
A Network Calculus Based Analysis for the PCI Bus

Rodolfo Pellizzoni, Min-Young Nam, Richard M. Bradford∗, and Lui Sha
Department of Computer Science,

University of Illinois at Urbana-Champaign, Champaign, IL61801
{mnam, rpelliz2}@uiuc.edu, rmbradfo@rockwellcollins.com, lrs@cs.uiuc.edu

Abstract

I/O configurations play a crucial role in many critical
embedded systems. In particular, avionics systems are often
I/O bounded and I/O scheduling problems have been a ma-
jor source of integration problems. A deterministic analysis
of communication between CPU and peripherals is needed
to derive correct schedulability tests. In this paper, we de-
tail an analysis based on network calculus theory for the
PCI bus, which is becoming more and more popular in the
embedded market. Our efforts illustrate the difficulties in
applying a rigorous analysis framework to COTS compo-
nents which often lack precise specification.

1. Introduction

In many hard real-time systems, such as avionics, more
and more features are added to faster and cheaper hardware,
leading to rapid increases in system size and complexity.
One important challenge is how to analyze the schedulabil-
ity impacts of different software and hardware design deci-
sions early in the architecture design process. The schedu-
lability equations are functions of software task designs
and hardware designs. Building such analysis is complex
as modern embedded systems are increasingly built by us-
ing Commercial Off-The-Shelf (COTS) components in an
attempt to reduce costs and time-to-market: it is becom-
ing difficult to rely on completely specialized hardware and
software solutions since development time and costs raise
dramatically while performance is often lower when com-
pared to equivalent COTS components commonly used for
general purpose computers. For example, the specialized
SAFEbus backplane [5] used in the Boing777 is capable of
transferring data up to 60 Mbps, while a modern COTS in-
terconnection such as PCI Express 2.0 [1] can reach transfer
speeds over three orders of magnitude greater at 16 Gbyte/s.

∗ R. M. Bradford is with Rockwell Collins Inc., Cedar Rapids, IA
52498, U.S.A.

Figure 1: Input/Output Configuration Example

Unfortunately, COTS components employ a variety of tech-
niques, like deep pipelining and caching, that are designed
to improve average case performance but makes it difficult
to obtain the safe worst-case bounds that are required for
critical real-time embedded systems.

In this context, I/O peripheral interconnects and I/O con-
figurations play a crucial role. Avionics systems are often
I/O bounded and I/O scheduling problems have been a ma-
jor source of integration problems found in practice. When
data is exchanged through a COTS interconnection such as
the PCI bus [1], the overall delay for data transfer must be
inserted in the schedulability equation as a blocking time
whenever a thread must wait for data to be updated. How-
ever, this value greatly depends on the architecture of the
hardware including the bus topology and the behavior of
peripheral devices that share the bus. The effect of I/O de-
vices is becoming one of the major causes of wrongful anal-
ysis for tightly scheduled systems: for example, in [3] it is
shown that contention for access to main memory between
the CPU and peripherals can increase the execution time of
a task up to 44%.

At the same time, a hardware engineer is often forced to
choose among many alternative I/O configurations early in



the design phase. Figure 1 shows an example of a PCI read
transaction that can be implemented in multiple topologies.
The thread executing on the processor can read data directly
from the peripheral device or from a memory connected to
the front side bus or the PCI bus, while the peripheral de-
vice is writing to the memory. During this operation, there
will be other interferences from different devices connected
to the bus. Clearly, an efficient and automated way to ana-
lyze multiple configurations of bus topology and communi-
cation flows is required.

In this paper, we describe an analysis framework that
is able to compute deterministic worst-case performance
bounds on communication through the widely used PCI
bus. We estimate the worst-case delay time of all communi-
cation flows based on the PCI topology and all other in-
teractions from PCI peripheral devices, and calculate for
each PCI bridge the buffer size required to maintain sys-
tem stability. Our analysis works by mapping PCI physical
elements (bridges and bus segments) to network elements
(routers and point-to-point connections) and then applying
the theory of network calculus [2], which is able to com-
pute deterministic delay bounds for network traffic.

We would like to stress that our contribution is not in
the development of network calculus theory itself; on the
contrary, network calculus has already been applied and ex-
tended to compute deterministic bounds in real-time sys-
tems and embedded architectures (for example, see [6] and
[7]). Our objective is to show how a rigorous analysis
methodology can be applied to a COTS system in order to
extract safe bounds in spite of the extreme complexity of the
architecture and the lack of a precise specification: most in-
dustrial standards are only concerned with preserving log-
ical equivalence, but most timing and performance related
aspects are left open to manufacturer implementation. As
such, it is essential to make sound assumptions when the
precise working of each COTS component can not be de-
termined, often because manufacturers are wary to release
implementation details for fear of losing their competitive
edges. In this sense, we believe that our methodology can be
helpful to produce analysis frameworks for other COTS in-
terconnections. Our final goal is to build a tool that is able to
apply the described analysis to a high level system specifi-
cation, thus enabling efficient space exploration of bus con-
figurations.

The rest of the paper is organized as follows. In Section
2 we briefly describe the PCI standard. In Section 3 we de-
tail our analysis and provide relevant examples. Finally, we
provide concluding remarks in Section 4.

2. PCI Bus Standard

The Peripheral Component Interconnect (PCI) is
the current standard family of communication archi-
tectures for motherboard-peripheral interconnection in
the personal computer market; it is also widely popu-

Figure 2: PCI-based platform Example

lar in the embedded domain [1]. The standard can be
divided into two parts: alogical specification, which de-
tails how the CPU configures and accesses peripherals
through the system controller, and aphysical specifica-
tion, which details how peripherals are connected to and
communicate with the motherboard. In this section we fo-
cus on the PCI/PCI-X physical specification, which uses a
shared bus architecture with support for multiple bus seg-
ments connected by bridges. A typical PCI-based plat-
form is shown in Figure 2. The CPU and main mem-
ory are connected through the Front Side Bus (FSB),
which has a CPU-manufacturer dependent implementa-
tion. A host bridge is also connected to the FSB and of-
fers access to the rest of the system using the PCI standard.
Each further PCI-to-PCI bridge connects two PCI bus seg-
ments together. The architecture resembles a tree, where
the host bridge represents the root, bridges are interme-
diate nodes, and peripherals represent leaves. Data trans-
fers are carried out on each bus segment as non-preemptive
bus transactions; the entity that starts a transaction (ei-
ther a peripheral or the CPU) is known as theinitiator,
while the entity that receives the transaction (either an-
other peripheral or a memory) is known as thetarget. Each
bus segment has a separate arbiter which determines the or-
der in which initiators are allowed to transmit. If the ini-
tiator and target of a transaction reside on different bus
segments, then the transaction data is stored and for-
warded by intermediate bridges; note that due to the
tree-shaped structure of PCI, there is a single path be-
tween any two bus segments. The PCI standard offers
support for several types of transactions between differ-
ent bus segments:posted writes, delayedwrites and reads,
and locking transactions. The latter are considered ob-
solete as in the last PCI specification and can further
cause very high worse-case delay, hence we do not con-



