated using CreatePaths, then rt is
tiled and each tile path is sequenced with the paths in P̄loop. Then, paths are created using
ks for all paths in P̄loop. All paths P̄loop are finally accumulated in P̄next. After traversing
all regions in R, the paths in P̄ are filtered using Definition 5 if rend ∉ R. Otherwise, all the
generated paths are kept. Finally, the path set P̄ for R is returned.

I Lemma 13. Algorithm 3 satisfies Property 5.

Proof. By construction, the algorithm explores all possible combinations for the parameters
of a splittable loop, all possible valid assignments of sequential regions in R to segments, and
tiling decisions based on Algorithm 2. Therefore, it must hold P ⊆ P ′. It remains to show
that if a path p′ for R is discarded (i.e., the path is in P ′ but not in P), then there exists a
path p such that p′ ⪰ p, and if rend ∈ R, then p′.end = p.end. A path in P ′ can be discarded
if: (1) Algorithm 2 removes a tiling solution; (2) the path is filtered based on Definition 5.

Case (1): Assume that Algorithm 2 removes a path p′t from the returned path set for
a tiled loop; by Property 6, it must return another path pt such that p′t ⪰ pt. Then if we
consider any path p′ for R of the form p′ = {p1, ..., p

′
t, ..., pn}, there must exist another path



M.R. Soliman and R. Pellizzoni 23:17

Algorithm 4 Task Set Segmentation
Require: Task set Γ, source code for each task in Γ
1: SegmentTaskSet(Γ, i,+∞,∅)
2: Terminate with FAILURE
3: function SegmentTaskSet(i, lmax,{G1, . . . ,Gi−1})
4: Generate Gi = SegmentTask(τi) using Algorithm 1 based on length constraint lmax

5: if i < N then
6: for all Gi ∈ Gi do
7: Compute the maximum value ll max

i of ll max
i based on analysis

8: SegmentTaskSet(Γ, i + 1,max (lmax, ll max
i ),{G1, . . . ,Gi})

9: else
10: for all GN ∈ Gi do
11: If analysis returns schedulable on {G1, . . . ,GN}, terminate with SUCCESS

p = {p1, ..., pt, ..., pn}, and by Lemma 6, it must hold p′ ⪰ p. Next consider the case rend ∈ R:
by the compilation constraints, a tiled loop cannot generate the last segment in the program
(the last region is a basic block, and tiles cannot be merged with another region). Therefore
pn is not empty and it must hold p′.end = p.end = pn.end.

Case (2): Note this applies only if rend is not contained in R. It thus suffices to notice
that by Definition 5 p′ ⪰ p must hold. J

5 Optimal Task Set Segmentation

Based on the analysis Properties 2, 3 introduced in Section 3.1 and segmentation Algorithm 1,
we now show that we can obtain an optimal task set segmentation using Algorithm 4. The
algorithm recursively calls function SegmentTaskSet for task index i from 1 to N by
keeping track of the DAGs G1, . . .Gi−1 selected for the previous tasks. The function maintains
a maximum segment length lmax, which is provided as a constraint to Algorithm 1 to generate
a DAG set Gi for τi. If i < N , the function iterates over all possible Gi ∈ Gi; the schedulability
analysis is used to determine ll max

i , the maximum schedulable value of ll max
i , and the function

is then invoked recursively for task i + 1 after updating lmax based on the computed value.
Note that if Gi is not schedulable, then we obtain lmax < 0; hence, there will be no valid
DAG for τi+1 (Gi is empty), and the recursive call will immediately return. Once we reach
task τN , the function checks if τN is schedulable for any DAG GN ∈ GN , in which case we
terminate by finding a solution {G1, . . . ,GN}. If no solution can be found, the algorithm
eventually terminates on Line 2.

We now prove the optimality of Algorithm 4 for a program segmentation obeying the
footprint and compilation constraints in Section 4.2. We start with a corollary.

I Corollary 14. Consider two DAGs Gj ,G
′
j for task τj where 1 ≤ j ≤ i and G′

j ⪰ Gj. Let
ll max
i , ll max

i

′
be the maximum value of ll max

i under which τi is schedulable for Gj and G′
j,

respectively, according to an analysis satisfying Properties 2, 3. Then ll max
i ≥ ll max

i

′
.

