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1. Introduction Figure 1: Input/Output Configuration Example

In many hard real-time systems, such as avionics, moreynfortunately, COTS components employ a variety of tech-
and more features are added to faster and cheaper hardwargjques, like deep pipelining and caching, that are designed
leading to rapid increases in system size and complexity.to improve average case performance but makes it difficult
One important challenge is how to analyze the schedulabil-to optain the safe worst-case bounds that are required for
ity impacts of different software and hardware design deci- critical real-time embedded systems.
sions early in the architecture design process. The schedu- |, this context, 1/0 peripheral interconnects and 1/0 con-
lability equations are functions of software task designs figurations play a crucial role. Avionics systems are often
and hardware designs. Building such analysis is complex|;o phounded and 1/0 scheduling problems have been a ma-
as modern embedded systems are increasingly built by usjor source of integration problems found in practice. When
ing Commercial Off-The-Shelf (COTS) components in an ¢4 is exchanged through a COTS interconnection such as
attempt to reduce costs and time-to-market: it is becom-ihe pc| bus [1], the overall delay for data transfer must be
ing difficult to rely on completely specialized hardware and jserted in the schedulability equation as a blocking time
software solutions since development time and costs rais§ynenever a thread must wait for data to be updated. How-
dramatically while performance is often lower when com- gyer this value greatly depends on the architecture of the
pared to equivalent COTS components commonly used forj, 5 qware including the bus topology and the behavior of
general purpose computers. For example, the specializedygripheral devices that share the bus. The effect of I/O de-
SAFEbus backplane [5] used in the Boing777 is capable ofjces js hecoming one of the major causes of wrongful anal-
transferring data up to 60 Mbps, while a modern COTS in- y s for tightly scheduled systems: for example, in [3] it is
terconnection such as PCI Express 2.0 [1] can reach transfekn own that contention for access to main memory between
speeds over three orders of magnitude greater at 16 Gbyte/§pe cpy and peripherals can increase the execution time of

a task up to 44%.
% R. M. Bradford is with Rockwell Collins Inc., Cedar Rapidg | At the same time, a hardware engineer is often forced to
52498, U.S.A. choose among many alternative /O configurations early in




the design phase. Figure 1 shows an example of a PCl read _——-
transaction that can be implemented in multiple topolagies gi:gj:t
The thread executing on the processor can read data directly

from the peripheral device or from a memory connected to Local Delayed
the front side bus or the PCI bus, while the peripheral de- <:> Read Data
vice is writing to the memory. During this operation, there ostad
will be other interferences from different devices conedct Write Data

to the bus. Clearly, an efficient and automated way to ana-

i i i i- Bus
Iyz_e multlplelconflggratmns of bus topology and communi Bl i
cation flows is required. Bridge 3 =

In this paper, we describe an analysis framework that | S
is able to compute deterministic worst-case performance Bridgesz | HW Flow 2

bounds on communication through the widely used PCI _ | —_—)
bus. We estimate the worst-case delay time of all communi- JPc

cation flows based on the PCI topology and all other in- f“s A

teractions from PCI peripheral devices, and calculate for
each PCI bridge the buffer size required to maintain sys- Peripheral 3
tem stability. Our analysis works by mapping PCI physical
elements (bridges and bus segments) to network elements
(routers and point-to-point connections) and then applyin

the theory of network calculus [2], which is able to com- |ar in the embedded domain [1]. The standard can be
pute deterministic delay bounds for network traffic. ~ divided into two parts: dogical specification, which de-

We would like to stress that our contribution is not in tails how the CPU Conﬁgures and accesses periphera]s
the deVelOpment of network calculus theory |tse|f, on the through the System Controner, and m‘ysica| Speciﬁca_
contrary, network calculus has already been applied and ex+jon, which details how peripherals are connected to and
tended to compute deterministic bounds in real-time Sys-communicate with the motherboard. In this section we fo-
tems and embedded architectures (for example, see [6] andys on the PCI/PCI-X physical specification, which uses a
[7]). Our objective is to show how a rigorous analysis shared bus architecture with support for multiple bus seg-
methodology can be applied to a COTS system in order toments connected by bridges. A typical PCl-based plat-
extract safe bounds in spite of the extreme complexity of the form is shown in Figure 2. The CPU and main mem-
architecture and the lack of a precise specification: mestin ory are connected through the Front Side Bus (FSB),
dustrial standards are only concerned with preserving l0g-which has a CPU-manufacturer dependent implementa-
ical equivalence, but most timing and performance relatedtion. A host bridge is also connected to the FSB and of-
aspects are left open to manufacturer implementation. Asfers access to the rest of the system using the PCI standard.
such-, it is es.sential to make sound assumptions when the=ach further PCI-to-PCl bridge connects two PCI bus seg-
precise working of each COTS component can not be de-ments together. The architecture resembles a tree, where
termined, often because manufacturers are wary to releasgne host bridge represents the root, bridges are interme-
implementation details for fear of losing their compestiv  diate nodes, and peripherals represent leaves. Data trans-
edges. Inthis sense, we believe that our methodology can bgers are carried out on each bus segment as non-preemptive
helpful to produce analysis frameworks for other COTS in- pys transactions the entity that starts a transaction (ei-
terconnections. Our final goalis to build atool thatis able t ther g peripheral or the CPU) is known as finéiator,
apply the described analysis to a high level system specifi-while the entity that receives the transaction (either an-
cation, thus enabling efficient space exploration of bus con other peripheral or a memory) is known as tagget Each
figurations. _ ) ~ bus segment has a separate arbiter which determines the or-

The rest of the paper is organized as follows. In Section ger in which initiators are allowed to transmit. If the ini-