sider them.
The simplest type of PCI transaction isposted write. A

posted write completes at the initiator before it completes
at the target: in other words, after data has been moved
from the initiator to the first intermediate bridge, the ini-
tiator can disconnect from the bus and considers the trans-
action successfully completed. In this way, data is posted
from bridge to bridge until the target is reached, similarly
to what happens in a packet-switched network; this is the
main reason why we base our analysis on network calcu-
lus theory [2]. The drawback is that the initiator has no way
to know when the transaction completes at the target. When
an acknowledgement is required, such as for all read op-
erations, a delayed transaction can be employed. In a de-
layed transaction, the initiator first sends a write/read re-
quest to the first intermediate bridge, which buffers it and
then terminates the transaction with aretry command. The
retry command notifies the initiator that the transaction has
not completed successfully, and forces it to retry sending the
same request over and over until the bridge acknowledges it
(since write requests contains actual data, to avoid saturat-
ing the bus the bridge terminates further retries before the
data is sent). The first intermediate bridge then sends the
request to the second bridge on the transaction path using
the same retry mechanism. In this way the request is prop-
agated through the intermediate bridges until it reaches and
completes at the target; at this point the last intermediate
bridge buffers the completion of the transaction (which in-
cludes the actual data for a read transaction), and acknowl-
edges the next request received by the next-to-last interme-
diate bridge. In this way, the acknowledgement is propa-
gated back until it reaches the initiator and the transaction
ends. To preserve coherence, the standard further imposes
a detailed set of precedence rules on posted and delayed
transactions; in particular, a posted write must always be al-
lowed to pass a buffered delayed transaction, while a de-
layed transaction can never pass a buffered posted write.
The rule is typically enforced by assigning strictly higher
priority to posted writes than delayed transactions. We re-
fer the interested reader to [1] for addition details on the
PCI standard.

3. PCI Communication Analysis

For ease of exposition, we first describe our analysis for
a system where all transactions are posted writes. We treat
all system communication as a set ofN flows{f1, . . . , fN},
each between a specified source (an initiator) and destina-
tion (a target). For each flowfi, let Ri(t) be its cumula-
tive function, i.e. the total number of bytes transmitted by
transactions that belong to the flow during interval[0, t]
(with the assumption thatRi(0) = 0). We then model
each flowfi using an arrival curveαi(t) : ∀s, t, s ≤ t :
Ri(t) − Ri(s) ≤ αi(t − s). Intuitively, αi(t) is a worst-
case bound on the amount of traffic generated by the ini-

Figure 3: Equivalence of Bus segments and Subflows

tiator in any interval of lengtht. The arrival curve captures
the burstiness of the initiator; as the flow goes through the
network, it is buffered multiple times and as a result the
worst case burstiness increases. Network calculus provides
a way to compute the burstiness at each stage and relates
it to the maximum delay encountered by any byte in the
flow. More specifically, iffi goes throughMi network el-
ements, we can defineMi + 1 subflows, wheref0

i repre-
sents the flow produced at the initiator,f

j
i , 0 < j < Mi

is the flow after passing throughj network elements, and
fMi

i is the output flow. The goal is then to compute an ar-
rival curveα

j
i for each subflowf

j
i , with α0

i = αi. There
remains a problem: network calculus considers a system
comprised of multiple network elements, or routers, con-
nected by point-to-point lines, but the PCI architecture em-
ploys shared buses. We can still rely on the network cal-
culus model using the following transformation: we treat
each bus segment, together with all bridges that transmit
data on it, as a unique network element. Network elements
are then connected if the corresponding bus segments are
interconnected by a bridge. A clarifying picture is shown
in Figure 3, for a flowsfi that goes throughMi = 4 bus
segments numberedB1, B2, B3, B4. To simplify the anal-
ysis, we introduce the following notation: for each subflow
f

j
i , 0 < j ≤ Mi, we letout

j
i be its output network element

/ bus segment, and for each subflowf
j
i , 0 ≤ j < Mi, we

let in
j
i be its input network element / bus segment. For ex-

ample, in Figure 3out2i = B2, in
2
i = B3. It follows that

in
j
i = out

j+1
i , which expresses the condition that subflows

are concatenated.
Using the network calculus approach, for each subflow

f
j
i we then define aservice curveβj

i : ∀s, t, s ≤ t :

R
j
i (t) − R

j−1
i (s) ≥ β

j
i (t − s). The intuitive idea is that

in any interval of lengtht, the “service” provided tof j
i (i.e.,

how much more traffic is seen onf j
i at the end of the in-

terval compared to the traffic seen onf
j−1
i at the beginning

of the interval) is at leastβj
i (t). Service curves are impor-

tant because of the following three essential network calcu-
lus theorems:

Theorem 1 (backlog bound, Theorem 1.4.1 in [2])
The maximum backlog (number of buffered bytes) suf-



Figure 4: Linearized arrival and service, with theorem
bounds

fered by bytes going from subflowf j−1
i to subflowf

j
i is

B
j
i = sups≥0{αj−1

i (s) − β
j
i (s)}.

Theorem 2 (delay bound, Theorem 1.4.2 in [2])The
maximum delay suffered by a byte going from sub-
flow f

j−1
i to subflowf

j
i is D

j
i = sups≥0{t : α

j−1
i (s) =

β
j
i (s + t), t ≥ 0}.

Theorem 3 (flow concatenation, Theorem 1.4.3 in [2])
α

j
i (t) = (αj−1

i ⊘ β
j
j )(t) where (α ⊘ β)(t) is called

the min-plus deconvolution ofα by β and is defined as
supu≥0 {α(t + s) − β(s)}.