Proof. By Property 2, ll max
i and ll max

i

′
are well defined (i.e., there must exist such maximum

values). Since τi is schedulable with ll max
i ≤ ll max

i

′
for G′

j , based on Property 3 it is also
schedulable with ll max

i ≤ ll max
i

′
for Gj ; this implies ll max

i ≥ ll max
i

′
. J

ECRTS 2019



23:18 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

I Theorem 15. Algorithm 4 is an optimal segmentation algorithm for a conditional PREM
task set Γ according to any (sufficient) schedulability analysis satisfying Properties 2, 3 and
based on the footprint and compilation constraints.

Proof. We have to show that if there exists a set of segment DAGs G′
1, . . . ,G

′
N for Γ that is

valid according to the footprint and compilation constraints and is schedulable according to
the analysis, then Algorithm 4 finds a (same or different) DAG set G1, . . . ,GN that is also
valid and schedulable.

By induction on the index i. We show that for every i, there exists a recursive call
sequence of function SegmentTaskSet that results in a DAG set G1, . . .Gi such that
G′

j ⪰ Gj for every j = 1 . . . i; by Property 3 with i = N , this proves the theorem (note that
τN is schedulable by Property 3, while all other tasks are schedulable because the recursion
reaches GN ). We also show that for every j = 1 . . . i it holds ll max

j

′
≤ ll max

j , where ll max
j

′
is

the maximum schedulable value of ll max
j computed by the analysis with DAGs G′

1, . . . ,G
′
j ,

and ll max
j is the same value for DAGs G1, . . . ,Gj .

Base Case (i = 1): note lmax = +∞, meaning that only the footprint and compilation
constraints apply when invoking Algorithm 1. Hence, by Definition 4 the algorithm must
find a DAG G1 ∈ T1 such that G′

1 ⪰ G1. By Corollary 14, this also implies ll max
1

′
≤ ll max

1 .
Induction Step (i = 2...N): consider the recursive call sequence that results in G′

j ⪰ Gj

and ll max
j

′
≤ ll max

j for each j = 1 . . . i − 1 (such sequence exists by induction hypothesis); we

have to show that we can find a DAG Gi ∈ Gi such that G′
i ⪰ Gi and ll max

i

′
≤ ll max

i .
Based on the recursive call at line 7 of the algorithm, it must hold: lmax = mini−1

j=1 l
l max
j .

Define lmax′ = mini−1
j=1 l

l max
j

′
; since the task set is schedulable for G′

1, . . . ,G
′
N , the maximum

length of any segment in G′
i is at most lmax′. By induction hypothesis, it must be lmax′ ≤ lmax,

which means that the maximum segment length in G′
i is also no larger than lmax. Hence,

if we define Gi to be the set of all valid DAGs for a program according to the constraints
with maximum segment length lmax, we have G′

i ∈ Gi. By Definition 4, this implies that
Algorithm 1 finds a valid DAG Gi with maximum segment length lmax such that G′

i ⪰ Gi.
ll max
i

′
≤ ll max

i then again follows by Corollary 14. J

Complexity: since it iterates over all Gi ∈ Gi, Algorithm 4 is exponential. Intuitively, it
might seem sufficient to only use the DAG in Gi that results in the highest value of ll max

i ;
however, given two DAGs Gi and G′

i with ll max
i ≥ ll max

i

′
, it might be that Lmax

i ≥ L
′max
i , that

is, Gi results in larger slack for τi, but it increases the interference caused by τi on lower
priority tasks based on Equations 4. In this case, we have to test both Gi and G′

i. However,
if Lmax

i ≤ L
′max
i , then we can safely ignore G′

i. As we show in Section 6, in practice this
results in an acceptable runtime considering the algorithm is an offline optimization.
Composability and Generality: as we (re-)compile all tasks, our approach requires the
source code of all applications in the system. Since Algorithm 4 segments tasks in priority
order, any code change in a program will not affect higher priority tasks; however, it might
force a recompilation of all lower priority tasks. This might be undesirable, especially if the
priority ordering does not match criticality levels. Therefore, in Section 6 we also explore a
simpler and faster (but non-optimal) heuristic that uses the same value of lmax for all tasks,
thus ensuring that each program can be compiled independently. In this sense, we would like
to stress that even if the optimality of Algorithm 4 depends on analysis Properties 2, 3, our
compiler framework in conjunction with Algorithm 1 can still be used to produce a set of
valid program segmentations for any PREM-based system.