2 we briefly describe the PCI standard. In Section 3 we de-tjator and target of a transaction reside on different bus
tail our analysis and provide relevant examples. Finall, W segments, then the transaction data is stored and for-

Figure 2: PCl-based platform Example

provide concluding remarks in Section 4. warded by intermediate bridges; note that due to the
tree-shaped structure of PCI, there is a single path be-
2. PCI Bus Standard tween any two bus segments. The PCI standard offers

support for several types of transactions between differ-

The Peripheral Component Interconnect (PCI) is ent bus segmentgosted writesdelayedwrites and reads,
the current standard family of communication archi- and locking transactions. The latter are considered ob-
tectures for motherboard-peripheral interconnection in solete as in the last PCI specification and can further
the personal computer market; it is also widely popu- cause very high worse-case delay, hence we do not con-
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sider them. e 2 T s 1 4
The simplest type of PCI transactionpssted write A : @:} e C@Vr\ Srene oo : Segmf; -

posted write completes at the initiator before it completes ! : : . . , : |

at the target: in other words, after data has been movec "~ XF W Gk B J'—'-'-'-'-'-'-'l-—-@-----'

from the initiator to the first intermediate bridge, the ini-  /°| et Permberl

tiator can disconnect from the bus and considers the trans:

action successfully completed. In this way, data is posted '\ ourt int tour?  in® tour  in® *our

from bridge to bridge until the target is reached, similarly 1 ; l ’ ! ,- ; ’ l l

. ) .. nitiator i | Network f,-l Network fz Network f,-3 Network f,-4 arge
to what happens in a packet-switched network; this is the Element |—>) Element [— Element —>) Elerment
main reason why we base our analysis on network calcu-
lus theory [2]. The drawback is that the initiator has no way _ _
to know when the transaction completes at the target. When Figure 3: Equivalence of Bus segments and Subflows

an acknowledgement is required, such as for all read op-tator in any interval of length. The arrival curve captures
erations, a delayed transaction can be employed. In a deyye pyrstiness of the initiator; as the flow goes through the
layed transaction, the initiator first sends a write/read re network. it is buffered multiple times and as a result the
quest to the first intermediate bridge, which buffers it and \yqrst case burstiness increases. Network calculus previde
then terminates the transaction witheary command. The 5 \vay to compute the burstiness at each stage and relates
retry command notifies the initiator that the transactios ha it tg the maximum delay encountered by any byte in the
not completed successfully, and forces itto retry sendiegt  fiow. More specifically, if f; goes through/; network el-

same request over and over until the bridge acknowledges it.ments. we can definkf; + 1 subflows where f° repre-
(since write requests contains actual data, to avoid datura sents the flow produced at the initiatqf 0 < ; < M,
119 (3

Idngt th_e bustth(_arrt:n(igettgrtmmatg_s Iurg]?dr rettrrl]es befocrje ttr;]eis the flow after passing throughnetwork elements, and
ata is sent). The first intermediate bridge then sends ?‘Mﬂ is the output flow. The goal is then to compute an ar-

request to the second bridge on the transaction path using.’ ; P
the same retry mechanism. In this way the request is prop- ival (_:urveaf for ea.ch subflow?, with a7 = G There
agated through the intermediate bridges until it reachds an remains a p“’b'e”.‘- network calculus considers a system
completes at the target; at this point the last intermediateComprlsecj Of. muItlpIe_ ne_twork elements, or routers, con-
bridge buffers the completion of the transaction (which in- nected by point-to-point lines, bl.Jt the PCI architecture em
cludes the actual data for a read transaction), and acknowlpons shared buses. We can still rely on the network cal-

edges the next request received by the next-to-last intermeggléﬁ’ S;cs’di unswlgr?t trtf ]:;uc()evrw\?vgiltr:r:”St;cr)i:jmgtslotrr]]:a\t/vterat;i?rgi ¢
diate bridge. In this way, the acknowledgement is propa- 9 » 109 9

gated back until it reaches the initiator and the transactio data on it, as a unique network element. Network elements

ends. To preserve coherence, the standard further imposegrtee :ctl(?rr\]ng(c):?en de([;tec; |Lrt_f(1:ie gozecslggpqr']ng k.)(l;ts sae%msehrl,ts r?re
a detailed set of precedence rules on posted and deIayeH1 y 1age. ying picture 1 W

S . : in Figure 3, for a flowsf; that goes througli/; = 4 bus
transactions; in particular, a posted write must alwayd-be a segments numberel . By, Bs, B,. To simplify the anal-

:gwsg ttr%ﬁfjéignbggﬁrﬁgvif'aﬁg gal;ff? ::;odn, \cl)vsrliéed ?Nggys_is, we introduce the following notation: for each subflow

Tﬁ/ - . P - b . 7,0 < j < M;, we letout] be its output network element
e rule is typically enforced by assigning strictly higher ¢ i ; ’

priority to posted writes than delayed transactions. We re-/ Pus segment, and for each subfigiy 0 < j < M;, we

fer the interested reader to [1] for addition details on the letin] be its input network element / bus segment. For ex-

PCI standard. ample, in Figure 3ut? = Bs,in? = Bs. It follows that

in! = out! ™", which expresses the condition that subflows
are concatenated.
Using the network calculus approach, for each subflow

For ease of exposition, we first describe our analysis for /i We thenildefine aervice curveﬁf_ P Vs,ts St
a system where all transactions are posted writes. We treaf?, (t) — R}~ (s) > (/(t — s). The intuitive idea is that