The flow concatenation theorem lets us compute the ar-
rival curveα

j
i at each step. Delay bounds are used to ob-

tain the total flow delayDi =
∑

1≤j≤Mi
D

j
i . The backlog

expresses an important condition on buffer sizes: in partic-
ular, our analysis is valid only under the assumption that
buffers never overflow, which is true if buffer sizes are at
least equal to the computed backlog. Unfortunately, Theo-
rems 1-3 are hard to compute for general arrival and ser-
vice curves. To simplify the analysis, we therefore propose
to adopt a linearized representation. We consider an up-
per bound to the arrival curveαj

i (t) of the formδ
j
i + tρ

j
i ,

whereδ
j
i represents theburstinessandρ

j
i the arrival rate

for α
j
i (t). As for service curveβj

i (t), we consider a lower
bound (which itself is a valid service curve) of the form
max(0, (t − T

j
i )Sj

i ), whereT
j
i is theservice delayandS

j
i

is theservice rate. For simplicity, given this representation
we writeα

j
i (t) ≡ (δj

i , ρ
j
i ) andβ

j
i (t) ≡ (T j

i , S
j
i ). Figure 4

shows example arrival and service curvesα
j−1
i andβ

j
i , re-

spectively. Theorems 1-3 can then be rewritten as follows:

Theorem 4 (linearized backlog bound)The maxi-
mum backlogBj

i is bounded iffρj−1
i ≤ S

j
i , in which case

B
j
i = δ

j−1
i + ρ

j−1
i T

j
i .

Proof.
Refer to curvesαj−1

i (t), βj
i (t) in Figure 4. If ρ

j−1
i >

S
j
i (intuitively, α

j−1
i (t) increases faster thanβj

i (t)), then
lims→∞ α

j−1
i (s) − β

j
i (s) = ∞, hence the backlog is un-

bounded. If insteadρj−1
i ≤ S

j
i , then the maximum of

Figure 5: Periodic task Arrival Curve derivation for the Ini-
tiator

α
j−1
i (s) − β

j
i (s) is clearly fors = T

j
i , from whichB

j
i =

δ
j−1
i + ρ

j−1
i T

j
i . The proofs for linearized delay bound and

flow concatenation can be similarly derived (see [2] for de-
tails).2

Theorem 5 (linearized delay bound)The delay D
j
i is

bounded iffρj−1
i ≤ S

j
i , in which caseDj

i = T
j
i +

δ
j−1

i

S
j
i

.

Theorem 6 (linearized flow concatenation)αj
i (t) is

bounded iffρj−1
i ≤ S

j
i , in which caseρj

i = ρ
j−1
i , δ

j
i =

δ
j−1
i + ρ

j−1
i T

j
i .

Intuitively, the delay bound is the maximum horizontal
deviation ofαj−1

i , β
j
i and the backlog and burstiness are

both equal to the maximum vertical deviation. Also note
thatρj

i = ρ
j−1
i , i.e. only the burstiness changes among sub-

flows of the same flow, not the arrival rate. We can there-
fore use a single rateρi for the entire flow and compute
just δj

i for each subflow. Finally, note that delay and back-
log are bounded if and only if the rate provided by the ser-
vice curve is at least equal to the rate required by the sub-
flow, which is to be expected.

The rest of the discussion is organized as follows. In Sec-
tion 3.1 we detail how the compute the arrival curveα0

i for
the input subflowf0

i . In Section 3.2 we then show how to
compute the service curvesβj

i for all successive subflows
of fi. Section 3.3 shows a detailed example of our method-
ology, and Section 3.4 shows how to improve the computed
end-to-end delayDi. Finally, Section 3.5 extends the anal-
ysis to cover delayed transactions.

3.1. Arrival curve derivation

The computation ofα0
i depends on the characteristics

of the initiator and its produced data. Assume that initia-
tor traffic is strictly periodic, i.e. the initiator generatesei

bytes of traffic everypi time units. A clarifying example is
provided in Figure 5, where we plot the cumulative func-
tion Ri(t) for the flow and its arrival upper bound(δi, ρi).



0 1 2 3 4 5 6 7 8 9 10

x 10
7

0

1

2

3

4

5

6
x 10

5

time (ns)

tim
e 

(n
s)

 

 

Arrival Curve Bound

Cumulative Bus Time

Figure 6: Measured Arrival Curve.

Lemma 7 Consider an initiator with strictly periodic traf-
fic ei, pi. Thenα0

i ≡ (δ0
i = ei, ρi = ei

pi
) is an arrival curve

for the peripheral traffic.

Proof.
Let R̄(t) be the cumulative function whereei bytes of data
are first produced at timet = 0, and at each subsequent pe-
riod thereafter. It is easy to verify that̄R(t) captures the
critical instant, i.e. for any other cumulative functionR(t),
R̄(t− s− 0) ≥ R(t)−R(s). To show thatα0

i is a valid ar-
rival curve, we then only need to check thatα0

i (t) ≥ R̄(t)
for all t, which is trivial.2

However, often such detailed information is not avail-
able, for example because the average transmission rateρi

of the peripheral is known, but the transmitted traffic is not
exactly periodic. In this case, we propose a testing method-
ology that is well suited to the analysis of COTS peripher-
als. A trace of activity for a PCI/PCI-X peripheral can be
gathered monitoring the bus with a logic analyzer. For ex-
ample, Figure 6 shows the first 100ms of a measured trace
for a 100MB/s ethernet network card in term of cumulative
time taken by peripheral transactions on a 32bit, 33Mhz PCI
bus segment; the whole recorded trace consisted of 1000
transactions. We developed a simple algorithm that com-
putes the arrival curveα0

i from a trace in quadratic time
in the number of bus transactions. The algorithm performs
a double iteration over all transactions, computing at each
step the amount of peripheral traffic in an interval between
the beginning of any transaction and the end of any other
successive transaction. The computed values are inserted
into a list ordered by interval length, and all non maxi-
mal values are culled. Figure 6 shows the result in the in-
terval [0, 100ms]; note that the computed arrival curve is
expressed in term of required bus time rather than bytes, so
to obtainα0

i we must multiply it by the speed of the bus.
If multiple traces are recorded, then an upper bound can be
computed by merging the computed arrival curves for each
trace and again removing all non maximal values. Finally,

if the average transmission rateρi is known, then a bursti-
ness valueδ0

i can be obtained as the minimum value such
thatδ0

i + tρi is greater than or equal to the computed bound
for all t.

3.2. Service curve derivation

We now focus on the derivation of a service curveβ
j
i

for subflow f
j
i . Assume thatf j

i is produced by element
Bk, i.e. out

j
i = Bk. Intuitively, the service curveβj

i de-
pends on two elements: the subflows that are input toBk,
and the transmission policy followed by all elements that
compriseBk (bus segment arbiter and bridges that trans-
mit on Bk). The PCI standard does not impose any strict
constraint on bus segment arbitration, instead mentioning
only a weak fairness condition, in the sense that a back-
logged subflow must eventually be allowed to transmit. We
therefore consider only the following work-conserving con-
straint: if subflowf

j−1
i is backlogged andBk is free, then

f
j
i must be transmitted. This is equivalent to assuming that

f
j−1
i has the lowest priority among all other input flows to

Bk (f j
i is transmitted iff no other input flow is backlogged).