M.R. Soliman and R. Pellizzoni 23:19

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
SPM Size = 16 kB

Ideal
Optimal
Heuristic
Greedy

0.2 0.4 0.6 0.8
Utilization

0.25

0.50

0.75

1.00
SPM Size = 64 kB

0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00
SPM Size = 256 kB

Figure 6 Schedulability vs Utilization

22 24 26 28

SPM size (kB)

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
Ut

iliz
at

io
n

Ideal
Optimal
Heuristic
Greedy

(a) tseg = 100

22 24 26 28

SPM size (kB)

0.2

0.4

0.6

0.8
W

ei
gh

te
d 

Ut
iliz

at
io

n

Ideal
Optimal
Heuristic
Greedy

(b) tseg = 1000, footprint>24 kB

Figure 7 Weighted Utilization VS SPM Size

Benchmark Suite LOC Data(B)

adpcm dec TACLeBench 476 404

cjpeg transupp TACLeBench 474 3459

fft TACLeBench 173 24572

compress UTDSP 131 136448

lpc UTDSP 249 8744

spectral UTDSP 340 4584

disparity CortexSuite 87 2704641

Table 1 Benchmarks
(LOC: lines of code)

6 Evaluation

We implemented our segmentation framework using LLVM to analyze and generate the
region trees for the program as in [24], and estimate the data footprint for each part of the
program. Poly [14] is used to handle loop transformations. For code generation, we target a
simple MIPS processor model with 5-stages pipeline and no branch prediction. We assume
that there are data SPM, and code SPM and that the task code fits in the code SPM. Note
that the WCET of each region in a program is statically estimated using the simple MIPS
processor model similar to [25]. For the data SPM, we vary its size from 4 kB to 512 kB. For
the memory transfer, we assume that the DMA speed is 1 cycle per word (4 bytes) 4. The
segmentation overhead tseg includes the DMA intialization and the context switching, and it
is assumed to be 100 cycles.

We evaluate the segmentation and scheduling algorithms using a set of synthetic and real
benchmarks. We used applications from UTDSP [29], TACLeBench [11] and CortexSuite [28]
benchmark suites. The application are chosen to represent a variety of sizes, complexities
and data footprints (see Table 1). The applications are used to generate sets of random
tasks. Each task set is composed of a random number of tasks between 4 and 12 tasks.
Given a system utilization and the number of tasks, the utilization of each task is generated
with uniform distribution [6], and then a period is assigned to each task. The period of
τi is computed as ui ∗ ci where ui is the generated utilization and ci is the WCET of the
application if executed without premption from the SPM. We assume deadlines equal to
periods. Schedulability tests are conducted for 250 task sets.

We report the results in terms of the system schedulability and the weighted utilization.
The system scheduability is the proportion of the schedulable task sets out of the total
tested task sets. We define the weighted utilization µ of a system as: µ = ∑u sched(u)∗u

∑u u
where

4 In the extended technical report [26], we discuss the effect of the DMA speed on the system schedulability

ECRTS 2019



23:20 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

sched(u) is the system schedulability for system utilization u. We compare our optimal
algorithm with ideal, greedy and heuristic algorithms. The ideal algorithm assumes no
restriction on SPM size and that the program code can be segmented at any arbitrary point
without any increased overhead. Hence, the only constraint is lmax which is produced from
Algorithm 4 5. The greedy and heuristic algorithms do not depend on Algorithm 4 to drive
the segmentation of each task based on the schedulability analysis. The greedy algorithm
resembles the algorithm used in [20] and assumes lmax = ∞ for all tasks. The heuristic
algorithm uses the same lmax for all tasks by varying lmax between ∆ and 10 ∗∆ with step
0.5 ∗∆, and picking the value of lmax that achieves the highest weighted utilization.

