DRAMController: A Simulation Framework

for Real-Time DRAM Controllers

Danlu Guo and Rodolfo Pellizzoni
University of Waterloo
Email: dlguo, rpellizz@uwaterloo.ca

I. INTRODUCTION

The performance of modern computer systems is increas-
ingly limited by the characteristics of DRAM main memory.
Simulation-based study has been widely accepted for computer
architecture design, and accurately modeling the memory
system is essential to provide meaningful full-system results.
Memory performance strongly depends on multiple factors
including the device timing constraints, the controller archi-
tecture, the workload of incoming requests and the scheduling
algorithm of corresponding DRAM access commands.

Available DRAM system simulators, such as DRAM-
Sim2 [2] and Ramulator [1], are designed to model the
structure and behavior of DRAM devices, but the underlying
DRAM memory controller (MC) which processes incoming
memory requests is a fairly simplified model lacking modu-
larity and extensibility. The Gem5 full-system simulator also
provides a detailed MC model [3], but it is not cycle-accurate.
Recently, the real-time community has proposed many inno-
vative DRAM scheduling policies that allow the derivation of
better upper bounds on the latency of memory requests. How-
ever, the fixed MC models used in the aforementioned DRAM
simulators cannot easily support the architecture required by
the proposed real-time policies. As a consequence, authors in
the real-time community have typically resorted to designing
their own MC simulators from scratch. This increases the time
required to test and validate new ideas and complicates the
process of comparing different designs.

To address such issues, we present DRAMController, an ex-
tensible and cycle-accurate object-oriented simulation frame-
work that simplifies the process of testing and comparing new
MC designs. DRAMController is based on the observation
that while different MCs employ widely varying scheduling
schemes, they process memory requests by a set of common
functions that are used to implement standard hardware blocks
and processing flow. These functions tend to contribute the
majority of the code in any simulator, and can thus be reused
across designs. We proved the usability of the simulator
by successfully implementing several recently proposed real-
time MC designs [4], [5], [6], [7], [8], [11], [10], [9], [12]
within our framework. DRAMController can be built on any
system supporting C++11; the simulator code is available at
[http://ece.uwaterloo.ca/~rpellizz/DRAMController].

II. SIMULATOR OVERVIEW

DRAMController employs a modular design; Figure 1
illustrates the major hardware blocks implemented in the
framework. Each block is constructed independently and the
encapsulated data is accessed through a simple interface. In
this manner, changes to the behavior of a specific block do
not impact the other blocks in the system. Our generalized
architecture consists of an address translator, which maps
requests to physical memory cells, a command generator
which converts requests into access commands, and a re-
quest and command schedulers which determine the order of
request/command execution. The specific algorithms imple-
mented by these blocks must be customized based on the MC

Request Queue
Request Queue
II Request Queue II

Request Queue

DRAM Memory Controller

Address Mapping
Request Scheduler
Command Generator
Command Scheduler

Fig. 1. Generalized Real-Time Memory Controller Architecture.

design; DRAMController exploits the benefits of inheritance
and polymorphism by providing virtual function interfaces,
which minimize the amount of code required to extend the
functionality of each block. A MC simulator must also include
queues to connect these hardware blocks, and buffer requests
and commands. Rather than fixing the structure of the queues
as in most other MC simulators, DRAMController provides
an easy to configure, modular queue structure. Since DRAM
devices are organized in hierarchy levels (e.g., channels,
ranks, bank groups, banks), the configurable queue structure
allows the designer to construct the queues according to any
DRAM level, and furthermore allocate each queue globally
or for specific requestors and request types. As a result, after
implementing all aforementioned real-time MCs, we observe
that the amount of controller-specific code in the framework
is only 10%, and the largest amount of code required to
implement any one controller is 200 lines.

DRAMController employs a generalized interface that can
be accessed by any external source to send memory requests.
In particular, we tested the framework using memory request
traces generated from full-system simulator. DRAMController
also employs an abstract DRAM interface for the DRAM
device model, so that the framework is not tied to any specific
memory device type. We currently connect to Ramulator as
the preferred device simulator, as it supports a wide variety of
DRAM standards.

REFERENCES

[11 Y. K, and W. Y., and O. M., Ramulator: A Fast and Extensible DRAM
Simulator, CAL, IEEE 2015.

[2] P. R, and E.C. B., and B. J., DRAMSim2: A Cycle Accurate Memory
System Simulator, CAL, IEEE 2011.

[3]1 A. H. et al., Simulating DRAM controllers for future system architecture
exploration, ISPASS, 2014.

[4] M. P, and E. Q., and FE. C., and M. V., An analyzable memory controller
for hard real-time CMPs, ESL, IEEE 2009.

[5] M. H., and H. P, and R. P., A Framework for Scheduling DRAM Memory
Accesses for Multi-core Mixed-time Critical System, RTAS, 2015.

[6] Y.L., and B. A., and K. G., Dynamic Command Scheduling for Real-Time
Memory Controllers, ECRTS, 2014.

[71 Z. W., and Y. K., and R. P., Worst Case Analysis of DRAM Latency in
Multi-Requestor Systems, RTSS, 2013.

[8] L. E., and R. E., Improved DRAM Timing Bounds for Real-Time DRAM
Controllers with Read/Write Bundling, RTSS, 2015.
[9] H. K., and E. L., and M. Z., A Predictable and Command-Level Priority-
Based DRAM Controller for Mixed-Criticality Systems, RTAS, 2015.
[10] L. E., and R. E., Improved DRAM Timing Bounds for Real-Time DRAM
Controllers with Read/Write Bundling, RTSS, 2015.

[11] Y. K, and Z. W., and R. P., ROC: A Rank Switching, Open-Row DRAM
Controller for Time-Predictable Systems, ECRTS, 2014.

[12] L. E. et al., A Mixed Critical Memory Controller Using Bank Privati-
zation and Fixed Priority Scheduling, RTCSA, 2014.


http://ece.uwaterloo.ca/~rpellizz/DRAMController

	Introduction
	Simulator Overview
	References

