
Coscheduling of Real-Time Tasks and PCI Bus Transactions

Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, Lui Sha
Department of Computer Science, University of Illinois at Urbana-Champaign

{rpelliz2, bachbui2, mcaccamo, lrs}@cs.uiuc.edu

Abstract

Integrating COTS components in critical real-time sys-
tems is challenging. In particular, we show that the inter-
ference between cache activity and I/O traffic generated by
COTS peripherals can unpredictably slow down a real-time
task by up to 44%. To solve this issue, we propose a frame-
work comprised of three main components: 1) a COTS-
compatible device, the peripheral gate, that controls pe-
ripheral access to the system; 2) an analytical technique
that computes safe bounds on the I/O-induced task delay;
3) a coscheduling algorithm that maximizes the amount of
allowed peripheral traffic while guaranteeing all real-time
task constraints. We implemented the complete framework
on a COTS-based system using PCI peripherals, and we
performed extensive experiments to show its feasibility.

1. Introduction

Modern embedded systems are increasingly built by us-
ing Commercial Off-The-Shelf (COTS) components in an
attempt to reduce costs and time-to-market. This trend is
true even for companies in the safety-critical avionic mar-
ket such as Lockheed Martin Aeronautics, Boeing and Air-
bus [3]: it is becoming difficult to rely on completely spe-
cialized hardware and software solutions since development
time and costs raise dramatically while performance is of-
ten lower when compared to equivalent COTS components
commonly used for general purpose computers. For exam-
ple, the specialized SAFEbus backplane [5] used in the Bo-
ing777 is capable of transferring data up to 60 Mbps, while
a modern COTS interconnection such as PCI Express 2.0
[14] can reach transfer speeds over three orders of magni-
tude greater at 16 Gbyte/s.

Unfortunately, the predictable integration of COTS com-
ponents in real-time systems poses significant challenges
from a timing perspective. In particular, in this paper we fo-
cus on the interaction between the CPU cache and COTS
peripherals contending for shared main memory access. We
assume that peripherals are connected to the system through

a peripheral interconnection such as the PCI bus, and that
they have master (also called DMA) capabilities: they can
directly initiate read/write transactions towards either other
peripherals or the main memory. Bus master mode is es-
sential to avoid overloading the processor, especially in the
case of fast I/O interfaces that could otherwise produce mil-
lions of interrupts per second. However, since the mem-
ory is a shared resource in the system, peripheral trans-
actions can interfere with cache line fetches produced by
the CPU memory controller whenever a task experiences
a cache miss. This interaction can slow down task execu-
tion tremendously: our experiments in Section 5 show that
task execution time in the presence of heavy I/O load is in-
creased up to 44%.

The described effect is potentially dangerous for real-
time embedded systems that employ a partitioned architec-
ture, such as the ARINC 653 avionic standard [2]: differ-
ent computational components are put into isolated parti-
tions, each of which is assigned a fixed, cyclic time slice
of the CPU. However, the standard does not offer any iso-
lation from the effects of bus traffic: COTS peripherals on
the market do not typically provide any form of time pro-
tection/virtualization. Hence, a peripheral assigned to one
partition is free to transmit and interfere with cache fetches
while another partition is executing on the CPU.

In general, two types of solutions can be feasibly applied
to this problem. The first is to account for the effect of all pe-
ripheral traffic in the worst case computation time (wcet) of
each task. Note that since different partitions and peripher-
als are typically integrated very late in the development cy-
cle, testing is not enough. Instead, we need an analysis that
can compute the increase in wcet given design-time bounds
on peripheral traffic. The problem of this solution is that, as
already mentioned, the wcet increment can be very large,
up to 44%. The approach that we propose in this paper is
to coschedule CPU tasks and I/O transactions: in fact, as-
suming we find a way to control when peripherals are al-
lowed to transmit, we can create a bus transmission sched-
ule and synchronize it with the CPU task schedule. We can
then formulate our coscheduling objective as follows: max-
imize the traffic transmitted by each peripheral, while guar-
anteeing that each task meets its original deadline.

(a) P-Gate controlling a Network Card

� � � � �� � � � ���	
� � �	
 �
� � �� �� � � � ���	
� � � �� � �� � � �	
 � �

�� � �� � � �	
 � �

�� � �� �
�� � �� �

(b) State Machine

D

CLK

Q

Q#

D

CLK

Q

Q#

REQ#

BLOCK

CLK

RST

REQO#

(c) Schematic

Figure 1: Peripheral Gate

Previous work. In a previous paper [15], we introduced
an analysis to compute wcet for a task subject to periph-
eral interference given a trace of the task’s cache activity
and an upper bound function on the amount of traffic trans-
mitted by peripherals. However, the analysis makes a fairly
restrictive assumption: it must know the exact time at which
each cache miss is produced for a specific task run. This in-
formation can not be gathered by running the task on real
hardware; rather, a CPU simulator must be employed. Writ-
ing such simulator is difficult for an embedded application,
as all used peripherals must also be simulated.

Key contributions. We provide three main contribu-
tions. First of all, in Section 2 we introduce a device for
the PCI/PCI-X bus, called a peripheral gate (or p-gate for
short), that allows us to control peripheral access to the bus.
The implemented p-gate is compatible with COTS devices:
no modification to either the peripheral or the motherboard
is required. Second, in Section 3 we provide a new wcet
analysis that removes our previous restrictive assumption.
The main idea is to divide each task into a series of su-
perblocks; each superblock can include branches and loops,
but superblocks must be executed in sequence. By running
the task, the CPU can collect information on the number
of cache misses in each superblock. We can then compute
a safe wcet bound by determining a worst case arrival pat-
tern of cache misses in each superblock. As we show in Sec-
tion 3.3, the result is rather counterintuitive when compared
to the classic critical instant theorem [11]; in fact, spread-
ing the cache misses throughout the superblock results in
higher wcet than when all cache misses happen at its be-
ginning. Furthermore, while the computed bound is more
pessimistic than the one in [15] since the available infor-
mation is coarser, in practice for many applications of in-
terest the difference is negligible. Finally, our third con-
tribution described in Section 4 is a run-time coschedul-
ing heuristic that builds on top of the described p-gate and
wcet analysis. We implemented a new peripheral (based
on an FPGA board), the reservation controller, which ex-
ecutes the coscheduling algorithm and controls all p-gates.
The reservation controller uses run-time information pro-

vided by the OS to compute available task slack and it dy-
namically opens the p-gates when it is safe to do so. In Sec-
tion 5, we show that our heuristic performs well compared
to the best possible run-time, adaptive and predictive algo-
rithm. We conclude by discussing related work in Section 6
and future work in Section 7.

2. Peripheral Gate

In this section, we first provide a brief overview of the
Peripheral Component Interconnect (PCI) standard and then
describe our p-gate implementation. PCI is the current stan-
dard family of architectures for motherboard - peripheral
interconnection in the personal computer market; it is also
widely popular in the embedded domain [14]. The stan-
dard can be divided in two parts: a logical specification,
which details how the CPU configures and accesses periph-
erals through the system controller, and a physical specifi-
cation, which details how peripherals are connected to and
communicate with the motherboard. Several widely differ-
ent physical specifications have been published; here we fo-
cus on the PCI/PCI-X physical specification, which uses a
shared bus architecture with support for multiple bus seg-
ments connected by bridges. To gain access to the shared
bus, each peripheral must first obtain permission from the
bus segment arbiter using a standard handshake with two
point-to-point, active-low wires, REQ# and GNT#. The pe-
ripheral first lowers REQ# to signal a request for the bus,
and the arbiter grants permission by lowering GNT#. The
peripheral then waits for the bus to become free and starts
a data transfer (also called a bus transaction). The hand-
shake finishes after both the peripheral and the arbiter raise
REQ# and GNT# in succession; if the peripheral wants to
initiate another transaction, it must reacquire the grant.

We implemented the p-gate based on a PCI extender
card, a debug card that is interposed between the periph-
eral card and the motherboard and provides easy access to
all signals. We modified the card to intercept the REQ# sig-
nal and to control it based on an input block signal com-
ing from the reservation controller. The main idea is to force

� ���)(tE

� � � � � � � � � � � ��� � � � � t�� � �
36=t 14=∆

(a) Upper Bound Function E(t).� ���
)(tE� � � � � � � � � � � ��� � � � � t�� � �

(b) Modified Upper Bound Function Ē(t).

Figure 2: Peripheral Load Functions.

REQ# to remain high whenever block is active; in this
way, the peripheral is not able to get the grant from the ar-
biter and thus can not transmit. The actual implementation
is more complex: if block is raised while REQ# is active
low, we could violate the PCI specification by immediately
deactivating REQ#. Instead, we must allow the current re-
quest to finish and then we can block all further requests. A
corresponding synchronous state machine is shown in Fig-
ure 1(b) and an optimized schematic in Figure 1(c), where
REQ# is the input from the peripheral and REQO# is the
controlled output to the arbiter. Our implementation uses
discreet components: two positive-edge-triggered D flip-
flops, two nor gates and an inverting tri-state buffer. The
output buffer is required by the specification to set the out-
put to high impedance whenever the bus is reset. We mea-
sured a worst case propagation delay for the circuit of 7ns,
which allowed us to run the bus at a frequency up to 66Mhz.