3. PCI Communication Analysis

all system communication as a setéflows{ f1, ..., fn }, in any interval of lengtht, the “service” provided t(fij (i.e.,
each between a specified source (an initiator) and destinahow much more traffic is seen (ﬁ at the end of the in-
tion (a target). For each flovi;, let R;(t) be itscumula-  terval compared to the traffic seen ¢fi”! at the beginning

tive function i.e. the total number of bytes transmitted by
transactions that belong to the flow during inter{@l¢]
(with the assumption thak;(0) = 0). We then model
each flowf; using an arrival curvey;(t) : Vs,t,s < t :
Ri(t) — Ri(s) < ay(t — s). Intuitively, a;(t) is a worst- Theorem 1 (backlog bound, Theorem 1.4.1 in [2])

case bound on the amount of traffic generated by the ini-The maximum backlog (number of buffered bytes) suf-

of the interval) is at least’(t). Service curves are impor-
tant because of the following three essential network ealcu
lus theorems:
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Figure 4: Linearized arrival and service, with theorem
bounds

fered by bytes going from subfloff " to subflowf/ is
B] = supsofad ' (s) — B (s)}-

Theorem 2 (delay bound, Theorem 1.4.2 in [2])The
maximum delay suffered by a byte going from sub-
flow 7~ to subflowf] is D! = sup,sof{t : ol '(s) =
Bl(s+1),t >0}

Theorem 3 (flow concatenation, Theorem 1.4.3 in [2])
al(t) = (o' @ Bl)(t) where (a @ B)(t) is called

2

the min-plus deconvolution af by 5 and is defined as
sup,>o {a(t + ) — B(s)}-

bytes

Figure 5: Periodic task Arrival Curve derivation for the-Ini
tiator

o[g*l(s) - 55(5) is clearly fors = T/, from which B/ =
5{’1 + p{’ng. The proofs for linearized delay bound and

flow concatenation can be similarly derived (see [2] for de-
tails). O

Theorem 5 (linearized delay bound) The delay fo is
. . . . j—1

bounded iffp! "' < S7, in which caseD! = T/ + 5]?

Theorem 6 (linearized flow concatenation)a? () is

bounded iffp} ' < S7, in which casep! = p/ ', 5!

The flow concatenation theorem lets us compute the ar-67 " + pl ' T7.

rival curveoz{ at each step. Delay bounds are used to ob-
tain the total flow delayD; = >, ;. Di. The backlog

expresses an important condition on buffer sizes: in partic
ular, our analysis is valid only under the assumption that
buffers never overflow, which is true if buffer sizes are at

least equal to the computed backlog. Unfortunately, Theo-
rems 1-3 are hard to compute for general arrival and ser-
vice curves. To simplify the analysis, we therefore propose

to adopt a linearized representation. We consider an up
per bound to the arrival curve] (¢) of the formd; + ¢p],
whered? represents theurstinessand p! the arrival rate

for o (t). As for service curves/ (t), we consider a lower
bound (which itself is a valid service curve) of the form
max(0, (t — T7)S7), whereT? is theservice delayandS?

is theservice rate For simplicity, given this representation
we write o] (t) = (&7, p]) andp!(t) = (T}, S]). Figure 4
shows example arrival and service cureés' ands’, re-
spectively. Theorems 1-3 can then be rewritten as follows:

Theorem 4 (linearized backlog bound) The maxi-
mum backlogB? is bounded iffy) ' < S7, in which case
Bl =67 4 i),

2

Proof.

Refer to curvesa! ' (¢), 57 (t) in Figure 4. If p)~" >
S7 (intuitively, o/ " (¢) increases faster tha®/ (¢)), then
lim, .o o "' (s) — 8/(s) = oo, hence the backlog is un-

bounded. If insteagy) ' < S7, then the maximum of

Intuitively, the delay bound is the maximum horizontal
deviation ofa’ ', 3 and the backlog and burstiness are
both equal to the maximum vertical deviation. Also note
thatp! = p?~', i.e. only the burstiness changes among sub-
flows of the same flow, not the arrival rate. We can there-
fore use a single ratg; for the entire flow and compute

just 5f for each subflow. Finally, note that delay and back-
log are bounded if and only if the rate provided by the ser-

vice curve is at least equal to the rate required by the sub-
flow, which is to be expected.

The rest of the discussion is organized as follows. In Sec-
tion 3.1 we detail how the compute the arrival cunéefor
the input subflowf?. In Section 3.2 we then show how to
compute the service curveg for all successive subflows
of f;. Section 3.3 shows a detailed example of our method-
ology, and Section 3.4 shows how to improve the computed
end-to-end delay;. Finally, Section 3.5 extends the anal-
ysis to cover delayed transactions.

3.1. Arrival curve derivation

The computation of{ depends on the characteristics
of the initiator and its produced data. Assume that initia-
tor traffic is strictly periodic, i.e. the initiator geneeste;
bytes of traffic every; time units. A clarifying example is
provided in Figure 5, where we plot the cumulative func-
tion R;(¢t) for the flow and its arrival upper bour{d;, p; ).
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Lemma 7 Consider an initiator with strictly periodic traf-

if the average transmission ratgis known, then a bursti-
ness valué?) can be obtained as the minimum value such
thats? + tp; is greater than or equal to the computed bound
for all ¢.

3.2. Service curve derivation

We now focus on the derivation of a service curse
for subflow f/. Assume thatf} is produced by element
By, i.e.out! = By. Intuitively, the service curvgd! de-
pends on two elements: the subflows that are inpusto
and the transmission policy followed by all elements that
compriseBy, (bus segment arbiter and bridges that trans-
mit on By). The PCI standard does not impose any strict
constraint on bus segment arbitration, instead mentioning
only a weak fairness condition, in the sense that a back-

fice;, p;. Thenal = (6 = e;, p; = ;—) is an arrival curve

. d logged subflow must eventually be allowed to transmit. We
for the peripheral traffic. gg y

therefore consider only the following work-conserving €on
straint: if subflowf? " is backlogged and, is free, then

ff must be transmitted. This is equivalent to assuming that
ff‘l has the lowest priority among all other input flows to
By, (ff is transmitted iff no other input flow is backlogged).
To simplify the analysis, we define the setinterferingin-

put flows as follows:

Proof.