To simplify the analysis, we define the set ofinterfering in-
put flows as follows:

inter
j
i = {f q

l : l 6= i, in
q
l = out

j
i}. (1)

In other words,inter
j
i is the set of all input flows toBk ex-

cept forf j−1
i . Furthermore, letC be the speed of bus seg-

mentBk in bytes/s. The following result can then be proved:

Theorem 8 A valid service curve β
j
i is (T j

i =
P

f
q
l
∈inter

j
i

δ
q

l

C−
P

f
q
l
∈inter

j
i

ρl
, S

j
i = C −

∑

f
q

l
∈inter

j
i
ρl).

Proof.
A function x(t) is said to be a strict service curve if for
any interval of lengtht during whichf

j−1
i is backlogged,

f
j
i transmits at leastx(t) bytes. We now show that the de-

finedβ
j
i is a strict service curve; it is then trivial to see that

any strict service curve is also a valid service curve for the
flow (see Proposition 1.3.5 in [2]).

Due to the work-conserving assumption, we can obtain a
strict service curve by computing the total amount of traffic
thatBk can transmit in any interval of timet minus traffic
from all interfering flows. Therefore:

β
j
i = max(0, Ct −

∑

f
q

l
∈inter

j
i

α
q
l ) (2)

= max(0, (C −
∑

f
q

l
∈inter

j
i

ρl)t −
∑

f
q

l
∈inter

j
i

δ
q
l ) (3)



= max(0, (C−
∑

f
q

l
∈inter

j
i

ρl)(t−
∑

f
q

l
∈inter

j
i
δ

q
l

C −
∑

f
q

l
∈inter

j
i
ρl

)) (4)

which concludes the proof.2

We can then apply Theorem 6 to obtain arrival curveα
j
i .

Corollary 9 α
j
i (t) is bounded iff

∑

f
q

l
:inq

l
=out

j
i
ρl ≤ C, in

which case:

δ
j
i = δ

j−1
i + ρi

∑

f
q

l
∈inter

j
i
δ

q
l

C − ∑

f
q

l
∈inter

j
i
ρl

. (5)

The inequality
∑

f
q

l
:inq

l
=out

j
i
ρl ≤ C expresses the nec-

essary condition that the sum of the rates of all incoming
flows to a bus segment must be smaller thanC, i.e. the bus
segment utilization must not exceed one.

If we know more about the implementation of arbiters
and bridges, we can improve the bound of Corollary 9. First
of all, assume that all posted writes that are input to the same
segmentBk are buffered inside a unique FIFO buffer in
each bridge, which is typically true for commercial bridges
since it simplifies design. We can obtain a tighter bound by
removing all subflows in the same buffer from the interfer-
ing set, since a newly arrived byte in the FIFO can not in-
terfere with bytes from different subflows that are already
stored in the FIFO. In network calculus terminology, sub-
flows stored in the same FIFO queues are referred to asag-
gregatetraffic. We can formally define aggregate subflows
as follows:

aggr
j
i = {f q

l : l 6= i, out
q
l = out

j−1
i ∧in

q
l = in

j−1
i = out

j
i}.

(6)
In other words, aggregate subflows are all subflow between
the same input and output network elements asf

j−1
i . We

can then obtain a valid service curve for the aggregate using
Theorem 8 with the following interfering set:

inter
j
i = {f q

l : l 6= i, in
q
l = out

j
i , f

q
i 6∈ aggr

j
i }, (7)

which is the same as Equation (1) except that we removed
the aggregate flows. Unfortunately, Theorem 6 does not
hold for aggregate flows, but we can instead prove the fol-
lowing:

Theorem 10 (linearized concatenation with aggregate flow)
α

j
i (t) is bounded iff ρi ≤ S

j
i , in which case

δ
j
i = δ

j−1
i + ρiT

j
i + ρi

P

f
q
l
∈aggr

j
i

δ
q

l

S
j
i

.

Proof.
The theorem follows directly from Theorem 6.4.1 in [2], ap-
plying it to the case of multiple aggregate flows and to a lin-
earized service curve.2

Applying Theorems 8, 10 to computeδj
i yields the fol-

lowing corollary:

Corollary 11 α
j
i (t) is bounded iff

∑

f
q

l
:inq

l
=out

j
i
ρl ≤ C,

in which case:

δ
j
i = δ

j−1
i + ρi

∑

f
q

l
∈inter

j
i
δ

q
l +

∑

f
q

l
∈aggr

j
i
δ

q
l

C − ∑

f
q

l
∈inter

j
i
ρl

. (8)

Note that the difference between Equations 8 and 5 is
that the rate of aggregate flows does not need to be sub-
tracted fromC.

A second burstiness bound can be obtained by adding ad-
ditional constraints on bus segment arbitration. While the
standard does not require it, it suggests that bus arbitra-
tion be round-robin. Therefore, in what follows we assume
that arbitration follows a simple round-robin model where
each bridge and each peripheral that transmit on the sys-
tem is given one round1. To model round-robin arbitration,
we need additional information: for each flowfi, assume
that we know the minimum length in bytes of any trans-
actionLmin

i and the maximum lengthLmax
i . Furthermore,

since bridges can merge transactions together, letLbridge

be the maximum length in bytes of transactions generated
by a bridge. Then we can obtain a service curve consider-
ing that in the worst case all bridges and all peripherals con-
nected to the bus transmit for the maximum amount of time
(which we callRR

j
i ), except for the subflowf j

i which trans-
mits for its minimum bit lengthLmin

i .

Theorem 12 Consider a network element withK
connected bridges. A valid service curveβj

i is

(T j
i =

RR
j
i

C
, S

j
i =

CLmin

elem

Lmin

elem
+RR

j
i

), where:

Lmin
elem = min(Lmin

i , min
f

q

l
∈aggr

j−1

i

{Lmin
l }) (9)

and

RR
j
i = KLbridge +

∑

f0

l
∈inter

j
i

Lmax
l for j = 1; (10)

RR
j
i = (K − 1)Lbridge +

∑

f0

l
∈inter

j
i

Lmax
l for j > 1; (11)

Proof.
We distinguish two cases: 1)j = 1, meaning that the input
subflowf

j−1
i = f0

j is buffered in a peripheral; 2)j > 1,

meaning thatf j−1
i is buffered in a bridge.