The reservation controller outputs a block signal for
each p-gate in the system. We implemented a prototype
reservation controller based on a Xilinx ML505 board. The
board is connected to the system using a PCI-E motherboard
slot, and uses a Virtex-5 FPGA to implement a custom
peripheral. All registers used by the peripheral are mem-
ory mapped; a PCI driver is used to allocate the registers
in the CPU virtual memory space, hence tasks running in
user mode can communicate with the peripheral perform-
ing memory reads/writes. The reservation controller can run
in two different modes: in data acquisition mode (see Sec-
tion 3.2) it simply collects statistics about the task execution
while keeping all p-gates closed. In execution mode (see
Section 4) it runs the coscheduling algorithm and dynam-
ically controls the p-gates. This solution moves as much
computation as possible in hardware on the FPGA, thus

minimizing the overall CPU overhead.

3. Wcet Analysis

In [15], we first presented an analysis to compute the
worst case delay suffered by a task due to peripheral in-
terference. We consider a typical COTS architecture where
the processor is connected to the rest of the system through a
dedicated bus known as the Front Side Bus (FSB). The sys-
tem memory is connected to the FSB as a slave device. Sim-
ilarly, other peripherals can be either connected directly on
the FSB [1] or located on a separate interconnection such
as PCI and connected to the FSB through a bridge [14].
The analysis computes bounds on task delay induced by
contention at the FSB level under the following assump-
tions: all FSB transactions initiated by the CPU consist of
cache replacement/fetches from main memory to the last
cache level, and all other FSB transactions consist of DMA
reads/writes in main memory initiated by peripherals. The
CPU is stalled whenever waiting for a cache miss (i.e. no
hyperthreading is used), and the FSB protocol is known, in
particular regarding the arbitration used for accessing the
bus and the maximum length of peripheral transactions.

Information about both the task under analysis and the
load imposed by peripherals on the bus is needed. For each
peripheral we consider an upper bound on the amount of
time that the FSB is busy executing read/write transactions
initiated by that peripheral. We can then sum the bounds for
all peripherals to obtain a cumulative function E(t): for ev-
ery t > 0, the total time that the FSB is occupied executing
peripheral transactions in any interval of length t is at most
equal to E(t). An example of bound E(t) is shown in Fig-
ure 2(a). For tasks, the analysis in [15] assumes that a pre-
cise pattern of cache misses is available. The pattern can be
used to produce a cache access function c(t) for the task.
An example of cache access function is plotted in Figure 3,
where the x axis represents the task execution time and the y
axis represents the cumulative cache replacement/fetch time
on the FSB, assuming no interference from peripheral ac-
tivity. At each time t, a slope of 1 indicates that the CPU
is stalled waiting for a cache line replacement/fetch, while
a slope of 0 indicates that the CPU is executing task code.
Each cache access function corresponds to a specific execu-
tion of the task. In general, if a task is tested with M dif-
ferent input vectors, then M different functions must be de-
rived and the analysis is run M times.

We now briefly describe the main results obtained in
[15]. For simplicity, we assume that each cache miss re-
sults in a single cache line fetch with no write-back, tak-
ing a constant time L to complete the read transaction (in
all figures, L = 2). The maximum length of a peripheral
transaction is L′ = 3, and the FSB uses round-robin, non-
preemptive scheduling (in [15] it is shown how each of these

� ���)(tc

� � � � � � � � � � � ��� � � � � t

1t 2t 3t 4t 5t
wcet

(a) Access Function c(t).� ���)(tB

� � � � � � � � � � � ��� � � � � t

1t 2t 3t 4t 5t
wcet

(b) Blocking Function B(t).

Figure 3: Cache Functions.

assumptions can be lifted by slightly modifying the analy-
sis). Let N be the number of cache fetches for the task un-
der analysis. We denote the set of N fetches, in temporal
order, as {f1, f2, . . . , fN}. For each fetch fi, let ti be the
time at which the cache fetch operation is initiated in the
cache access function c(t) (see Figure 3(a)), i.e. the fetch
start time in the schedule unmodified by peripheral activ-
ity. Then ∀i, j : 1 ≤ i ≤ j ≤ N , D(fi, fj) represents
the worst case cumulative delay suffered by all fetches in
{fi, . . . , fj}. The main idea of the analysis is to iteratively
derive bounds on D(fi, fj) in order to finally obtain an up-
per bound Ub on the overall delay D(f1, fN) suffered by
the task.

To simplify the analysis, we introduce new representa-
tions for peripheral load and cache misses. We define the
cache blocking function B(t) as follows:

∀t, t < t1 : B(t) = 0
∀i, 1 ≤ i < N, ∀t, ti ≤ t < ti+1 : B(t) = iL′

∀t, t ≥ tN : B(t) = NL′

(1)
The B(t) function associated to the c(t) function of Figure
3(a) is shown in Figure 3(b). Intuitively, B(t) represents the
maximum cumulative time that fetch operations can be de-
layed by the effect of peripheral transactions: since the bus
arbitration is round-robin, each fetch can be delayed for at
most the maximum length L′ of any one peripheral transac-
tion. We prove the following lemma:

Lemma 1 (1 in [15]) For each i, j : i ≤ j, D(fi, fj) ≤
B(tj)−B(t−i), where B(t−) = limx→t− B(x).

Lemma 1 provides a delay bound based on the trace

of cache misses. A bound based on the peripheral load is
shown in the next lemma.

Lemma 2 (2 in [15]) Let Ē(t) = sup{∆|∆ ≤ E(t + ∆)}.
Then Ē(tj − ti) is an upper bound for D(fi, fj).

A graphical representation of the modified peripheral load
function Ē(t) is shown in Figure 2(b). The main intuition
behind this result is that there is a circular dependency be-
tween the amount of peripheral load that interferes with
{fi, . . . , fj} and the delay D(fi, fj): when peripheral traf-
fic is injected on the FSB, the start time of each fetch is de-
layed. In turn, this increases the time interval between fi

and fj and therefore more peripheral traffic can now inter-
fere with those fetches. Our key idea is that we do not need
to modify the start times {ti, . . . , tj} of fetches when we
take into account the peripheral traffic injected on the FSB:
instead, we can take this effect into account using the equa-
tion that defines Ē(t), where ∆ represents both the maxi-
mum delay suffered by fetches and the increase in the time
interval for interfering traffic. Lemmas 1, 2 can be combined
resulting in the following main Theorem:

Theorem 3 (3 in [15]) For each i, j : i ≤ j, min(B(tj) −
B(t−i), Ē(tj − ti)) is an upper bound for D(i, j).

Algorithm 1 Compute D(f1, fN)
1: Ub := 0
2: Q := {}
3: for j = 1 . . . N do
4: add (tj , yi = 0) to Q
5: uj = min

(
B(tj)−B(t−j),minzi=(ti,yi)∈Q{Ē(tj −

ti)− yi}
)

6: for all zi = (ti, yi) in Q do
7: yi := yi + uk

8: Ub := Ub + uk

9: return Ub

While Theorem 3 expresses an upper bound Ub on the
delay D(i, j), unfortunately Ub is not tight, since it could
be refined by splitting {fi, . . . , fj} into subintervals and re-
computing the bound on each subinterval. Using the strat-
egy of iteratively computing bounds on multiple subinter-
vals, Algorithm 1 was first first introduced in [15] to com-
pute a tight bound on the overall delay D(f1, fN) in O(N2)
time. Algorithm 1 iteratively computes a delay term uj for
each fetch fj ; the delay terms are then added together to ob-
tain the final bound on D(f1, fN). In the algorithm descrip-
tion, Q is a list of pairs zi = (ti, yi) ordered by increas-
ing values of ti. For each pair, ti is the time associated with
fetch fi, while yi represents the accumulated delay, i.e. at
step k of the algorithm, yi =

∑j−1
k=i uk. The following the-

orem provides the main result of [15]:

0 1 2 3 4 5 6 7 8 9 10

x 10
7

0

1

2

3

4

5

6
x 10

5

time (ns)

tim
e

(n
s)

Peripheral Load Bound

Cumulative Bus Time

Figure 4: Measured Peripheral Load.

Theorem 4 (7 in [15]) Algorithm 1 computes an up-
per bound Ub to D(f1, fN). The bound is tight, in the sense
that there exists a schedule of peripheral transactions con-
sistent with E(t) for which D(f1, fN) = Ub.