Let R(t) be the cumulative function where bytes of data
are first produced at time= 0, and at each subsequent pe-
riod thereafter. It is easy to verify thdt(¢) captures the
critical instant, i.e. for any other cumulative functid®{t),
R(t — s —0) > R(t) — R(s). To show that! is a valid ar-
rival curve, we then only need to check thgk(t) > R(t)

for all ¢, which is trivial.O

inter] = {ff:1#1,inl = outl}. 1)
In other wordsjnter; is the set of all input flows t@3), ex-

However, often such detailed information is not avail- cept forfg'*l. Furthermore, leC be the speed of bus seg-
able, for example because the average transmissiopfate mentB,, in bytes/s. The following result can then be proved:
of the peripheral is known, but the transmitted traffic is not _ _
exactly periodic. In this case, we propose a testing method-Theorem 8 A valid service curve 3] is (T] =
ology that is well suited to the analysis of COTS peripher- c-y )
als. A trace of activity for a PCI/PCI-X peripheral can be C*Zflq fieinter] PL):
gathered monitoring the bus with a logic analyzer. For ex-
ample, Figure 6 shows the first 100ms of a measured trace
for a 100MB/s ethernet network card in term of cumulative Proof.
time taken by peripheral transactions on a 32bit, 33Mhz PCI A function z(¢) is said to be a strict service curve if for
bus segment; the whole recorded trace consisted of 100Gny interval of lengtft during which /=" is backlogged,
transactions. We developed a simple algorithm that com- 7 transmits at least(¢) bytes. We now show that the de-
putes the arrival curve from a trace in quadratic time  fined 3/ is a strict service curve; it is then trivial to see that
in the number of bus transactions. The algorithm performs any strict service curve is also a valid service curve for the
a double iteration over all transactions, computing at eachflow (see Proposition 1.3.5 in [2]).
step the amount of peripheral traffic in an interval between  pye to the work-conserving assumption, we can obtain a

the beginning of any transaction and the end of any othergyict service curve by computing the total amount of traffic
successive transaction. The computed values are inserteghat B, can transmit in any interval of timeminus traffic

into a list ordered by interval length, and all non maxi- from all interfering flows. Therefore:
mal values are culled. Figure 6 shows the result in the in-
terval [0, 100ms]; note that the computed arrival curve is

2 rag; J 5? P
fi €intery S‘] o
- [
cinterd Pl

J q
expressed in term of required bus time rather than bytes, so fi = max(0.Ct . Z i o) @
to obtaina? we must multiply it by the speed of the bus. 17 Ginter;
If multiple traces are recorded, then an upper bound can be
computed by merging the computed arrival curves for each =max(0, (C — Z o)t — Z ) (3

trace and again removing all non maximal values. Finally, ficinter? ficinterd



. 549
Zflqeinterg 6l
¢ - Zflqeinterf Pl

=max(0,(C— > p)(t—

d - J
f €inter]

) (4)

which concludes the proofl

We can then apply Theorem 6 to obtain arrival cwtﬂ[e

Corollary 9 o (t) is bounded i oing—oues P2 < C, N
which case:
i i Z qcinter? 5
6] = 1! 4 pr A 5)

- queinterj Pl

The mequalltyzfq ni—outd Pl < C expresses the nec-

Corollary 11 o] (t) is bounded iffy> a.;,,1_y,0 o1 < C,
in which case: '

E Y q
6.7 _ 6‘j_1 p; fleinter! (Sl E :flq€aggr;? 6l
) — i .
[ 1 C - Zflqunterf Pl

Note that the difference between Equations 8 and 5 is
that the rate of aggregate flows does not need to be sub-
tracted fromC.

A second burstiness bound can be obtained by adding ad-
ditional constraints on bus segment arbitration. While the
standard does not require it, it suggests that bus arbitra-
tion be round-robin. Therefore, in what follows we assume
that arbitration follows a simple round-robin model where

(8)

essary condition that the sum of the rates of all incoming each bridge and each peripheral that transmit on the sys-

flows to a bus segment must be smaller than.e. the bus  tem is given one rourid To model round-robin arbitration,
segment utilization must not exceed one. we need additional information: for each flofy, assume

If we know more about the implementation of arbiters that we know the minimum length in bytes of any trans-
and bridges, we can improve the bound of Corollary 9. First agction L™ and the maximum lengtfi***. Furthermore,
of all, assume that all posted writes that are input to theesam since bridges can merge transactions togethed, 1&f9¢
segmentB;, are buffered inside a unique FIFO buffer in  be the maximum length in bytes of transactions generated
each bridge, which is typically true for commercial bridges by a bridge. Then we can obtain a service curve consider-
since it simplifies design. We can obtain a tighter bound by ing that in the worst case all bridges and all peripherals con
removing all subflows in the same buffer from the interfer- nected to the bus transmit for the maximum amount of time
ing set, since a newly arrived byte in the FIFO can not in- (which we callRR?), except for the subfloyi? which trans-
terfere with bytes from different subflows that are already mits for its minimum bit lengthl v,
stored in the FIFO. In network calculus terminology, sub-
flows stored in the same FIFO queues are referred &gas
gregatetraffic. We can formally define aggregate subflows

a network element with/
A valid service curvg! is

Theorem 12 Consider
connected bridges.

j .
as follows: (T7 = Rgi S = Lm?fﬂ#) where:
, . . i
aggr! ={f: 1 # i,out] = out] " Nin] =in]"" = out!}. min o (i {me}) )
eem 3
(6) 1 anqr

In other words, aggregate subflows are all subflow between
the same input and output network element%hél. We and
can then obtain a valid service curve for the aggregate using

Jjo_ bridge max .1,
Theorem 8 with the following interfering set: RR, = KL + ) > ‘Ll forj=1; (10)
; . . fleinter]
inter] = {f} : 1 #i,in} = out], f} & aggrl}, (7) l
7 — _ bridge max . .
which is the same as Equation (1) except that we removed RE; =(K-1)L + ) Z ) L™ for j > 1; (11)
the aggregate flows. Unfortunately, Theorem 6 does not fr €inter;
hold for aggregate flows, but we can instead prove the fol-
lowing: Proof.