Considerj = 1 first. We show that the effect of round-
robin arbitration is to force a periodic schedule wheref

j
i

can not transmit for at mostRR
j
i

C
time units, and can then

transmit for at leastL
min

elem

C
time units. This implies that the

1 In practice, most commercial bridges employ as default a double-level
round-robin scheme where the first level arbitration is between the up-
stream bridge and all other peripherals/bridges; however,the proposed
model can be easily generalized.



definedβj
i is a lower bound to a strict service curve forf

j
i ,

and therefore it is a lower bound to a service curve which is
itself a valid service curve forf j

i . Assume that all other pe-
ripherals and bridges that transmits on the bus segment are
backlogged, and are enqueued beforef

j
i in the round-robin

queue. Then a maximum amount of trafficRR
j
i will be sent

beforef j
i is allowed to transmit assuming that allK bridges

transmitLbridge amount of traffic and all interfering periph-
eral with input subflowsf0

l transmits their maximum length
Lmax

l . Since furthermore forj = 1, Lmin
elem reduces toLmin

i ,
this concludes the proof for the first case.

Now consider thej > 1 case. We follow the same ap-
proach, except that in the periodic schedule we consider the

minimum timeLmin

elem

C
during which all aggregate flows can

transmit. Therefore,RR
j
i

C
now considers transmissions from

all peripherals and all otherK − 1 bridges, and a safe lower
bound onLmin

elem can be obtained by taking the minimum
transaction length among all aggregate flows.2

The obtainedβj
i can be used with Theorems 6 and 10

to computeαj
i . We can therefore ask ourselves whether us-

ing the service curve of Theorem 8 or Theorem 12 yields
a lower bound on the burstinessδ

j
i . In general, this is not a

trivial question, since the service ratesS
j
i computed by The-

orems 8, 12 are not comparable. Obviously ifρi is smaller
than theS

j
i for a service curve, we can not use it. In the

case where we can apply both service curves, we have to
consider two cases. If all burstiness valuesδ

q
l required to

computeδj
i are known, then we can simply use both service

curves and take the minimum of the computedδ
j
i . How-

ever, as we show in Section 3.3 there are cases when theδ
q
l

are unknown, and a system of equations must be solved to
obtain them. In this case, it is preferable to consider a sin-
gle service curve to avoid inserting a minimum function in
the system. It is possible to prove that when no aggregate
flow is considered, Theorem 12 always provides a smaller
service delayT j

i and therefore a lowerδj
i . For aggregate

flows, this is not true since the burstiness depends also on
the service rate. However, using Theorem 12 reduces the
number of variablesδq

l thatδj
i depends on. As we show in

Section 3.3, mutual dependencies between flows can reduce
the available bus utilization, hence this is desirable.

3.3. Example

We now provide an example to show how the analy-
sis can be applied to a concrete case. It is important to
note that the burstiness bounds of Equations 5, 8 directly
hold only for feed-forwardconfigurations, where there are
no circular dependencies among flows. In this case, Equa-
tions 5, 8 can be applied to iteratively compute all bursti-
ness termsdj

i . In practice, many configurations do have cir-
cular dependencies among flows. Consider the system with

Figure 7: Two Flows Circular Example

two posted write flowsf1, f2 and three bus segments de-
picted in Figure 7, where we assume thatδ0

1 , δ0
2 are known

andρ1 = ρ2 = ρ ≤ 0.5C. Using Corollary 9 would yield
six equations for burstinessδ1

1 , δ
2
1 , δ3

1 , δ
1
1 , δ

2
1 , δ

3
1 :

δ1
1 = δ1 + ρ1

δ2

2

C−ρ2

δ1
2 = δ2 + ρ2

δ2

1

C−ρ1

δ2
1 = δ1

1 + ρ1
δ1

2

C−ρ2

δ2
2 = δ1

2 + ρ2
δ1

1

C−ρ1

δ3
1 = δ2

1 + ρ1
δ2

C−ρ2

δ3
2 = δ2

2 + ρ2
δ1

C−ρ1

(12)

Note that there is a circular dependencies betweenδ2
1 , δ

1
2

and betweenδ2
2 , δ

1
1 , hence we cannot compute them directly.

To solve this problem, we follow the methodology delin-
eated in Proposition 2.4.1 in [2]. We first note that Equa-
tions 5, 8 are linear in the burstiness terms. We can there-
fore use them to obtain a linear system of equations of the
form ~x = A~x +~b, where~x is a vector of unknown bursti-
ness values,A is a square matrix and~b is a vector of known
values. Furthermore, it can be shown that following Equa-
tions 5, 8 bothA and~b are non negative. Hence, if all eigen-
values ofA are within the unit circle,(I −A)−1 is also non
negative and~x can be computed as~x = (I−A)−1~b. By fol-
lowing thetime stoppingprinciple [2], it can then be proven
that~x indeed provides a valid upper bound for burstiness.

Following the above technique, we can compute
δ1
1 , δ

2
1 , δ

1
1 , δ

2
1 using the following system:

~x =









δ1
1

δ2
1

δ1
2

δ2
2









, A =









0 0 0 k

1 0 k 0
0 k 0 0
k 0 1 0









,~b =









δ1

0
δ2

0









,

(13)
where k = ρ

C−ρ
. The eigenvalues are±

√
k2 + k and

±
√

k2 − k; by solving forρ we obtain that a solution ex-
ists if ρ ≤ 3−

√
5

2 C ≈ 0.382C. It is interesting to see that the
condition implies that we are not able to find delay bounds
even when bus utilization is as low as 77%. Note, how-
ever, that the derived condition onA is only sufficient: if
all eigenvalues are within the unit circle, then we can com-
pute bounded delay and backlog, but even if the eigenval-
ues are outside the unit circle, delay and backlog can still be



bounded. In fact, the derivation of necessary stability con-
ditions for general networks is still an open problem.

A final consideration is relative to parametric analysis.
So far in this section we have assumed that all inputs (data
sizesei and periodspi) were constants, but in practice, we
are interested in the case where some of the inputs are vari-
ables. Assume for example that a data sizeei is allowed
to vary in an interval[emin

i , emax
i ]. Assuming that delay

bounds can be computed forei = emax
i , we would like to

solve the system in Equation 13 symbolically as a func-
tion of the variableei. However, for this to be possible,
we have to prove that if delay bounds can be computed
for ei = emax

i , then they can also be computed for any
ei ∈ [emin

i , emax
i ].

Note that according to Lemma 7 and 22, reducing the
data sizeei will decrease the input arrival curveα0

i . We
now prove that decreasing the arrival curve leads to both
a reduction in the delay (Corollary 14) and in the output
arrival curve (Theorem 15) for each network element. The
time stopping principle can then again be applied to show
that the delay bound computed forei = emax

i is a valid up-
per bound for anyei ∈ [emin

i , emax
i ]. Hence, as long as de-

lay bounds are finite forei = emax
i the symbolic solution of

the system~x = A~x +~b will yield a correct value.