The main problem of the described analysis is that ob-
taining a precise cache access function is very hard. Both
running the task on real hardware and using static analy-
sis [16] only provides imprecise information, i.e. number of
cache misses in an interval. While it is theoretically possible
to use a cycle-accurate CPU emulator, in practice it is very
difficult: the exact architecture of the CPU and cache must
be known, which is often not the case in COTS systems, and
all used peripherals must be simulated as well. Therefore, in
this paper we use an alternative solution: we assume that at
compile time, a control flow graph for the task can be de-
rived comprised of a series of S superblocks {s1, . . . , sS}.
Each superblock can include branches and loops, but su-
perblocks must be executed in sequence. For each si, we
measure the worst case execution time wceti without pe-
ripheral interference and the worst case number of cache
misses CMi, either through static analysis or making use of
CPU self-measures. We can then obtain a safe bound on task
delay in the following way: for each superblock si, we con-
sider the worst case pattern of CMi cache misses in an inter-
val of length wceti, i.e. the pattern that results in the highest
possible delay. In the remaining of this section, we first de-
tail how to obtain the described measurement in a concrete
setting and then we provide our new analysis results.

3.1. Peripheral Load Evaluation

The peripheral load function can be obtained in two
ways. If the peripheral is an I/O interface and the node
is part of a distributed system using a real-time commu-
nication protocol, then a bound on the peripheral activity
can be derived analytically. Otherwise, we propose a test-
ing methodology that is well suited to the analysis of COTS

peripherals1. A trace of activity for a PCI/PCI-X peripheral
can be gathered monitoring the bus with a logic analyzer.
For example, Figure 4 shows the first 100ms of a measured
trace for a 100Mb/s ethernet network card in term of cu-
mulative time taken by peripheral transactions on a 32bit,
33Mhz PCI bus segment; the whole recorded trace con-
sisted of 1000 transactions. We developed a simple algo-
rithm that computes the peripheral load function E(t) from
a trace in quadratic time in the number of bus transactions.
The algorithm performs a double iteration over all trans-
actions, computing at each step the amount of peripheral
traffic in an interval between the beginning of any transac-
tion and the end of any other successive transaction. The
computed values are inserted into a list ordered by inter-
val length, and all non maximal values are culled. Figure 4
shows the resulting E(t) function in the interval [0, 100ms].
If multiple traces are recorded, then an upper bound can be
computed by merging the computed load functions for each
trace and again removing all non maximal values. Finally,
note that the computed E(t) expresses a load bound for the
bus segment on which the peripheral is located. In the case
of the PCI/PCI-X architecture, the segment is connected to
the FSB through one or multiple bridges, each of which has
buffering capabilities. In this case, a safe bound on the gen-
erated FSB load can be obtained summing a factor B/C to
the computed E(t) function, where B is the sum of the sizes
of all traversed buffers and C is the speed of the FSB.

3.2. Cache Miss Measurement

We devised a testing methodology to experimentally ob-
tain the worst case execution time and worst case number of
cache misses for each superblock. Our implementation uses
the Intel Core Microarchitecture architectural performance
counters [7], but other CPU architectures such as IBM Pow-
erPC provide similar support for CPU self-measures. Sup-
port was added by modifying the Linux/RK kernel [13].
The Core Microarchitecture specifies support for three ar-
chitectural performance counters, each of which can be con-
figured to count a variety of internal events. In particular,
we used Counter 0 to count the number of elapsed CPU
clock cycles and Counter 1 to count the number of level-
2 cache misses. To accurately measure task execution with-
out the effects of OS overhead, we configured both counters
to be active only when the CPU is executing in user mode.
Finally, we allowed reading the counter values from user
mode with the rdpmc instruction (the counters can still be
written and configured only in kernel mode) to reduce mea-
surement overhead.

1 While testing can fail to reveal the real worst case, we argue that it
is nevertheless an accepted and commonly used methodology in the
industry.

cpuid; //synchronization barrier
mov ECX, 0000 0000H;
rdpmc; //read Counter 0
//move value from DL:EAX to reservation controller
mov [RESCON COUNTER0 H], DL;
mov [RESCON COUNTER0 L], EAX;
mov ECX, 0000 0001H;
rdpmc; //read Counter 1
mov [RESCON COUNTER1 H], DL;
mov [RESCON COUNTER1 L], EAX;

Figure 5: Checkpoint Assembler Code.

Counters are read inside each task by adding the check-
point code in Figure 5 at the end of each superblock. The
cpuid instruction inserts a synchronization barrier, i.e. it
makes sure that all instructions fetched before cpuid are
completed before the counters are read; this is required to
cope with out-of-order execution. The counter values are
then sent to the reservation controller running in data col-
lection mode; this ensures that no write to system memory
is performed at the checkpoint, which could cause an ad-
ditional cache miss. The reservation controller determines
the execution time and number of cache misses in each su-
perblock computing the difference between the values ob-
tained in successive checkpoints. After the task has fin-
ished, the computed values are read back from the reser-
vation controller and wceti and CMi can be determined
as the worst case over several task runs. Note that perfor-
mance counters are not task-specific, so we had to modify
the kernel to support reading the counters in a multitask-
ing environment. We added two new fields to the task de-
scriptor, counter extime and counter cmisses, to
store the counter information. When a task is created, the
fields are set to zero. When a task is preempted, the ker-
nel first reads the counter values and saves them in the pre-
empted task’s descriptor. Then, it writes the values in the
preempting task’s descriptor back in the counters. Finally,
the kernel writes the id of the preempting task in a regis-
ter of the reservation controller, so that the controller can
correctly associate the received information with the run-
ning task.

We implemented a compiler pass using the LLVM com-
piler infrastructure [9] to automatically add checkpoint code
to the task. In the current implementation, the designer must
manually identify the superblock boundaries selecting an
initial and final basic block for each superblock. The choice
involves a tradeoff, as smaller superblocks provide better
information and tighter wcet bounds but at the price of in-
creased measurement overhead.

3.3. Analysis Results

Given load function E(t) and values wceti, CMi for su-
perblock si, we first tackle the problem of determining the
worst case delay D(si) suffered by all cache misses in si.
The key idea is that since Lemma 2 implies that the delay
depends on the amount of incoming traffic during the in-
terval between successive fetches, a worst case pattern can
be produced by ”spreading out” the cache misses over the
length wceti of the superblock. Figure 6(a) provides a clar-
ifying example, where wceti = 42, CMi = 5, and E(t) is
the same as the previous examples. The worst case is pro-
duced when fetch f1 starts at t = 0, and each successive
fetch starts at time tj , such that Ē(tj − 0) provides just
enough traffic to cause maximum delay for {f1, . . . , fj}
(remember that ti is the start time of fetch fi in the sched-
ule without traffic, as the effect of delay is fully captured
in Ē(t)). Since all fetches must be completed before each
checkpoint, it must hold tCMi

≤ wceti − L. Furthermore,
since there are CMi cache misses in the interval, the max-
imum delay is also bounded by L′ · CMi. We can then
obtain an upper bound on the delay D(si, sj) suffered by
fetches in superblocks {si, . . . , sj} using the following the-
orem, where tsi =

∑
j<i wcetj is intuitively the start time

of superblock si.

Theorem 5 For each 1 ≤ i ≤ j ≤ S : D(si, sj) ≤
min(L′

∑j
k=i CMk, Ē(tsj − tsi + wcetj − L)).

Proof.
Let fl be the first fetch in si and fq be the last fetch in sj . We
determine the start times tl, . . . , tq for fetches {fl, . . . , fq}
that produce the maximal delay. Clearly tl ≥ tsi , tq ≤
tsj + wcetj − L since all fetches must be initiated and fin-
ish within {si, . . . , sj}. Furthermore, under the assump-
tion of round-robin schedule it holds: B(tq) − B(t−l) =
L′

∑j
k=i CMk. The proof follows by applying Theorem 3

to D(fl, fq). 2

Note that for a single superblock si it holds D(si) ≡
D(si, si) ≤ min(L′ · CMi, Ē(wceti − L)). Compared to
classical real-time bounds following the critical instant the-
orem [11], it is worth to notice that the bound of Theo-
rem 5 only follows if cache misses are spread out in the
superblock. As a counterexample, in Figure 6(b) we show
the case where all cache misses happen at the beginning of
the superblock. Since Ē(t) can only provide 7 units of traf-
fic in the interval [0, 8], the delay in this case is 7, while the
worst case obtained in Figure 6(a) and Theorem 5 is 15.

An upper bound Ub on the overall delay D(s1, sS) for
the task can then be computed using Algorithm 2, which
uses an iteratively approach similar to Algorithm 1. The al-
gorithm iteratively computes a delay term us

j for each su-

� ���
)(tE

)(tB� � � � � � � � � � � ��� � � � � t

1t 2t 3t 4t 5t

(a) Worst Case.� ���
)(tE)(tB� � � � � � � � � � � ��� � � � � t

1t 2t 3t 4t 5t

(b) All Misses at the Beginning.

Figure 6: Cache Arrival Patterns.