Theorem 10 (linearized concatenation with aggregate flow) We d'St'”gu{Sh two cases: ¥)= 1, meaning that the input
aq(t) is bounded iff p; < Sa in which case subflowf/™" = f’is buffered in a peripheral; 2) > 1,

: f8 caggrd 57 meaning thay” !is buffered in a bridge.
57 : Considerj = 1 first. We show that the effect of round-
robin arbitration is to force a periodic schedule whgfe

6! =817+ piT! + ps

Proof. can not transmit for at mo&ﬂ time units, and can then
The theorem follows directly from Theorem 6.4.11in [2], ap- transmit for at |easgez€m time units. This implies that the
plying it to the case of multiple aggregate flows and to a lin-

earized service curvel

1 Inpractice, most commercial bridges employ as defaultublgelevel
round-robin scheme where the first level arbitration is leetwthe up-
stream bridge and all other peripherals/bridges; how#vemproposed
model can be easily generalized.

Applying Theorems 8, 10 to compuzﬁé yields the fol-
lowing corollary:



defineds! is a lower bound to a strict service curve ftf, A £ A

and therefore it is a lower bound to a service curve which is Bridge <Segment B2 ) Bridge < Segment B3 >
j 1

itself a valid service curve fof;. Assume that all other pe- @ 5 @ 1y @ S @

N

ripherals and bridges that transmits on the bus segment ar 0
L . fl Initiator 1 Target 2 fz Initiator 2 Target 1

backlogged, and are enqueued beffytén the round-robin
queue. Then a maximum amount of traffi&?! will be sent
beforef; is allowed to transmit assuming that &llbridges 1o I 1 IS
transmitZLt"*?9¢ amount of traffic and all interfering periph- Initiator 1 [~ N KN | Target 1

. . 0 . . . Network Network Network
eral with input subflowg;’ transmits their maximum Iength o e I Element | 1| Eloment £
Linx_ Since furthermore fof = 1, L%® reduces ta.", Targetz fem O 2] %2 2 B0 21 Initiator 2

this concludes the proof for the f|rst case.
Now consider thgj > 1 case. We follow the same ap- . )
proach, except that in the periodic schedule we consider the Figure 7: Two Flows Circular Example

minimum time% during which all aggregate flows can two posted write flowsf;, fo and three bus segments de-
' picted in Figure 7, where we assume thatsd are known
andp; = pa = p < 0.5C. Using Corollary 9 would yield
six equations for burstinegs, 67, 63, 61, 67, 63

transmit. Therefore],%Rg now considers transmissions from
all peripherals and all othét — 1 bridges, and a safe lower
bound onL™® can be obtained by taking the minimum

elem

transaction length among all aggregate flows. L 52 52
0t =81 + prg2 7 03 = 83 + pag 7
The obtaineds’ can be used with Theorems 6 and 10 62 =61+ py C p2 03 =03 + pQC z (12)
to computex]. We can therefore ask ourselves whether us- 53 =6 +pm 83 =62+ pa

sz CP]

ing the service curve of Theorem 8 or Theorem 12 yields

a lower bound on the burstines§ In general, thisisnota  Note that there is a circular dependencies betwien;
trivial question, since the service rat&scomputed by The-  and betwee#2, 1, hence we cannot compute them directly.
orems 8, 12 are not comparable. Obviously;ifis smaller To solve this problem, we follow the methodology delin-
than theS/ for a service curve, we can not use it. In the eated in Proposition 2.4.1 in [2]. We first note that Equa-
case where we can apply both service curves, we have tdions 5, 8 are linear in the burstiness terms. We can there-
consider two cases. If all burstiness valuésrequired to fore use them to obtain a linear system of equations of the
comput&W are known, then we can simply use both service form # = AZ + b, whereZ is a vector of unknown bursti-
curves and take the minimum of the comput‘éd How- ness valuesd is a square matrix anfdis a vector of known
ever, as we show in Section 3.3 there are cases wheff the Vvalues. Furthermore, it can be shown that following Equa-
are unknown, and a system of equations must be solved tdions 5, 8 both4 andb are non negative. Hence, if all eigen-
obtain them. In this case, it is preferable to consider a sin-values ofA are within the unit circle( — A)~! is also non

gle service curve to avoid inserting a minimum function in negative and: can be computed as= (I — 4)~'b. By fol-

the system. It is possible to prove that when no aggregateéowing thetime stoppingrinciple [2], it can then be proven
flow is considered, Theorem 12 always provides a smallerthatz indeed provides a valid upper bound for burstiness.