Theorem 13 Consider a node that offers a service curveβ

and suppose the node is stable for some arrival curveα, i.e.
for all sufficiently larget, β(t) ≥ α(t). Now consider a sec-
ond arrival curveαℓ such thatαℓ(t) ≤ α(t) ∀t. Assume
for simplicity thatα, αℓ, andβ are all continuous. Then the
worst-case delay bound, given by the maximum horizontal
distance between the arrival curve and service curve, is no
larger whenαℓ is the arrival curve than whenα is the ar-
rival curve.

Proof.
For anyt, let d̂(t) denote the horizontal distance between
α(t) andβ, and letd̂ℓ(t) denote the horizontal distance be-
tweenαℓ and β. Thenα(t) = β(t + d̂(t)). By assump-
tion, αℓ(t) ≤ α(t). Thenβ(t + d̂ℓ(t)) = αℓ(t) ≤ α(t) =

β(t + d̂(t)). Sinceβ must be nondecreasing by definition,
this implies thatt + d̂ℓ(t) must be no greater thant + d̂(t)

and therefore that̂dℓ(t) ≤ d̂(t). Since this holds for an ar-
bitrary t, the maximum ofd̂ℓ(t) must be no larger than the
maximum ofd̂(t). 2

Corollary 14 Under the assumptions of the previous the-
orem, the worst-case backlog bound, given by the maxi-
mum vertical distance between the arrival curve and ser-
vice curve, is no larger whenαℓ is the arrival curve than
whenα is the arrival curve.

Proof.

By assumption,αℓ(t) ≤ α(t) ∀t. Then αℓ(t) − β(t) ≤
α(t) − β(t) ∀t. 2

According to (Theorem 1.4.3) in [2], when a flow having
arrival curveα passes through a node that offers a service
curveβ, then the output flow is constrained by the min-plus
deconvolution ofα by β. We use this to prove a similar re-
sult to the previous theorems, this time for the output flow.

Theorem 15 Consider a node that offers a service curveβ

and suppose the node is stable for some arrival curveα.
Now consider a second arrival curveαℓ such thatαℓ(t) ≤
α(t) ∀t. Assume for simplicity thatα, αℓ, andβ are all con-
tinuous. Then the worst-case output envelope given by the
min-plus deconvolution whenαℓ is the arrival curve for the
node is no larger than whenα is the arrival curve.

Proof.
Recall that the min-plus deconvolution ofα andβ is (α ⊘
β)(t) = supu≥0 {α(t + u) − β(u)} . By assumption, the
node is stable, so the supremum happens within a bounded
interval ofu. Moreover,α andβ are continuous by assump-
tion. Thus, by Weierstrass’s theorem, which states that a
continuous function on a nonempty compact set (such as
a closed and bounded set of real numbers) attains its supre-
mum, we conclude that for everyt there is at least one value
of u such that(α ⊘ β)(t) = α(t + u) − β(u).

Consider an arbitraryt, and letu∗ be the value ofu
that maximizesα(t + u) − β(u). Now consider(αℓ ⊘
β)(t) = supu≥0 {αℓ(t + u) − β(u)} . By the same argu-
ments as above, there exists at least one value ofu, call
one of themu∗

ℓ , that maximizesαℓ(t + u) − β(u). From
the assumption thatα upper-boundsαℓ, it follows that
(αℓ ⊘β)(t) = αℓ(t +u∗

ℓ )−β(u∗
ℓ ) ≤ α(t + u∗

ℓ )−β(u∗
ℓ ) ≤

α(t + u∗) − β(u∗) = (α ⊘ β)(t). 2

3.4. Improving End-to-End Delay

Following the methodology described in Section 3.3, all
subflow burstiness valuesdj

i can be computed, and there-
fore the service curve parametersS

j
i , T

j
i can also be de-

termined. Following Theorem 5, the end-to-end delayDi

for flow fi can then by determined by computing the de-
lay boundDj

i on each elementout
j
i and then summing over

all 1 ≤ j ≤ Mi, which yields:

Di =
∑

1≤j≤Mi

(

T
j
i +

δ
j−1
i

S
j
i

)

. (14)

However, the obtained end-to-end delay is pessimistic.
Network calculus provides a way to reduce two adjacent
network elements to a unique element by concatenating the
respective service curves for flowfi. We can therefore ob-
tain a new end-to-end delay bound by first concatenating



all service curvesβ1
i , . . . , βMi

i together, and then applying
Theorem 5. This newly obtained bound is less pessimistic
that the one of Equation 14, an effect known as ”pay bursti-
ness only once”.

Theorem 16 (service concatenation, Theorem 1.4.6 in [2])
Assume flowfi traverses elementsout

j
i , out

j+1
i with

service curves β
j
i (t), βj+1

i (t). Then the concate-
nation of the two elements offers a service curve
β

j,j+1
i (t) = (βj

i (t) ⊗ β
j+1
i )(t), where (β1 ⊗ β2)(t)

is called the min-plus convolution ofβ1 andβ2 and is de-
fined asinf0≤s≤t {β1(t − s) + β2(s)}.

Theorem 17 (linearized service concatenation)
β

j,j+1
i (t) = max(0, (t − T

j
i − T

j+1
i )min(Sj

i , S
j+1
i )).

By iteratively applying Theorem 17, a global ser-
vice curveβ

1,Mi

i ≡ (T 1,Mi

i , S
1,Mi

i ) can be obtained, with
T

1,Mi

i =
∑

1≤j≤Mi
T

j
i andS

1,Mi

i = min1≤j≤Mi
S

j
i . Fi-

nally, usingβ
1,Mi

i the following end-to-end delay bound
can be obtained:

Di =
∑

1≤j≤Mi

T
j
i +

δ0
i

min1≤j≤Mi
S

j
i

. (15)

3.5. Delayed Transactions

We now extend the analysis to deal with delayed transac-
tions. If the initiator and target reside on different bus seg-
ments, a delayed transaction requires two flows: a forward
flow from initiator to target, and a backward flow from tar-
get to initiator. In the case of delayed writes, the forward
flow carries the real data, while the backward flow pro-
vides acknowledgement to the initiator. We can therefore
first model the forward flow in the same way as we did for
posted write and compute burstiness bounds for all other
flows. Then, we can compute delay for the backward flow
and sum it to the delay of the forward flow to obtain the
overall flow delay. Delayed reads are more difficult to ana-
lyze: the forward flow only carries a read request, while the
real data is carried by the backward flow. A clarifying exam-
ple of delayed read is shown in Figure 8, where{f0

i , . . . f4
i }

represent the forward flow, and{f̄0
i , . . . , f̄4

i } represent the
backward flow. Note thatfMi−1

i ≡ f̄0
i andfMi

i ≡ f̄1
i , i.e.

the forward subflow on the last bus segment, which obtains
the data from the peripheral, is now the part of the backward
flow which receives its input flow from̄f0

i . As shown in Fig-
ure 8, we can interpret the backward flow to be a posted
write in the opposite direction with̄f0

i as the flow gener-
ated by an initiator. In what follows, we first show how the
analysis can be extended to account for delayed writes, and
then we explain how delayed reads can be modeled.