Algorithm 2 Compute D(s1, sS)
1: Ub := 0
2: Q := {}
3: for j = 1 . . . S do
4: add (tsj , yj = 0) to Q

5: us
j = min

(
L′ · CMj , minzi=(ts

i ,yi)∈Q{Ē(tsj − tsi +
wcetj − L)− yi}

)
6: for all zi = (tsi , yi) in Q do
7: yi := yi + us

j

8: Ub := Ub + us
j

9: return Ub

perblock sj ; the delay terms are then added together to ob-
tain the final bound Ub. In the algorithm description, Q is a
list of pairs zi = (tsi , yi) ordered by increasing values of tsi ;
yi represents the accumulated delay, i.e. at step j of the al-
gorithm, yi =

∑j−1
k=i us

k. The key intuition is that us
j can be

computed as the minimum of a bound on cache misses in su-
perblock sj , and a bound on peripheral load for each pair zi.
In particular, for (tsi , yi) the peripheral bound can be rewrit-
ten as:

j∑

k=i

us
k = us

j + yi ≤ D(si, sj) ≤ Ē(tsj − tsi + wcetj − L),

(2)
which follows from Theorem 5.

Theorem 6 Algorithm 2 computes an upper bound Ub to
D(s1, sS).

Proof.
The proof is similar to Theorem 5 in [15], which shows

that Algorithm 1 computes an upper bound to the delay
D(f1, fN). Let Ub(si, sj) =

∑j
k=i us

j . By definition Ub =
Ub(s1, sS). The proof proceeds by induction on j, prov-
ing the following property: ∀j ≥ 1, Ub(f1, fj) is an upper
bound to D(s1, sj).

Base Case: We need to prove that Ub(s1, s1) is an up-
per bound to D(s1). Following the algorithm, Ub(s1, s1) =
u1 = min

(
L′ · CM1, Ē(t1 − t1 + wcet1 − L)− y1

)
with

t1 = t1, y1 = 0. Therefore, Ub(f1, f1) is equal to the bound
computed by Theorem 5 for D(s1), concluding the proof
obligation.

Induction Step: Assume that ∀k < j, Ub(s1, sk) is an
upper bound to D(s1, sk). We need to prove that Ub(s1, sj)
is an upper bound to D(s1, sj). It is sufficient to prove
that Ub(s1, sj) is maximal, in the sense that increasing
Ub(s1, sj) would lead to a violation of Theorem 5. By con-
tradiction, assume that Ub(s1, sj) is not an upper bound to
D(s1, sj). Then since Ub(s1, sj) = Ub(s1, sj−1) + us

j , it
follows than at least one of the following two assertions
is true for any pattern of cache fetches and schedule of
bus transactions that produce a delay D(s1, sj): the delay
suffered by superblocks {s1, . . . , sj−1} is strictly greater
than Ub(s1, sj−1); or the delay suffered by superblock sj

is strictly greater than us
k. However, the first assertion is im-

possible due to the induction hypothesis. Hence, let the de-
lay suffered by sk be us

k +∆, with ∆ > 0. We consider two
cases, relative to whether in the expression:

us
j = min

(
L′·CMj , min

zi=(ts
i ,yi)∈Q

{Ē(tsj−tsi +wcetj−L)−yi}
)

(3)
us

j is constrained by L′ · CMj (case 1) or by Ē(tsj − tsi +
wcetj − L)− yi for some zi (case 2).

1. uj = L′ · CMj : then following Theorem 5 applied to
D(sj), if follows ∆ = 0, a contradiction.

2. We show that the delay for {s1, . . . , sj−1} is at most
equal to Ub(s1, sj−1) −∆, which contradicts the fact
that Ub(s1, sj) is not an upper bound to D(s1, sj). By
definition of Algorithm 2 and Ub(si, sj), it follows
yi = Ub(si, sj−1), and therefore us

j = Ē(tsj − tsi +
wcetj − L) − Ub(si, sj−1), or equivalently Ē(tsj −
tsi + wcetj − L) = Ub(si, sj). Since from Theo-
rem 5: D(si, sj) ≤ Ē(tsj − tsi + wcetj − L), it fol-
lows that if the delay suffered by sj is us

j + ∆, then
the delay suffered by {si, . . . , sj−1} is at most equal
to Ub(si, sj−1) − ∆. To conclude the proof, it now
suffices to note that the delay suffered by the remain-
ing superblocks {s1, . . . , si−1} can not be greater than
Ub(s1, si−1) due to the induction hypothesis.

2

Unfortunately, for general load functions the bounds
computed by Theorem 5 and Algorithm 2 are not tight. An

� ���
)(tE)(tB

� �
� � � � � � � ���

t

1t 2t 3t 4t 5t 6t

Figure 7: Example Non-Concave Load Function.

example using a different load function E(t) is provided in
Figure 7, which shows a worst case pattern similar to Fig-
ure 6(a) with wceti = 20, CMi = 6. According to Theo-
rem 5, the maximum delay for the superblock is 18. How-
ever, if we apply Lemmas 1, 2 to fetches f3, f4, f5, we ob-
tain a delay D(f3, f5) = min(9, Ē(6)) = 7.5 which is less
than the maximum blocking time of 3L′ = 9 for the three
fetches. In fact, in this simple example it can be shown that
the real delay bound is D(f1, f6) = 16.5 time units. Intu-
itively, this effect is caused by the fact that E(t), and con-
sequently Ē(t), are not concave. However we are able to
prove the following:

Theorem 7 If E(t) is concave, then Algorithm 2 computes
a tight upper bound Ub to D(s1, sS).

The proof of Theorem 7 is detailed in the next subsection,
as it is quite involved.

Assuming that function Ē(t) can be evaluated in con-
stant time, Algorithm 2 has a complexity O(S2). Whether
a polynomial-time algorithm exists that computes a tight
bound for general load functions is left as on open problem.
However, we argue that in many cases E(t) can be well ap-
proximated with a concave upper bound, hence we do not
incur a significant penalty using Algorithm 2. We performed
a simulation to validate this claim. We generated 1000 syn-
thetic tasks with S = 10 superblocks and randomized wceti
and CMi extracted from uniform distributions, with an av-
erage cache stall time (the percentage of time that the CPU
is stalled waiting for a fetch) of 25%. For each task, we com-
puted an upper delay bound Ub using Algorithm 2 applied
to the measured E(t) function of Section 3.1. We also com-
puted a lower bound Ul on the worst case delay as follows:
we first assigned start times for all fetches according to Fig-
ures 6(a), 7; then, we ran the algorithm described in Sec-
tion 3 using the assigned start times as input. Since the pat-
tern of cache misses constructed by the start time assign-
ment is consistent with the measured wceti, CMi, and the
algorithm computes a tight bound, Ul is a valid lower de-
lay bound. Hence, the real worst case delay for each task
falls in the interval [Ul, Ub]. We finally computed the ratio
Ub−Ul

Ul and averaged it over all tasks. Considering we ob-

tained a value of 0.2033%, we conclude that the pessimism
introduced by Algorithm 2 is indeed negligible.

3.4. Proof of Theorem 7

Since according to Theorem 6, Algorithm 2 computes an
upper bound Ub to D(s1, sS), we only need to prove that
the bound is tight, i.e. there exists a pattern of cache fetches
consistent with wceti, CMi and a schedule of peripheral
transactions consistent with E(t) that results in a cumula-
tive delay of Ub time units for superblocks {s1, . . . , sS}.
We will use the following approach: we first define a cache
fetch pattern that is a generalization of the example in Fig-
ure 6(a). We then apply Algorithm 1 to compute the de-
lay bound Ub for all fetches in the pattern, and we show
that the bound is equal to the one computed by Algorithm
2. Since according to Theorem 4, Algorithm 1 computes a
tight bound (in the sense that the bound is consistent with
E(t)), this concludes the proof.

It is easy to see that if E(t) is concave, then Ē(t) is con-
cave as well [15]. We can use this concavity condition to
simplify Algorithm 1 at step j by removing a pair zi =
(ti, yi) whenever there is another pair zq = (tq, yq), tq < ti
that constrains uj more than zi. More formally, we can re-
move zi if the following condition holds at step j, like Al-
gorithm 3 shows below: Ē(tj− ti)−yi ≥ Ē(tj− tq)−yq).

Algorithm 3 Compute D(f1, fN)
1: Ub := 0
2: Q := {}
3: for j = 1 . . . N do
4: add (tj , yj = 0) to Q
5: for all (ti, yi) in Q do
6: if ∃(tq, yq) in Q: tq < ti ∧ Ē(tj − ti) − yi ≥

Ē(tj − tq)− yq then
7: remove (ti, yi) from Q
8: uj = min

(
B(tj)−B(t−j),minzi=(ti,yi)∈Q{Ē(tj −

ti)− yi}
)

9: for all zi = (ti, yi) in Q do
10: yi := yi + uk

11: Ub := Ub + uk

12: return Ub

Lemma 8 If E(t) is concave, Algorithm 3 computes the
same bound Ub on D(f1, fN) as Algorithm 1.