service delay;/ and therefore a lowef. For aggregate Following the above technique, we can compute
flows, this is not true since the burstlness depends also onsl, 62, 51, 67 using the following system:

the service rate. However, using Theorem 12 reduces the

number of variables; that&{ depends on. As we show in 51 0 0 0 k o1
Section 3.3, mutual dependencies between flows canreduce , [ 42 a1 O kO e 10
the available bus utilization, hence this is desirable. S PTT o ko oo ]| 6 |
63 E 0 1 0 0
(13)
3.3. Example wherek = L The eigenvalues are-v/k2 + k and
We now provide an example to show how the analy- +Vk* — by solvmg forp we obtain that a solution ex-

sis can be applied to a concrete case. It is important toistsifp < 3 fC ~ 0.382C. Itis interesting to see that the
note that the burstiness bounds of Equations 5, 8 directlycondition |mpl|es that we are not able to find delay bounds
hold only forfeed-forwardconfigurations, where there are even when bus utilization is as low as 77%. Note, how-
no circular dependencies among flows. In this case, Equa-ever, that the derived condition ot is only sufficient: if
tions 5, 8 can be applied to iteratively compute all bursti- all eigenvalues are within the unit circle, then we can com-
ness termg; . In practice, many configurations do have cir- pute bounded delay and backlog, but even if the eigenval-
cular dependencies among flows. Consider the system withues are outside the unit circle, delay and backlog can still b



bounded. In fact, the derivation of necessary stability-con By assumptiong,(t) < «(t) Vi. Thenap(t) — 8(t) <
ditions for general networks is still an open problem. at) — B(t) vt. O

A final consideration is relative to parametric analysis.

So far in this section we have assumed that all inputs (data According to (Theorem 1.4.3) in [2], when a flow having
sizese; and period®;) were constants, but in practice, we arrival curvea passes through a node that offers a service
are interested in the case where some of the inputs are varieurves, then the output flow is constrained by the min-plus
ables. Assume for example that a data sizés allowed deconvolution ofx by 3. We use this to prove a similar re-
to vary in an intervalje®®, e"*<]. Assuming that delay  sult to the previous theorems, this time for the output flow.
bounds can be computed fer = e;"**, we would like to
solve the system in Equation 13 symbolically as a func-
tion of the variablee,. However, for this to be possible,
we have to prove that if delay bounds can be computed
for e; = e*®, then they can also be computed for any
e; € [emin, emax],

Note that according to Lemma 7 and 22, reducing the
data sizee; will decrease the input arrival curve). We
now prove that decreasing the arrival curve leads to both
a reduction in the delay (Corollary 14) and in the output Proof.
arrival curve (Theorem 15) for each network element. The Recall that the min-plus deconvolution @fandj is (o @
time stopping principle can then again be applied to show 3)(t) = sup,s {a(t +u) — 3(u)} . By assumption, the
that the delay bound computed for= e*** is a valid up- node is stable, so the supremum happens within a bounded
per bound for any; € [e", em2X]. Hence, as long as de- interval ofu. Moreover, andg are continuous by assump-
lay bounds are finite for; = ¢*** the symbolic solution of  tion. Thus, by Weierstrass's theorem, which states that a
the systemr = AZ + b will yield a correct value. continuous function on a nonempty compact set (such as

h 3 Consid de that off . a closed and bounded set of real numbers) attains its supre-
Theorem 13 Consider a node that offers a service cupre mum, we conclude that for evetyhere is at least one value

and suppose the node is stable for some arrival cuniee. _ _

for all sufficiently largef, 5(t) > a(t). Now consider a sec- of Qéiﬁg?dg]ragﬁ grgi)t(rgry_ thdﬁ:t)u* géut)He value ofi
ond arrival curvea, such thatay(t) < aft) Vt. Assume 5 maximizesa(t + u) _ B(u). Now consider(a, @
for simplicity thato, oy, and@ are all contlnuqus. Then_the B)(t) = sup, {ae(t +u) — B(u)} . By the same argu-
worst-case delay bound, given by the maximum horlzontalments as at;‘o—ve there exists at least one value. @fll
distance betwe_en the ar_rival curve and serviC(_a curve, isno . o themu; that maximizes(t + u) — B(u). i:rom
Igrger whenqy is the arrival curve than when is the ar- the assumptiovn that: upper-boundsy, it follows that
rival curve. (e @ B)(t) = gt +ul) — Bluf) < alt+uf) — B(uf) <

a(t+u*) = Bu") = (@2 p)(t). B

Theorem 15 Consider a node that offers a service curyve
and suppose the node is stable for some arrival curve
Now consider a second arrival curvg such thato,(t) <

a(t) Vt. Assume for simplicity that, «p, and 3 are all con-
tinuous. Then the worst-case output envelope given by the
min-plus deconvolution whetwy is the arrival curve for the
node is no larger than when is the arrival curve.

Proof. R

For anyt, let d(¢) denote the horizontal distance between

o(t) and3, and letd,(t) denote the horizontal distance be- 3.4. Improving End-to-End Delay

tweenay, and 3. Thena(t) = S(t + d(t)). By assump- ) i i i

tion, a(t) < a(t). Thens(t + d}(t)) — aut) < alt) = Following the methodology described in Section 3.3, all

SN o : - subflow burstiness value§ can be computed, and there-
t+d(t)).S th d by definition, _ o
f(t + d{t)). Sincef3 must be nondecreasing by definition fore the service curve paramete$$, 77 can also be de-

this implies that + d, (¢) must be no greater thain- d(t) termined. Following Theorem 5, the end-to-end delay

and therefore tha_‘ff(t) S ‘?(t)' Since this holds foran ar- o flow £, can then by determined by computing the de-
bitrary ¢, the maximum ofl, (t) must be no larger than the  |ay boundD? on each element.t/ and then summing over

maximum ofd(t). O all 1 < j < M;, which yields:

YA
Corollary 14 Under the assumptions of the previous the- D; = Z (Tf + == ) (14)
orem, the worst-case backlog bound, given by the maxi- 1<j<M; 5

mum vertical distance between the arrival curve and ser-
vice curve, is no larger wheny is the arrival curve than
whenq is the arrival curve.