When delayed transactions are present in the system, we
must consider the effect of the associated retries on all trans-
actions. The PCI specification imposes that posted writes be
allowed to have priority over delayed request, while there

Figure 8: PCI Delayed Read Transaction

is no requirement on the ordering of delayed transaction
within themselves. We shall again make very general as-
sumptions, as dealing with each special case would be oth-
erwise extremely complex: we assume that posted writes
are buffered in a FIFO queue as before, and that this queue
has strictly higher priority than all delayed transactionsin
the same bridge. Therefore, theinter

j
i andaggr

j
i defini-

tions for a posted writef j
i , whenj > 1, must be changed to

remove delayed transactions in the same bridge. As for each
delayed subflow, we simply use the pessimistic assumption
that all other transactions have higher priority. It is useful to
introduce the set ofhigher priority subflows for a delayed
subflowf

j
i as follows:

hp
j
i = {f q

l : l 6= i, out
q
l = out

j−1
i , in

q
l = in

j−1
i }. (16)

Note that since we do not make any assumption on the rela-
tive ordering of delayed transactions among each other, the
aggregate set for a delayed subflow is always void. Finally,
all retries are comprised by the same number of bytesr.
Since retries can be continuously retransmitted on the bus,
we need to impose some assumptions on the bus to bound
the bandwidth consumed by retries. We shall therefore as-
sume that the bus arbitration is round-robin, and further-
more thatLmin

i ≥ r for all flowsfi. Under this assumptions
we can compute service curves for all flows, using the strat-
egy of either Theorem 8 or Theorem 12. We start with the
latter.

Theorem 18 Consider a subflowf1
i (either posted or de-

layed), and let(T ′1
i , S′1

i ) be the service curve computed by
Theorem 12. Then(T 1

j = T ′1
i , S1

j = S′1
i ) is a valid ser-

vice curve forf1
i .

Proof.
SinceLmin

q ≥ r for all flowsfq (and thus alsoLbridge ≥ r),
the computedRR1

j in Theorem 12 is still a worst case in-
terference time under round-robin. The proof then directly
follows.2



Theorem 19 Consider a posted write subflowf j
i , j > 1,

and let(T ′j
i , S

′j
i ) be the service curve computed by Theo-

rem 12. Then(T j
i = T

′j
i + Lbridge

S
′j
i

, Si
j = S′i

i ) is a valid ser-

vice curve forf j
i and all its aggregate subflows.

Proof.
Posted writes have strictly higher priority than delayed
transactions coming from the same bridge, hence they can
get interference from them. However, since transactions are
non preemptive, there might be a delayed transaction trans-
mitting at timet = 0, which can blockf j

i while transmit-
ting at mostLbridge bytes. A valid strict service curve for
f

j
i can therefore be computed as:

β
j
i = (t − T

′j
i )S′j

i − Lbridge =
(

t −
(

T
′j
i +

Lbridge

S
′j
i

))

S
′j
i ,

(17)
which concludes the proof.2

Theorem 20 Consider a delayed write forward subflowf j
i ,

and let(T ′j
i , S

′j
i ) be the service curve computed by Theo-

rem 12 with:

Lmin
elem = min(Lmin

i , min
f

q

l
∈hp

j
i

{Lmin
l }). (18)

Then(T j
i =

T
′j
i

S
′j
i

+
P

f
q
l
∈hp

j
i

δ
q

l

S′i
i
−

P

f
q
l
∈hp

j
i

ρl
, Si

j = S′i
i −∑

f
q

l
∈hp

j
i
ρl) is

a valid service curve forf j
i .

Proof.
The service curve(T ′j

i , S
′j
i ) computed by Theorem 12 is

a valid strict service curve for the aggregate off
j
i and the

all subflows inhp
j
i . Since we assumed thatf

j
i has strictly

lower priority than subflows inhp
j
i , we can obtain a strict

service curve forf j
i by subtracting the maximum traffic re-

quested by all subflows inhp
j
i . Therefore:

β
j
i = (t − T

′j
i )S′j

i −
∑

f
q

l
∈hp

j−1

i

(tρl + δ
q
l ) (19)

= t(S′j
i −

∑

f
q

l
∈hp

j
i

ρl) − T
′j
i S

′j
i −

∑

f
q

l
∈hp

j
i

δ
q
l , (20)

= (t −
T

′j
i S

′j
i +

∑

f
q

l
∈hp

j
i
δ

q
l

S′i
i − ∑

f
q

l
∈hp

j
i
ρl

)(S′j
i −

∑

f
q

l
∈hp

j
i

ρl). (21)

2

In the case whereρi > S
′j
i and therefore the round-robin

based bound can not be applied, another service curve can
be derived using the same idea as Theorem 8.

Theorem 21 Consider a network element withK con-
nected bridges. Define:

Lmin
elem = min(Lmin

i , min
f

q

l
∈inter

j
i

{Lmin
l }) (22)

RR
j
i = Kr for j = 1; (23)

RR
j
i = (K − 1)r for j > 1; (24)

T ′ =
RR

j
i

C
; S′ =

CLmin
elem

Lmin
elem + RR

j
i

(25)

Then a valid service curve forf j
i , wheref

j
i is a delayed

subflow orj = 1, is:

(T j
i =

T ′S′ +
∑

f
q

l
∈inter

j
i
δ

q
l

S′ − ∑

f
q

l
∈inter

j
i
ρl

, Si
j = S′ −

∑

f
q

l
∈inter

j

i

ρl).