Proof.
Algorithm 3 is a special case of Algorithm 2 in [15]; hence,
the proof follows directly from Theorem 8 in [15]. 2

We now formally describe the worst case fetch pattern.
For ease of exposition, we shall first prove the theorem un-
der two simplifying assumptions: Ē(0) ≤ 2L′, and L = ε,
where ε > 0 is an arbitrarily small number; these two as-
sumptions are introduced because they substantially sim-
plify the fetch pattern. We will then remove both assump-
tions to prove the theorem in the general setting. In the def-
inition below, we use fk

i to denote the k-th fetch in su-
perblock si and tki to denote the start time of fk

i .

Definition 1 (Infinitesimal-Size Fetch Pattern) Let us
j be

the delay for superblock sj computed by Algorithm 2. The
worst case pattern is as follow: we allocate Nj = dus

j/L′e
fetches in each superblock sj , with:

tkj = max(tsj ,
{
t : L′ = min

ts
i ,i≤j

{Ē(t−tsi)−
j−1∑

q=i

us
q−L′(k−1)}})

(4)
for all k, 1 ≤ k ≤ buj/L′c, and t

Nj

j = tsj + wcetj − L if
Nj = bus

j/L′c+ 1.

Note that Definition 2 generalizes the example of Fig-
ure 6(a) in two ways. First, to determine the start time fk

j

of fetch fk
j we need to consider both the peripheral load

Ē(tkj − tsj) between the beginning of the current superblock
sj and the fetch start time tkj and the loads Ē(tkj − tsi) be-
tween the beginning of all previous superblocks si and tkj .
Second, if the delay us

j is not an integer multiple of L′,
we need to add a cache miss at the last valid time instant
tsj + wcetj − L in the superblock. Note that in Equation
6 we need to compute tkj as the maximum between tsj and
the time t determined by the load bounds, because in some
cases t does not exist (in particular, for f1

j when Ē(0) > L′

and the bound for all other superblock starting times tsi is
greater than L′ at t = tsj).

Now that we introduced Algorithm 3 and Definition 2
we can describe the main intuition behind our subsequent
proofs: the load bounds based on function Ē(t) used in
Equation 6 in Definition 2, Line 8 of Algorithm 3, and Line
5 of Algorithm 2, all express the same condition. In par-
ticular, given an Infinitesimal-Size Fetch Pattern, for each
pair zi = (ti, yi) in Algorithm 3 there is an equivalent
pair (tsi , yi) in Algorithm 2, and the expression

∑j−1
q=i us

q +
L′(k − 1) is equivalent to yi. Following this intuition, we
will prove two fundamental properties: 1) Equation 6 im-
plies that every fetch fk

j suffers a delay uk
j = L′ in Algo-

rithm 3 (with the exception of the last fetch u
Nj

j); 2) Line 5
in Algorithm 2 will then imply that the total delay us

j in su-
perblock sj is equal to the sum of the delays uk

j computed
by Algorithm 3 for all fetches in sj . This in turn is enough
to complete the proof.

Lemma 9 The Infinitesimal-Size Fetch Pattern in Defini-

tion 2 is a consistent pattern under the assumptions Ē(0) ≤
2L′, L = ε.

Proof.
For the pattern to be consistent, we need to show two prop-
erties: Nj ≤ CMj for each superblock sj , and the distance
between any two successive start times fk

j , fk+1
j must be at

least L = ε.
The first property follows immediately from the fact that

us
j is at most L′ · CMj according to Algorithm 2, and thus:

Nj ≤ dCMje = CMj . By contradiction, assume that the
second property is false. Then since ε is arbitrarily small,
there must exist fetches fk

j , fk+1
j such that tkj = tk+1

j . We
distinguish three cases: 1) k = 1; 3) k = Nj − 1 with
Nj = buj/L′c+1, and 2) otherwise. In case 1, according to
Equation 6 for t1j = t2j to be possible it must hold: Ē(0) ≥
2L′, but this violates our assumption. In case 2, according
to Equation 6 for tkj = tk+1

j to be possible it must exist a
time t such that: Ē(t) − Ē(t−) ≥ L′, but this again is im-
possible since Ē(t) is concave and therefore continuous for
t > 0. Finally, consider case 3. Let (tsq, yq) be the pair that
constraints us

j in Algorithm 2. Then it is easy to see that for

t
Nj−1
j , the bound relative to tsq in Equation 6 can be rewrit-

ten as Ē(t−tsq)−yq−L′(Nj−2), and for t = tsj+wcetj−L

it holds: Ē(tsj − tsq + wcetj − L) − yq − L′(Nj − 2) =
us

j − L′(Nj − 2) ≥ Ē(t − tsi) − yi − L′(Nj − 2) for ev-
ery other tsi , i ≤ j. Since Ē is continuous for t > 0 and fur-
thermore us

j − L′(Nj − 2) > L′, it follows t
Nj−1
j < tsj ,

which concludes the proof. 2

Lemma 10 At each step of Algorithm 3 for fetch fk
j us-

ing the Infinitesimal-Size Fetch Pattern, the following two
properties apply: A) before computing uk

j , the only remain-
ing pairs in Q are of the form (tsi , yi); B) if k = Nj ∧Nj =
bus

j/L′c + 1, then u
Nj

j = us
j − L′(Nj − 1), otherwise

uk
j = L′.

Proof.
The proof proceeds by induction on the fetch indexes k, j,
using the obvious fetch order (formally, we can define a bi-
jective mapping that associates each fetch fk

j with natural
number k +

∑j−1
q=1 Nq). We consider three cases: 1) k = 1,

which covers the base case of the induction for j = 1; 3)
k = Nj ∧ Nj = bus

j/L′c + 1; and 2) otherwise. For all
cases, we use the induction hypothesis that properties A and
B hold for all fetches previous to fk

j ; hence, for property A
we only need to focus on the additional pair (tkj , 0) that can
be inserted into Q before computing uk

j in Algorithm 3.
Case 1: Assume k = 1, and let (tsi , yi) be the remaining

pairs in Q in Algorithm 3 at the previous step. By the in-

� ���
)(tE

)(tB� � � � � � � ���
t� �1t 2t 3t 4t 5t

Figure 8: Example Size-Constrained Fetch Pattern.

duction hypothesis of Property B it directly follows that for
each us

i with i < j: us
i =

∑Ni

q=1 uq
i . Also note that when

evaluating u1
j , the only pair that can be added to Q in Al-

gorithm 3 is (tsj , 0), and thus property A trivially holds. For
property B, consider that Equation 6 can then be rewritten
as:

t1j = max(tsj ,
{
t : L′ = min

ts
i ,i≤j

{Ē(t− tsi)− yi}
}
), (5)

since the term L′(p−1) is equal to zero. We distinguish two
cases. Assume that Ē(tsj − tsi) − yi ≥ L′ for each i < l.
Then t1j is assigned value tsj (note that for i = l, it must
hold Ē(0) ≥ L′ since L′ is the maximum transaction size).
Therefore, since only pairs (tsi , yi) remains in Q in Algo-
rithm 3, u1

l is limited by the term B(t1l) − B(t1−l) = L′.
If the assumption is not true, let (tsi , yi) be the pair for
which L′ = Ē(t− tsi)− yi in Equation 6. Since again only
pairs (tsi , yi) remains in Q in Algorithm 3, u1

l is limited by
Ē(t0l − tsi)− yi = L′.

Case 2: Let (tsi , yi) be the remaining pairs in Q in Al-
gorithm 3 before evaluating u1

j . Then after computing de-
lay for fetches f1

j , . . . , fk−1
j , all terms yi will be increased

by the same amount L′(p − 1). The above discussion im-
plies that Equation 6 can still be rewritten as Equation 5;
hence, the same argument as in the base case can be ap-
plied to prove uk

j = L′ and thus property B holds. Further-
more, since Ē(0) ≥ L′, the new pair (tkj , 0) will be removed
from Q, thus property A also holds.

Case 3: Since ∀ i < j : us
i =

∑Ni

q=1 ui
q , it follows that

all pairs (tsi , yi) remaining in Q in Algorithm 3 before com-
puting u1

j , are also in the pair queue of Algorithm 2 when
evaluating us

j , with the same yi values. From Algorithm 2 it
must hold: Ē(tsj − tsi + wcetj −L)− yi ≥ us

j . But since yi

is increased by L′(Nj−1) for fetches f1
j , . . . , f

Nj−1
j in Al-

gorithm 3, and furthermore t
Nj

j = tsj + wcetj − L, we can
derive that Algorithm 3 will compute a delay bound uNl

j

greater or equal than us
j−L′(Nj−1), as now for each pair:

Ē(tsj − tsi + wcetj −L)− yi ≥ us
j −L′(Nj − 1). To prove

property B, it is sufficient to note that according to Theo-
rem 6, Algorithm 2 computes an upper bound on us

j , hence

u
Nj

j can not be greater than us
j −L′(Nj − 1). Furthermore,

by definition us
j−L′(Nj−1) < L′, while again Ē(0) ≥ L′,

hence pair (tNj

j , 0) is immediately removed from Q proving
property A. 2

Theorem 11 Under the assumptions that E(t) is concave,
Ē(0) ≤ 2L′ and L = ε, Algorithm 2 computes a tight up-
per bound Ub to D(s1, sS).