Figure 6 shows the system schedulability for the four algorithms for SPM sizes of 16, 64
and 256 kB. For the heuristic algorithm, the value of lmax with the best weighted utilization
is showed in the figure for each SPM size. The graphs show that the optimal algorithm
performs much better than the greedy and the heuristic algorithms and close to the ideal
algorithm for different SPM sizes. This is confirmed in Figure 7a that shows the weighted
utilization for the compared algorithms for SPM sizes between 4 kB and 512 kB. Note that
the ideal algorithm may suffer from segmentation overhead, the interference and blocking
overhead from other tasks in the system, and also segment under-utilization. This leads to
lower schedulability at high system utilization.

We can notice in Figure 7a that the weighted utilization does not increase as SPM size
increases. This might be counter-intuitive as increasing the SPM size allows more data to be
loaded for each segment which leads to decreased segmentation overhead. However, the tasks
suffer from a higher under-utilization penalty as ∆ increases. The second effect is dominant
since the segmentation overhead is relatively small and 4 benchmarks have data footprints
of less than 8kB. For this reason, we show in Figure 7b the weighted utilization using only
applications with data footprint greater than 24 kB and tseg = 1000. The figure shows that
the system schedulability ascents at first and then declines around SPM size of 48 kB.

The segmentation algorithm takes a few seconds to finish with a maximum of a minute
compared to few hours for the naive segmentation algorithm with exhaustive search. Running
the scheduling algorithm for one of the tested task sets takes an average of a minute to
segment the tasks and apply the schedulability test with a maximum of few minutes. In the
extended technical report [26], we discuss how the algorithm time scales with the number of
tasks in a task set in more details.

7 Conclusions and Future Work

PREM-based scheduling schemes have recently attracted significant attention in the literature,
but to make the approach applicable to industrial practice, there is a stringent need for
automated tools. To this end, we have proposed a compiler-level framework that automatize
the process of analyzing a program and transforming it into a conditional sequence of PREM
segments. Furthermore, for the case of fixed-priority partitioned scheduling with fixed-length
memory phases, which has been fully implemented and tested in [27], we have shown that it is
possible to find optimal segmentation decisions within reasonable time for realistic programs.

This work could be extended in two main directions: first, by applying it to other
PREM-based scheduling schemes. Note that since searching for an optimal segmentation
solution might become too expensive, we might have to resort to a heuristic instead. Second,
by extending it to other task and platform models. In particular, we are highly interested in
looking at parallel tasks executed on heterogeneous multicore devices.

5 Note that the ideal algorithm is still compliant with PREM, i.e. the next segment has to be decided
and loaded while the current segment is executing. Hence, to our understanding we cannot employ
existing scheduling analyses for limited-preemptive task sets [8].



M.R. Soliman and R. Pellizzoni 23:21

References
1 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-predictable

scheduling. In Proceedings of the 14th International Conference on Embedded Software -
EMSOFT ’14, New York, New York, USA, 2014. ACM Press.

2 Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multithreaded
applications on multicore systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, New Jersey, 2014. IEEE Conference Publications.

3 Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global scheduling
of real-time tasks. In 21st IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2015.

4 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nelis, and
Thomas Nolte. Contention-Free Execution of Automotive Applications on a Clustered Many-
Core Platform. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE,
2016.

5 E. Bini and G.C. Buttazzo. Schedulability analysis of periodic fixed priority systems. IEEE
Transactions on Computers, 53(11), 2004.

6 Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30(1-2), 2005.

7 Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna. A memory-centric
approach to enable timing-predictability within embedded many-core accelerators. In 2015
CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST). IEEE, 2015.

8 Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. Limited Preemptive Scheduling for
Real-Time Systems. A Survey. IEEE Transactions on Industrial Informatics, 2013.

9 Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna. SiGAMMA:
Server based integrated GPU Arbitration Mechanism for Memory Accesses. In Proceedings
of the 25th International Conference on Real-Time Networks and Systems - RTNS ’17, New
York, New York, USA, 2017. ACM Press.

10 Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti, and
W. Puffitsch. Predictable Flight Management System Implementation on a Multicore Processor.
{Embedded Real Time Software (ERTS’14)}, 2 2014.

11 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research.
DROPS-IDN/6895, 55, 2016.

12 Bjorn Forsberg, Luca Benini, and Andrea Marongiu. HePREM: Enabling predictable GPU
execution on heterogeneous SoC. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2018.