However, the obtained end-to-end delay is pessimistic.
Network calculus provides a way to reduce two adjacent
network elements to a unique element by concatenating the
respective service curves for flofiy. We can therefore ob-
Proof. tain a new end-to-end delay bound by first concatenating



all service curves!, ..., 3™ together, and then applying f f? fP=f fr=f!
Theorem 5. This newly obtained bound is less pessimistic { SegmentBi } Bridge K SegmentB2 ¥ Bridge K Segment B3 Y Bridge K Segment B4

that the one of Equation 14, an effect known as "pay bursti- I 7 73 72 I
ness only once”. o T ' o —
/ ‘

Theorem 16 (service concatenation, Theorem 1.4.6 in [2])

Assume flowf; traverses elementsut!,out!™ with Request flow N
service curves 3/ (t), /7' (t). Then the concate- 1 T e L e T S —
nation of the two elements offers a service curve m:aemem_’aemem_’E|ement_’aemem |
B = (B0 © A7), where (81 © A)() R e

is called the min-plus convolution ¢f and 3; and is de- ’ o ' / Datfa'ﬂow
fined aﬁnfogsgt {61 (t — S) + /62(8)}

Theorem 17 (linearized service concatenation) Figure 8: PCI Delayed Read Transaction

BT (E) = max(0, (t = T/ = T/ ™) min(s], §71)). is no requirement on the ordering of delayed transaction
By iteratively applying Theorem 17, a global ser- within themselves. We shall again make very general as-
vice curveﬁil’MT‘ = (Ti17M117 Silaf"fi) can be obtained, with sumptions, as dlealing vvlith each special c;’:\se WOUI%be pth-
LM; _ J LM _ s = erwise extremely complex: we assume that posted writes
TP = Yagyen, T NS = minigjcag, 5. Fi are buffered in a FIFO queue as before, and that this queue
has strictly higher priority than all delayed transactiams
the same bridge. Therefore, theter! andaggr] defini-
; 59 tions for a posted writ¢?, when; > 1, must be changed to
Di= > T+——t—05 (15 delayed transactions in th bridge. As for each
min <<y, 57 remove delayed transactions in the same bridge. As for eac
delayed subflow, we simply use the pessimistic assumption
that all other transactions have higher priority. It is uséd
introduce the set dfigher priority subflows for a delayed
subflowf; as follows:

nally, usingﬁil"m the following end-to-end delay bound
can be obtained:

1<5<M;
3.5. Delayed Transactions

We now extend the analysis to deal with delayed transac-
tions. If the initiator and target reside on different bug-se
ments, a delayed transaction requires two flows: a forward
flow from initiator to target, and a backward flow from tar-
get to initiator. In the case of delayed writes, the forward
flow carries the real data, while the backward flow pro-
vides acknowledgement to the initiator. We can therefore
first model the forward flow in the same way as we did for
posted write and compute burstiness bounds for all other
flows. Then, we can compute delay for the backward flow
and sum it to the delay of the forward flow to obtain the
overall flow delay. Delayed reads are more difficult to ana-
lyze: the forward flow only carries a read request, while the
real data is carried by the backward flow. A clarifying exam-
ple of delayed read is shown in Figure 8, whéfg, ... f4}
represent the forward flow, angf?, . .., !} represent the
backward flow. Note thaf" ' = f? and " = f!,i.e.  Theorem 18 Consider a subflowf! (either posted or de-
the forward subflow on the last bus segment, which obtains|ayed), and le(T/', S!') be the service curve computed by
the data from the peripheral, is now the part of the backward Theorem 12. The(r! = /', St = S/ is a valid ser-
flow which receives its input flow fronfi’. As shown in Fig- ! !
ure 8, we can interpret the backward flow to be a posted
write in the opposite direction witlf as the flow gener-
ated by an initiator. In what follows, we first show how the Proof.
analysis can be extended to account for delayed writes, andsinceL)"™™ > r for all flows f, (and thus alsd.bridse > r),

then we explain how delayed reads can be modeled. the computed?R! in Theorem 12 is still a worst case in-

When delayed transactions are present in the system, Wgerference time under round-robin. The proof then directly
must consider the effect of the associated retries on abtra  fg|lows. O

actions. The PCI specification imposes that posted writes be
allowed to have priority over delayed request, while there

hp'g ={fl:1#i,out] = out'z_l,inf = znz_l} (16)
Note that since we do not make any assumption on the rela-
tive ordering of delayed transactions among each other, the
aggregate set for a delayed subflow is always void. Finally,
all retries are comprised by the same number of bytes
Since retries can be continuously retransmitted on the bus,
we need to impose some assumptions on the bus to bound
the bandwidth consumed by retries. We shall therefore as-
sume that the bus arbitration is round-robin, and further-
more thatL;nin > r for all flows f;. Under this assumptions
we can compute service curves for all flows, using the strat-
egy of either Theorem 8 or Theorem 12. We start with the
latter.

vice curve forf}.



Theorem 19 Consider a posted write subfloﬁ,j > 1,
and let(T;”, S?’) be the service curve computed by Theo-
rem 12. Ther@TJ =T/ + Lb”dge , 5% = S/") is a valid ser-

vice curve forff and all its aggregate subflows.