Proof.
Under the assumptions, the Infinitesimal-Size Fetch Pattern
is valid. Following Lemma 10, for the superblock delay us

j

computed by Algorithm 2 and the fetch delays uk
j computed

by Algorithm 3 using the Infinitesimal-Size Fetch Pattern,
it holds: us

j =
∑Nj

k=1 uk
j . Hence, the overall delay Ub =

D(s1, sS) computed by Algorithm 2 is the same as the de-
lay Ub = D(f1

1 , fNS

S) computed by Algorithm 3 using the
Infinitesimal-Size Fetch Pattern, which by Lemma 8 is the
same as the delay computed by Algorithm 1 since E(t) is
concave. Since according to Theorem 4, the bound com-
puted by Algorithm 1 is tight, it follows that Ub is indeed
the worst case delay for the Infinitesimal-Size Fetch Pattern
(with respect to all valid peripheral transaction schedules
according to E(t)). Since the Infinitesimal-Size Fetch Pat-
tern is valid and furthermore according to Theorem 5, Al-
gorithm 2 computes an upper bound, it follows that Ub is a
tight upper bound to D(s1, sS). 2

We now show how the assumptions of Theorem 11 can
be relaxed, thus obtaining a proof for Theorem 7. When we
remove the two assumptions, the that fetch pattern of Def-
inition 2 is no longer valid: a clarifying example is pro-
vided in Figure 8 for a single superblock. After assigning
t1 = 0, we obtain Ē(L − 0) − L′ = 7 − 3 = 4 > L′:
hence, the start time for fetch f2 is constrained not by the
peripheral load, but by the fact that fetch start times must
be spaced apart at least L time units. Intuitively, Ē(t) raises
”too fast”, i.e. with a derivative greater than L′/L. This cre-
ates a problem in Lemma 10: at step 2 of Algorithm 3, we
obtain Ē(t2 − t2) − 0 = 3 < Ē(t2 − t1) − L′ = 4, hence
pair (t2, 0) is not removed immediately from Q and Prop-
erty A is violated. The trick we use to solve this problem is
to show that even if we have to keep pair (t2, y2) in Q, it is
never the case that the delay uk

j for a successive fetch fk
j is

constrained by Ē(tkj − t2)− y2 in Algorithm 3.

Definition 2 (Size-Constrained Fetch Pattern) Let us
j be

the delay for superblock sj computed by Algorithm 2. The
worst case pattern is as follow: we allocate Nj = dus

j/L′e

fetches in each superblock sj , with:

tkj = max(t̄kj ,
{
t : L′ = min

ts
i ,i≤j

{Ē(t−tsi)−
j−1∑

q=i

us
q−L′(k−1)}})

(6)
for all k, 1 ≤ k ≤ buj/L′c with t̄1j = tsj , t̄

k
j = tk−1

j + L,

and t
Nj

j = tsj + wcetj − L if Nj = bus
j/L′c+ 1.

Definition 3 (Size-Constrained Fetches) Assume
tkj > tk−1

j + L, tqj = tkj + L(q − k). Then fetches
fk+1

j , . . . , fq
j are said to be size-constrained, and fk

j is the
fetch constraining them.

Lemma 12 When executing Algorithm 3, if at step f l
i ,

Ē(tli − tqj) − yq
j < L′ for pair (tqj , y

q
j) and fq

j is a size-
constrained fetch, then Ē(tli − tkj)− yk

j < Ē(tli − tqj)− yq
j ,

where fk
j is the fetch constraining fq

j .

Proof.
Since fetch fq

j is size constrained, then following the
same reasoning as Lemma 10 it is easy to see that fetches
fk

j , . . . , fq−1
j must suffer a delay equal to L′ and there-

fore yk
j = yq

j +L′(q−k) (formally, we would have to use a
similar induction proof, but we omit it for the sake of con-
ciseness). We then only need to prove the following:

Ē(tli − tkj)− L′(q − k) < Ē(tli − tqj) (7)

To simplify the proof, let us define x ≡ tli − tqj , y ≡
tqj−tkj = L(q−k), from which: tli−tkj = x+y. Then it must
necessarily hold: Ē(x) < xL′

L + L′, otherwise f l
i would be

size constrained and Ē(tli − tqj) − yq
j < L′ could not hold

at step f l
i . Now note that since fq

j is size constrained, ac-
cording to Equation 6 it must hold: L′ ≥ Ē(y) − y L′

L . By
combining the two equations we obtain: Ē(x) − Ē(y) <

(x − y)L′
L . Now consider interval [x, x + y] for function

Ē(t). Since Ē(t) is concave and both extremes of the inter-
val [x, x + y] are greater than the extremes of the interval
[y, x], it must hold: Ē(x+y)−Ē(x) < (x+y−y)L′

L = y L′
L .

We can now write:

Ē(x+y) = (Ē(x+y)−Ē(x))+Ē(x) < Ē(x)−y
L′

L
, (8)

from which Equation 7 directly follows. 2

In essence, Lemma 12 implies that we do not need to
keep track of pairs (tqj , y

q
j) for constrained fetches, since

the value of all future delays ul
i can be computed using the

pair (tkj , yk
j) for the fetch fk

j that constrains fq
j .

Lemma 13 Consider a modification of Algorithm 3 where
in Line 4 a pair (tqj , 0) is not added to Q if fq

j is a con-
strained fetch. Then this new modified algorithm computes
the same bound Ub as Algorithm 3.

Proof.
The proof follows immediately from Lemma 12, since no
delay ul

i for a future fetch f l
i can be modified if the pair

(tqj , 0) is removed. 2

Lemma 10 can then be proved on the modified algorithm
of Lemma 13 instead of Algorithm 3. The proof is equiva-
lent, with the only difference that pairs introduced by con-
strained fetches are removed thanks to the property of the
modified algorithm. The proof of Theorem 7 then follows
from Lemma 13 along the lines of the proof of Theorem 11.

4. Coscheduling Algorithm

It is important to note that even when the bound com-
puted by Algorithm 2 is tight, it is rare that at run-time
a task will suffer a delay equal to the bound: a particu-
lar pattern for both cache misses and peripheral transac-
tions is required to produce the worst case. As such, ac-
counting for the worst case delay inflicted by all peripher-
als in the computation time budget of each task can lead to a
large waste of resources. We propose an alternative solution
based on a run-time adaptive algorithm. The idea is to as-
sign to a task the minimal time budget of

∑
1≤i≤S wceti,

and then to monitor the actual execution of the task and
open the p-gates whenever possible. At run-time, informa-
tion on the execution time consumed by the current job is
sent to the reservation controller at each checkpoint. The
controller uses this information to determine the actual ex-
ecution time ei of superblock si for the current job. The ac-
cumulated slack time after superblock si can then be com-
puted as

∑
1≤j≤i(wcetj − ej); the slack time is the max-

imum delay that the task can suffer while still meeting its
computation time budget. We can then design a coschedul-
ing algorithm that strives to maximize the amount of time
that the p-gates are opened under the constraint that the
slack can never become negative. Our proposal is to inte-
grate both the analysis and coscheduling techniques in a
mixed-criticality system. Inspired by the avionic domain,
we consider two types of guaranteed real-time tasks: safety
critical tasks like flying control, that have stringent delay
and verification requirements, and mission critical tasks that
are still hard real-time but have lower criticality. We pro-
pose to schedule safety critical tasks blocking all I/O traf-
fic except the one from peripherals used by the task, and
to account the delay in the time budget. For mission criti-
cal tasks we instead use coscheduling. Finally, we also as-
sume that the system runs best effort or soft real-time tasks
for which all p-gates are opened.

Algorithm 4 is our main coscheduling heuristic. For sim-
plicity, we describe the algorithm for a single controlled
task and a single peripheral, but it can be easily extended
to a multitasking environment with multiple p-gates. Com-

Algorithm 4 Adaptive Algorithm
JobStart() {
slack := 0
i := 0
CloseGate()
}
Checkpoint(e) {
i := i + 1
slack := slack + wceti − e
if D(si+1) ≤ slack then

OpenGate()
else

CloseGate()
}

munication from the task to the reservation controller trig-
gers the algorithm at the beginning of each job and at each
checkpoint. The algorithm maintains two variables: i is the
index of the last executed superblock, and slack repre-
sents the accumulated slack. At the end of each superblock
si, the algorithm first recomputes the slack and then per-
forms a check: if the slack is at least equal to the maxi-
mum delay D(si+1), then the p-gate is opened because we
are sure that the slack will be non negative after the next
superblock si+1 is executed. Otherwise, the p-gate is kept
closed.