13 Bjorn Forsberg, Andrea Marongiu, and Luca Benini. GPUguard: Towards supporting a
predictable execution model for heterogeneous SoC. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017.

14 TOBIAS GROSSER, ARMIN GROESSLINGER, and CHRISTIAN LENGAUER. Polly —
Performing Polyhedral Optimizations on a Low-Level Intermediate Representation. Parallel
Processing Letters, 22(04), 2012.

15 Emna Hammami and Yosr Slama. An overview on loop tiling techniques for code generation.
In Proceedings of IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA, volume 2017-October, 2018.

16 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM Interference in COTS Heterogen-
eous MPSoCs for Mixed Criticality Systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(11), 2018.

17 Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding memory interference delay in COTS-based multi-core systems. In
Real-Time Technology and Applications - Proceedings, 2014.

18 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, CGO,
2004.

ECRTS 2019



23:22 PREM-based Optimal Task Segmentation under Fixed Priority Scheduling

19 Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated software
refactoring for predictable execution on COTS embedded systems. In 2014 IEEE 20th
International Conference on Embedded and Real-Time Computing Systems and Applications.
IEEE, 2014.

20 Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and Andrea
Marongiu. Combining PREM compilation and ILP scheduling for high-performance and pre-
dictable MPSoC execution. In Proceedings of the 9th International Workshop on Programming
Models and Applications for Multicores and Manycores - PMAM’18, New York, New York,
USA, 2018. ACM Press.

21 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio Buttazzo. Memory-processor co-scheduling in fixed priority systems. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems - RTNS ’15, New
York, New York, USA, 2015. ACM Press.

22 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
Real-Time Technology and Applications - Proceedings, 2011.

23 Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening Contention Delays While
Scheduling Parallel Applications on Multi-core Architectures. ACM Transactions on Embedded
Computing Systems, 16(5s), 2017.

24 M.R. Soliman and R. Pellizzoni. WCET-driven dynamic data scratchpad management with
compiler-directed prefetching. In 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), 2017.

25 Muhammad R. Soliman and Rodolfo Pellizzoni. Data Scratchpad Prefetching for Real-time
Systems. Technical report, UWSpace, 2017.

26 Muhammad R Soliman and Rodolfo Pellizzoni. Optimal Task Segmentation for PREM-
based Systems Under Fixed Priority Scheduling. Technical report, University of Waterloo,
Canada, 2019. URL: http://ece.uwaterloo.ca/~rpellizz/techreps/optimal_seg_tech_
report.pdf.

27 Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S. Phatak, Rodolfo
Pellizzoni, and Marco Caccamo. A Real-Time Scratchpad-Centric OS for Multi-Core Embedded
Systems. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2016.

28 Shelby Thomas, Chetan Gohkale, Enrico Tanuwidjaja, Tony Chong, David Lau, Saturnino
Garcia, and Michael Bedford Taylor. CortexSuite: A synthetic brain benchmark suite. In
2014 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 2014.

29 UTDSP Benchmark Suite. URL: http://www.eecg.toronto.edu/~corinna/DSP/
infrastructure/UTDSP.html.

30 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming Non-Blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016.

31 Saud Wasly and Rodolfo Pellizzoni. A Dynamic Scratchpad Memory Unit for Predictable
Real-Time Embedded Systems. In 2013 25th Euromicro Conference on Real-Time Systems.
IEEE, 2013.

32 Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority scheduling. In
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2014.

33 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time Systems, 48(6), 2012.

34 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo. Global Real-
Time Memory-Centric Scheduling for Multicore Systems. IEEE Transactions on Computers,
65(9), 2016.

http://ece.uwaterloo.ca/~rpellizz/techreps/optimal_seg_tech_report.pdf
http://ece.uwaterloo.ca/~rpellizz/techreps/optimal_seg_tech_report.pdf
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html

	Introduction
	Background and Related Work
	Memory and Processor Schedule
	Program Transformation

	Task Model and Schedulability Analysis
	Schedulability Analysis and Preliminaries

	Program Segmentation
	Program Structure
	Valid Segmentation
	Segmentation Algorithm
	Tiling Algorithm
	Region Sequence Segmentation


	Optimal Task Set Segmentation
	Evaluation
	Conclusions and Future Work