(26)
Furthermore, a valid service curve for a posted write sub-
flowf

j
i with j > 1 and all its aggregate subflows is:

(T j
i =

T ′S′ +
∑

f
q

l
∈inter

j
i
δ

q
l

S′ − ∑

f
q

l
∈inter

j
i
ρl

+
Lbridge

S
j
i

,

Si
j = S′ −

∑

f
q

l
∈inter

j
i

ρl). (27)

Proof.
The proof for this theorem uses a similar methodology
as the proofs of Theorems 12,18-20; in what follows, we
provide a proof sketch. We first compute a service curve
(T ′, S′) for f

j
i and all interfering traffic assuming round-

robin arbitration with the maximum number of retrying
bridges/peripherals. Equations (22)-(25) can thus be com-
puted using the same idea as Theorem 12. A strict service
curve for justf j

i can then be derived using the same strat-
egy as Theorem 20, assuming that all interfering traffic has
higher priority. Finally, note that posted writes in a bridge
can still be blocked at timet = 0 by at most one delayed
transactions, hence we need to add a termLbridge

S
j
i

as in The-

orem 19.2

Note that whenLmin
elem >> r (that is, retries are much

smaller than normal transactions), we obtainT ′ = 0, S′ =
C, and the service curve of Theorem 21 is equivalent to
Theorem 8. Given the new service curves, equations for
burstiness can be derived using either Theorem 10 (for
posted writes buffered in a bridge) or Theorem 6 (for all
other subflows) and the system can be solved using the ap-
proach described in Section 3.3; it is easy to see that all
equations are still linear in the burstiness. In turn, this lets
us compute the delay for the forward flow.

To compute the delay for the backward flow, we can use
the following solution: we remove all forward subflows of



Figure 9: Periodic task Arrival Curve derivation for the Tar-
get

fi from the system, and we introduce backward subflows
f̄2

i , . . . , f̄Mi

i , each with an arrival curve(δ̄j
i = r, ρ̄i = 0)

which represents a retry operation. Since after waiting for
the forward delay the transaction has completed at the tar-
get, the backward delay at each step is the delay of trans-
mitting a single retry. We then compute service curves
β̄2

i , . . . , β̄Mi

i for each backward subflow according to Theo-
rems 18-21, and subflow delay using Theorem 5. The over-
all backward delay can then be obtained by summing the
delay of subflowsf̄2

i , . . . , f̄Mi

i ; note that we do not con-
sider subflows̄f0

i , f̄2
i since their delay is part of the forward

flowsfMi−1
i , fMi

i as shown in Figure 8.
Let us know consider delayed reads. Since delayed reads

use the retries in the same way as delayed writes, we can
reuse Theorems 18-21 to compute service curves. How-
ever, since the real data is carried by the backward flow, we
must first use backward subflows to compute system-wide
bounds on burstiness. Forward delay can then be computed
using the same substitution technique used for backward
delay in delayed writes. To simplify the analysis, assume
that both the maximum and minimum delay∆max, ∆min

required to propagate a read request at each stage is known,
such that the maximum forward delay for the firstMi − 1
segments is(Mi − 1)∆max. Since the output forward flow
fMi

i carries data, we need to analyze the last bus segment
(B4 in the example of Figure 8); this implies deriving an ar-
rival curve forfMi−1

i ≡ f̄0
i (f3

i in the example). Again sup-
pose that the flow is periodic withei bytes of traffic in ev-
ery periodpi. The worst case arrival pattern for the cumu-
lative functionRi(t) for subflow f̄0

i is shown in Figure 9,
where we assume that in one period the read request reaches
the target after the maximum delay(Mi − 1)∆max, and in
all subsequent periods it reaches the target after the mini-
mum delay(Mi − 1)∆min. The following result can then
be proved using the same strategy as Lemma 7.

Lemma 22 Consider an initiator issuing a delayed read
for ei bytes every periodpi. Thenᾱ0

i ≡ (δ̄0
i = ei(1 +

(Mi−1)(∆max−∆min)
pi

), ρ̄i = ei

pi
) is an arrival curve for sub-

flow f̄0
i ≡ fMi−1

i .

Using the result of Lemma 22 we can first compute

burstiness forfMi

i ≡ f̄1
i , and then for all remaining back-

ward subflows. The remaining problem is how to deter-
mine ∆max, ∆min. In many cases, the value of∆max can
be bounded based on the bus topology and bridge specifi-
cation using a framework similar to the one described in
this section (for example, if all bridges that outputs sub-
flows of fi do not buffer any other transaction,∆max can
simply be set as the maximum of allRR

j
i as computed

in Theorem 12). Otherwise, assuming that flowfi has a
deadline equal to its periodpi, a safe assumption is to set
∆max = pi

Mi−1 , ∆min = r
C

. A third and possibly more ef-
ficient alternative would be to perform a fixed point itera-
tion, starting from the described safe value and then setting
a new∆max at each step based on the computed forward de-
lay. While we do not detail such technique in this paper, we
plan to explore this direction as part of our future work.

4. Conclusions

In this paper, we have introduced an analysis to compute
deterministic performance bounds for the PCI bus. While
our presented analysis is based on network calculus frame-
work, we believe that the presented methodology could also
be applied to extract a model for the PCI and other COTS in-
terconnections based on different analysis frameworks, such
as real-time calculus [6] and delay algebra [4]. Finally, we
are developing a tool to automatically extract schedulabil-
ity equations and compute flow delays based on a high level
description of the hardware architecture and logical com-
munication.

References

[1] Conventional PCI 3.0, PCI-X 2.0 and PCI-E 2.0 Specifica-
tions. http://www.pcisig.com/specifications/.

[2] J.-Y. L. Boudec and P. Thiran.Network Calculus: A The-
ory of Deterministic Queuing Systems for the Internet Series.
Springer, 2001.

[3] R. Pellizzoni, B. D. Bui, M. Caccamo and L. Sha Coschedul-
ing of CPU and I/O Transactions in COTS-based Embedded
Systems. InProceedings of the IEEE Real-Time Systems Sym-
posium, Dec 2008.

[4] P. Jayachandran and T. Abdelzaher. Delay Composition Al-
gebra: A Reduction-based Schedulability Algebra for Dis-
tributed Real-Time Systems. InProceedings of the IEEE Real-
Time Systems Symposium, Dec 2008.

[5] K. Hoyme and K. Driscoll. Safebus(tm).IEEE Aerospace
Electronics and Systems Magazine, pages 3439, Mar 1993.

[6] L. Thiele, S. Chakraborty and M. Naedele. Real-Time Calcu-
lus for scheduling hard real-time systems. InProceedings of
IEEE International Symposium on Circuits and Systems (IS-
CAS), vol. 4, pp. 101104, 2000.

[7] E. Wandeler, L. Thiele, M. Varhoef and P. Lieverse. System
architecture evaluation using modular performance analysis:
a case study. InInternational Journal on Software Tools for
Technology Transfer, vol. 8-6, pp. 649-667, 2006.