Algorithm 5 Predictive Algorithm
JobStart() {
slack := 0
pslack :=

∑S
k=1(wcetk − avgk)

i := 0
CloseGate()
}
Checkpoint(e) {
i := i + 1
slack := slack + wceti − e
tmp := pslack := pslack + avgi − e

for all k in ORDERED LIST (avgj+Davg(sj)
Davg(sj)

) do
if k > i + 1 ∧Davg(sk) ≤ tmp then

tmp := tmp−Davg(sk)
if k == i + 1 then

if D(si+1) ≤ slack ∧Davg(si+1) ≤ tmp then
OpenGate()

else
CloseGate()

return
}

The limitation of Algorithm 4 is that it greedily ”allo-
cates” all slack to the next superblock by immediately open-
ing the p-gate. This can lead to a suboptimal allocation,
as superblock si+1 could be short and have a lot of cache

misses while superblock si+2 could be longer with very
few cache misses. If we have additional information on the
task, we can potentially do better using a predictive heuris-
tic. In particular, Algorithm 5 assumes that the average case
computation time avgi and average case delay Davg(si) for
each superblock si is known. The algorithm keeps track of
the predicted slack, i.e. the total slack assuming that all fu-
ture superblocks will execute for ej = avgj . We can then
compute a strategy that maximizes the amount of time that
the p-gate is opened by allocating the predicted slack among
all future superblocks: if we decide to open the p-gate dur-
ing sj , we consume an amount of slack equal to Davg(sj)
and the p-gate is opened for avgj + Davg(sj) time units.
It is easy to see that this allocation problem is equivalent to
the KNAPSACK problem [8], which is well known to be
NP-hard. We therefore use a sub-optimal polynomial time
greedy solver: off-line, we order all superblocks by non-
increasing values of avgj+Davg(sj)

Davg(sj)
. At run-time, we per-

form the allocation by iterating through the list ignoring all
superblocks already executed. When the iteration arrives to
the next superblock si+1, the p-gate is opened if the remain-
ing predicted slack is greater or equal than Davg(si+1).

Note that Algorithm 5 is not the only possible predic-
tive algorithm; in fact, no on-line algorithm can be optimal,
since any optimal algorithm must known exactly the com-
putation time of future superblocks, i.e. it must be clairvoy-
ant. However, for the sake of comparison it is interesting to
compute an upper bound on the best possible performance
of any on-line predictive algorithm. Assume that for a spe-
cific run, ei is the execution time of si assuming that the
p-gate is closed, and ēi is the execution time assuming that
the p-gate is opened. An upper bound can be computed by
solving the following integer linear programming problem:

max
S∑

i=1

xiēi (9)

∀i, 1 ≤ i ≤ S : xiD(si) ≤
i−1∑

j=1

(wcetj−(1−xj)ej−xj ēj)

(10)
∀i, 1 ≤ i ≤ S : xi ∈ {0, 1}, (11)

where {x1, . . . , xS} are indicator variables (i.e., xi = 1 if
the p-gate is opened during si). Equation 9 maximizes the
open time, while Equation 10 expresses the slack constraint.

5. Experimental Results

To validate our architecture, we performed experiments
on a COTS PC platform comprised of an Intel Core2 CPU
and an Intel 975X system controller. Using a PC platform
allowed us easy access to all PC slots; however, to derive
meaningful measures we changed the FSB clock frequency

obtaining a speed of 900Mhz for the CPU and a theoretical
bandwidth of 2.4Gbyte/s for the FSB, which is in line with
typical values for embedded platforms.

We first performed an experiment to evaluate the max-
imum delay incurred by a task due to peripheral interfer-
ence. To obtain repeatable measures, we implemented a cus-
tom traffic generator peripheral for the PCI-X bus based on
a Xilinx ML455 board. The peripheral periodically initi-
ates write transactions to main memory, and both the pe-
riod and transactions length can be configured to produce
a load up to the maximum of 1 Gbyte/s supported by PCI-
X. We then designed a task to maximize cache stall time.
The task allocates a memory buffer of double the size of
the CPU level 2 cache, and then cyclically reads from the
buffer, one word for each 128-byte cache line; a cache miss
is thus generated for each memory read. We first ran the
task without using the traffic generator and measured an ex-
ecution time of 48.73ms and 580,227 cache misses. Us-
ing a memory benchmark, we evaluated a main memory
throughput of C = 1.8Gbyte/s, which is slightly lower than
the theoretical FSB speed. Since 128 bytes must be trans-
ferred for each cache miss, the task is actually stalled for
580,227·128

1.8e9 = 41.26ms, resulting in the desired high cache
stall time of 84.67%. We then ran the task again, enabling
the traffic generator with maximum load, and we measured
an average increase in computation time of 43.85%.

It is important to note that the measured value is an aver-
age case delay, since obtaining the worst case pattern (as de-
picted in Figure 6(a)) over more than 500,000 fetches is im-
probable. Our analysis is able to compute the worst case de-
lay, but we need additional information on the system con-
troller, in particular the type of arbitration used by the FSB
and the maximum length values L and L′. These data are
typically available for components used in embedded sys-
tems, see [12] for example. However, in the PC market man-
ufacturers are often wary of revealing precise details for fear
of losing competitive edge. We therefore used the following
experimental methodology to obtain the required informa-
tion: we first guessed values for L,L′ and the arbitration
type, and we built a simulator to predict average case delay
for a variety of settings. We then performed extensive ex-
periments and confronted the measured values with the pre-
dictions to determine if our guesses were acceptable.

Experimental results are shown in Figure ??, where each
point is an average over 5 runs. We measured the percent-
age increase in computation time for the aforementioned
task varying the offered peripheral load and length of pe-
ripheral transactions. Note that for small lengths we are not
able to significantly load the bus, as the period of the traf-
fic generator is constrained by PCI-related overhead; hence,
some points in Figure ??(a) can not be generated on the
bus and we show them as zero values. All results are within
5% of our predictions, assuming round-robin arbitration and

10 20
30 40 50 60

70 80 90
5

6

7

8

9

10

0

20

40

60

transaction length
log2(#bytes)

% PCI−X load

%
 W

C
E

T
 In

cr
ea

se

Figure 9: Measured Delay.

SLACKONLY ADAPTIVE PREDICTIVE BOUND
4.89% 31.21% 36.65% 40.85%

Table 1: Benchmark Results.

L = L′ = 32bytes/C = 17.8ns, which means that each
fetch is broken down into 4 data transfers on the FSB. Un-
expectedly, we found that delay is constant over 70% load.
Investigation of the PCI-X bus using a logic analyzer re-
vealed that it is an issue of the PCI bridge, which is not fast
enough to buffer all peripheral data. We also performed ad-
ditional experiments varying the cache stall time of the task;
this can be achieved by inserting a variable number of in-
structions between each successive cache line read. The ob-
tained wcet increases also matched our simulation results
within a small deviation.

We then evaluated the performance of the described
coscheduling algorithms on our platform. We chose
a MPEG decoder [4] as our benchmark for two rea-
sons: it is both a memory and I/O intensive application,
and it is representative of the type of video computa-
tion that is becoming increasingly important for mis-
sion control in avionic systems. We collected average
and worst case statistics on a test video clip after plac-
ing multiple checkpoints for each frame; the MPEG de-
coder is run as a periodic task, with 20 superblocks in
each period. To mirror the behavior of a real applica-
tion and increase the number of cache misses, we also ran
a higher priority task that preempts the MPEG decoder ev-
ery 1ms and replaces its cache content. Results averaged
over 50 runs are shown in Table 1 in term of the percent-
age of time that the p-gate is opened in the task period.
In the table, SLACKONLY represents a baseline solu-
tion where the p-gate is kept closed while the task is ex-
ecuting and is opened after the task has finished for its
remaining time budget

∑
1≤i≤S(wceti − ei); ADAP-

TIVE is Algorithm 4; PREDICTIVE is Algorithm 5;

5

10

15

20

25

30

35

40 5

10

15

20

25

30

10

20

30

40

50

60

70

80

90

100

% comp. time variation
% cache stall time

%
 p

−
ga

te
 o

pe
n

tim
e

Figure 10: Synthetic Tasks, ADAPTIVE, σ = 0.1

5

10

15

20

25

30

35

40 5

10

15

20

25

30

10

20

30

40

50

60

70

80

90

100

% comp. time variation
% cache stall time

%
 im

pr
ov

em
en

t o
f B

O
U

N
D

 o
ve

r
A

D
A

P
T

IV
E

Figure 11: Synthetic Tasks, ADAPTIVE, σ = 0.2

BOUND is the bound computed by solving the ILP prob-
lem of Equations 9-11. Note that since BOUND is not
implementable at run-time, we computed the bound of-
fline using measured values of computation times and
number of cache misses. We can see that SLACK-
ONLY tends to perform very poorly; ADAPTIVE is within
30% of BOUND and PREDICTIVE is roughly in be-
tween the two, which seems to suggest that prediction
offers limited improvement.