Proof.
Posted writes have strictly higher priority than delayed

transactions coming from the same bridge, hence they can

get interference from them. However, since transactiomas ar

non preemptive, there might be a delayed transaction trans-

mitting at timet = 0, which can blockf? while transmit-
ting at mostLtid9¢ bytes. A valid strict service curve for
/] can therefore be computed as:

bridge

Lb'r‘idge S’J

7 7

(17)

=(t— (17 +

63 = ( z/j)S i S/]

)

which concludes the proof]

Theorem 20 Consider a delayed write forward subflgf,
and let(7;”, S/’) be the service curve computed by Theo-
rem 12 with:

min

elem — min(L?inv min {L;mn})

filehp]

(18)

13 gli .54
T S +Efﬁ€hp§ 5
17 __ . ’
Si Zflqehrpf Pl

a valid service curve fof .

Then(T/ = S =S =Y jacny P1) IS

Proof.

The service curvéT)”, S/7) computed by Theorem 12 is
a valid strict service curve for the aggregateféfand the
all subflows inhp’. Since we assumed thgf has strictly
lower priority than subflows inhp{, we can obtain a strict
service curve fogfij by subtracting the maximum traffic re-
guested by all subflows ihlp{. Therefore:

Bl=-T")S? — Y (tp+6))  (19)
flenpl™
Y s Y o)
flehp! £ €hp]
TzI]Sz/J 4+ Z ‘q ¥ 62 .
S n L AR RS
i flqehp; pl flqehp“z

Inthe case wherg; > S}’ and therefore the round-robin

Theorem 21 Consider a network element witk® con-
nected bridges. Define:

S = min(LP, min {LPM)) (22)
fleinter]
RRg:Krforjzl; (23)
RR} = (K — 1)r for j > 1; (24)
RR] CLmin
TI _ i ;SI _ elem i (25)
C Lmin RR!

elem

Then a valid service curve fofj, Wherefj is a delayed
subflow orj = 1, is:

Y
T's" + Zflqeinterg (Sl
S — Zfquinterg Pl

(TV =

K2

Sj=5= > ).
fquinterg
(26)
Furthermore, a valid service curve for a posted write sub-
flow f7 with j > 1 and all its aggregate subflows is:

i TS’ 4 queznterj 6 me’dge
(Tz - S/ — Z J )
bis Einterg Pl Si
Si=s'— 3 . (27)
I Ginter{

Proof.

The proof for this theorem uses a similar methodology
as the proofs of Theorems 12,18-20; in what follows, we
provide a proof sketch. We first compute a service curve
(T",5") for f! and all interfering traffic assuming round-
robin arbitration with the maximum number of retrying
bridges/peripherals. Equations (22)-(25) can thus be com-
puted using the same idea as Theorem 12. A strict service
curve for justf/ can then be derived using the same strat-
egy as Theorem 20, assuming that all interfering traffic has
higher priority. Finally, note that posted writes in a bréidg
can still be blocked at timé = 0 by at most one delayed

transactions, hence we need to add a téﬁ;ﬁi asin The-

orem 19.0

Note that whenLZ}» ~>> r (that is, retries are much
smaller than normal transactions), we obtain= 0, 5’ =
C, and the service curve of Theorem 21 is equivalent to
Theorem 8. Given the new service curves, equations for
burstiness can be derived using either Theorem 10 (for
posted writes buffered in a bridge) or Theorem 6 (for all
other subflows) and the system can be solved using the ap-
proach described in Section 3.3; it is easy to see that all
equations are still linear in the burstiness. In turn, this |
us compute the delay for the forward flow.

based bound can not be applied, another service curve can To compute the delay for the backward flow, we can use

be derived using the same idea as Theorem 8.

the following solution: we remove all forward subflows of
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Figure 9: Periodic task Arrival Curve derivation for the Tar
get

fi from the system, and we introduce backward subflows
2 ..., fMi, each with an arrival curvg! = r, 5; = 0)

which represents a retry operation. Since after waiting for

the forward delay the transaction has completed at the tar- 4
get, the backward delay at each step is the delay of trans-

mitting a single retry. We then compute service curves
2 BZM for each backward subflow according to Theo-
rems 18-21, and subflow delay using Theorem 5. The over-
all backward delay can then be obtained by summing the
delay of subflowsf?, ..., f; note that we do not con-
sider subflows?, fZ since their delay is part of the forward

Mi=1 " Mi a5 shown in Figure 8.

burstiness forf’* = f}, and then for all remaining back-
ward subflows. The remaining problem is how to deter-
mine A™#  A™in_|n many cases, the value &f™** can

be bounded based on the bus topology and bridge specifi-
cation using a framework similar to the one described in
this section (for example, if all bridges that outputs sub-
flows of f; do not buffer any other transactioA™** can
simply be set as the maximum of ak R as computed

in Theorem 12). Otherwise, assuming that flgwhas a
deadline equal to its periogl, a safe assumption is to set
A = P At = L. Athird and possibly more ef-
ficient alternative would be to perform a fixed point itera-
tion, starting from the described safe value and then gpgttin
a newA™2* gt each step based on the computed forward de-
lay. While we do not detail such technique in this paper, we
plan to explore this direction as part of our future work.

. Conclusions

In this paper, we have introduced an analysis to compute
deterministic performance bounds for the PCI bus. While
our presented analysis is based on network calculus frame-
work, we believe that the presented methodology could also
be applied to extract a model for the PCl and other COTS in-
terconnections based on different analysis frameworlcs, su
as real-time calculus [6] and delay algebra [4]. Finally, we

Let us know consider delayed reads. Since delayed reads e geveloping a tool to automatically extract scheduabil
use the retries in the same way as delayed writes, we cany equations and compute flow delays based on a high level

reuse Theorems 18-21 to compute service curves. How-

ever, since the real data is carried by the backward flow, we
must first use backward subflows to compute system-wide

bounds on burstiness. Forward delay can then be computetii:e
using the same substitution technique used for backward

delay in delayed writes. To simplify the analysis, assume
that both the maximum and minimum delay»2*, A™»

description of the hardware architecture and logical com-
munication.
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