To check whether the obtained results hold for more gen-
eral settings, we also performed extensive simulations on
synthetic tasks, each composed of 20 superblocks, varying
three parameters σ, α, β. For each task and each superblock
si, we first generated the average computation time avgi

from a uniform distribution with constant mean and coeffi-
cient of variation σ, and the average cache stall time stalli

5

10

15

20

25

30

35

40 5

10

15

20

25

30

20

30

40

50

60

70

80

90

100

comp. time variation
cache stall time

%
 p

−
ga

te
 o

pe
n

tim
e

Figure 12: Synthetic Tasks, ADAPTIVE, σ = 0.4

5

10

15

20

25

30

35

40 5

10

15

20

25

30

0

2

4

6

8

10

12

14

% comp. time variation
% cache stall time

%
 im

pr
ov

em
en

t o
f B

O
U

N
D

 o
ve

r
A

D
A

P
T

IV
E

Figure 13: Synthetic Tasks, algorithm ratio, σ = 0.1

from a uniform distribution with mean β and coefficient
of variation σ. We then simulated 10 task runs by extract-
ing for each run and each superblock a computation time
ei = avgi(1 + ᾱ) and a number of cache misses equal to
stalli(1 + ᾱ), where ᾱ is extracted from a uniform distri-
bution with mean 0 and maximum value α. Note that this
implies wceti = avgi(1 + α), i.e. α is the increase in com-
putation time between the average and the worst case.

We focus on results for the ADAPTIVE and BOUND
cases: Figure 10, 11, 12 show the value of ADAP-
TIVE for values of σ equal to 0.1, 0.2, 0.4 respec-
tively. Figure 13, 11 15 shows the competitive ratio of
BOUND−ADAPTIVE

ADAPTIVE , again for σ = 0.1, 0.2, 0.4. All points
are averages over 10 tasks (100 runs total of the simula-
tor). We varied the average cache stall time β between
[0.05, 0.4] and the computation time variation α be-

5

10

15

20

25

30

35

40 5

10

15

20

25

30

0

2

4

6

8

10

12

14

% comp. time variation
% cache stall time

%
im

pr
ov

em
en

t o
f B

O
U

N
D

 o
ve

r
A

D
A

P
T

IV
E

Figure 14: Synthetic Tasks, algorithm ratio, σ = 0.2

5

10
15

20
25

30
35

40 5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

18

% comp. time variation

% cache stall time

%
 im

pr
ov

em
en

t o
f B

O
U

N
D

 o
ve

r
A

D
A

P
T

IV
E

Figure 15: Synthetic Tasks, algorithm ratio, σ = 0.4

tween [0.05, 0.3]; axis direction is inverted between the two
sets of figures for easier visualization. Note that the defi-
nition of α implies SLACKONLY= α

1+α for all cases. First
note that the obtained results are very close for the dif-
ferent values of σ, which seems to indicate that none of
the tested algorithm is very sensitive to variations in su-
perblock size. The second main observation is that the per-
formance of the algorithms depends on the difference be-
tween α and β. For α > β, both algorithms can open
the p-gate almost all the time because the high wcet vari-
ability forces us to over-provision the computation time
budget of the task; however, note that a coscheduling algo-
rithm is still needed to guarantee safety, as there are times
where the p-gate must be closed to ensure that the task
meets its deadline. In the case α < β, which is represen-
tative of more predictable, but memory intensive real-time

tasks, the fraction of time the p-gate can be opened de-
creases as the delay D(si) becomes significant compared
to wceti − avgi. The performance of ADAPTIVE de-
grades more rapidly than BOUND, but it remains with a
competitive ratio of 18%, which compares even more fa-
vorably than the MPEG case.

6. Related Work

Apart from [15], to the best of our knowledge the
only works that study the impact of I/O load on real-time
scheduling are [18] and [6]. [18] uses a PCI-based testbed
similar to ours, but its empirical approach can not de-
rive safe wcet bounds. [6] uses an analytical approach but
it assumes highly predictable cycle-stealing bus arbitra-
tion, which is not true of commodity systems.

Two other research areas are related to our work. First
of all, peripheral activities impose an additional overhead
on the CPU: device driver execution. Techniques to account
for such overhead have been described in [10, 19] for net-
work cards and hard disks based on experimentally-derived
bounds. Second, there is a second potential source of in-
terference at either the cache or FSB level: other CPUs. A
methodology to compute cache access delay in multiproces-
sor systems has been proposed in [17] based on static anal-
ysis. However, we argue that this problem domain is essen-
tially different from ours because synchronizing task sched-
ule across multiple processors is easier than synchronizing
CPU and peripheral execution.

7. Conclusions

The effects of peripheral traffic in a COTS-based sys-
tem can not be ignored: our experiments using typical set-
tings for an embedded system reveal that interference at the
FSB level can increase the computation time of a task by
almost half. In this paper, we proposed two ways to cope
with this effect. The first is to account for the additional de-
lay in the wcet of the task, using an analysis that is able
to compute a safe delay bound based on real measurements
of the task and of the interfering peripherals. The second is
to control peripheral activities using a peripheral gate and a
coscheduling algorithm that dynamically allows/disallows
peripherals to transmit making sure that the task computa-
tion time does not exceed its wcet without traffic. Our ex-
periments show that even a simple adaptive coscheduling
heuristic can greatly improve the amount of allowed traffic
compared to the baseline approach of blocking all periph-
erals while the task is executing. More complex predictive
heuristics can do even better, but our experiments revealed
that the improvement space is somehow limited.

More work remains to be done. First of all, our p-gate
implementation assumes that peripherals have buffering ca-

pabilities; otherwise, data can be lost while the p-gate is
closed. We are developing a second generation p-gate that
will be able to both buffer and classify incoming data from
the peripheral. Second, we plan to extend our framework to
cover multicore systems, where multiple tasks can be ex-
ecuted simultaneously with master peripherals. Third, our
current analysis abstracts away some complexities of PCI
involving buffering in the E(t) function. If master periph-
erals are allowed to communicate with each others, then a
specific PCI bus analysis is required to compute new traf-
fic bounds and delays for the peripherals.

References

[1] Advanced Micro Devices, Inc. Torrenza Initiative. http:
//enterprise.amd.com/us-en/AMD-Business/
Technology-Home/Torrenza.aspx.

[2] Aeronautical Radio Inc. ARINC 653 Specification.
http://www.arinc.com/.

[3] T. Baker. Lessons learned integrating COTS into systems. In
Proc. of the First International Conference on COTS-Based
Software Systems (ICCBSS 2002), Feb 2002.

[4] FFMPEG project. libavcodec multimedia library. http:
//ffmpeg.mplayerhq.hu/.

[5] K. Hoyme and K. Driscoll. Safebus(tm). IEEE Aerospace
Electronics and Systems Magazine, pages 34–39, Mar 1993.

[6] Tay-Yi Huang, Jane W. S. Liu, and Jen-Yao Chung. Allow-
ing cycle-stealing direct memory access I/O concurrent with
hard-real-time programs. In Int. Conf. on Parallel and Dis-
tributed Systems, Tokyo, 1996.

[7] Intel Corp. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, February 2008.

[8] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Prob-
lems. Springer, 2004.

[9] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In Proc. of
the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, March 2004.

[10] M. Lewandowski, M. Stanovich, T. Baker, K. Gopalan, and
A. Wang. Modeling device driver effects in real-time schedu-
lability: Study of a network driver. In Proceedings of the
13th IEEE Real Time Application Symposium, Apr 2007.

[11] C.L. Liu and J.W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of
the Association for Computing Machinery, 20(1), 1973.

[12] Marvell. Discovery II PowerPC System Controller MV64360
Specifications. http://www.marvell.com/.

[13] S. Oikawa and R. Rajkumar. Linux/RK: a portable resource
kernel in linux. In Proceedings of the 19th IEEE Real-Time
System Symposium, Madrid, Spain, December 1998.

[14] PCI SIG. Conventional PCI 3.0, PCI-X 2.0 and PCI-E 2.0
Specifications. http://www.pcisig.com.

[15] R. Pellizzoni and M. Caccamo. Towards the predictable in-
tegration of real-time COTS based systems. In Proc. of the
28th IEEE Real-Time System Symposium, Dec 2007.

[16] H. Ramaprasad and F. Mueller. Bounding preemption delay
within data cache reference patterns for real-time tasks. In
Proc. of the IEEE RTAS, Apr 2006.

[17] J. Rosen, P. Eles A. Andrei, and Z. Peng. Bus access opti-
mization for predictable implementation of real-time appli-
cations on multiprocessor systems-on-chip. In Proc. of the
28th IEEE Real-Time System Symposium, December 2007.

[18] S. Schönberg. Impact of pci-bus load on applications in a pc
architecture. In Proceedings of the 24th IEEE International
Real-Time Systems Symposium, Cancun, Mexico, Dec 2003.

[19] M. Stanovich, T. Baker, and A. Wang. Throttling on-disk
schedulers to meet soft-real-time requirements. In Proc. of
the 14th IEEE RTAS, St. Louis, Missouri, April 2008.

