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Abstract— Recently, a large number of works have discussed
scheduling tasks consisting of a sequence of memory phases,
where code and data is moved between main memory and
local memory, and computation phases, where the task executes
based on the content of local memory only; the key idea is to
prevent main memory contention by scheduling the memory
phase of one task in parallel with computation phases of
tasks running on other cores. This paper provides two main
contributions: (1) we present a compiler-level tool, based on the
LLVM intermediate representation, that automatically converts
a program into a conditional sequence of segments comprising
memory and computation phases; (2) we propose an algorithm
to find optimal segmentation decisions for a task set scheduled
according to a fixed-priority partitioned scheme. Our evaluation
shows that the proposed framework can be feasibly applied to
realistic programs, and vastly overperforms a baseline greedy
segmentation approach.

I. INTRODUCTION

Multi-Processor Systems-on-a-Chip (MPSoCs) are becom-
ing increasingly popular in the real-time and embedded
system community. MPSoCs are characterized by the presence
of shared memory resources. In particular, a single main
memory shared by all processing elements on the chip
can constitute a significant performance bottleneck. Even
worse, hardware arbitration schemes used in Commercial-Off-
The-Shelf (COTS) systems are optimized for average-case
performance, resulting in extremely high worst-case latency in
the presence of contention for memory access among multiple
processors [16], [17], [29].

Hence, there is a significant interest in the real-time
community in controlling the pattern of accesses in memory
to avoid worst-case scenarios. This can be difficult in cache-
based systems, where main memory accesses are generated
by misses in last level cache, as the precise pattern of cache
hits and misses is hard to predict. The PRedictable Execution
Model (PREM) first proposed in [23] attempts to solve this
issue by dividing the execution of each software task in two
different parts: memory phases where the data and instructions
required by the task are loaded from main memory into local
memory (cache or scratchpad), and computation phases where
a processor executes the task based on the content of local
memory only. Since the task does not need to access main
memory during its computation phase, other processors are
free to do so without suffering contention.

Based on this core idea, successive works [2]–[5], [8]–[10],
[12], [20]–[22], [24], [27], [31]–[34] have proposed a variety
of contentionless approaches 1 targeting different scheduling

1Note that the model we are discussing is also referred to as three-phase
model or acquisition-execution-replication model in related work.

schemes (preemptive vs non-preemptive, partitioned vs global)
and platforms (general purpose processors vs GPU). However,
the key problem of how to compile a program to execute
based on PREM has received significantly less attention. In
general, the following steps are required: (1) determine the
data used by the program; (2) add instructions to create
memory phases; (3) and possibly segment the program into
multiple parts, so that the data and code of each part can fit
in local memory. Due to the complexities inherent in each
step, we strongly believe that an automated tool is required
to remove the burden from the programmer.

The main contribution of this paper is a framework
for automatically generating PREM-compatible code for
sequential programs running on a general purpose processor;
it is largely agnostic to the programming language being
used since it operates on the intermediate representation of
the LLVM compiler infrastructure [18]. In particular, we
propose a set of program transformation constraints that
allow us to convert a task into a conditional sequence of
PREM segments. We use a region-based approach to simplify
segment creation, in conjunction with loop splitting and
tiling transformations [15] to split large loops into multiple
segments. Based on the proposed framework, we then derive
a task segmentation algorithm that is optimal for PREM
platforms with fixed-length memory phases [27], in the
sense that we prove that our algorithm produces the best
possible conditional segments for a given task. Based on the
proposed framework, we then derive a task segmentation
algorithms that enumerates the best possible conditional
segments for a given task on a platform with fixed-length
memory phases [27]. Furthermore, for the case of fixed-
priority partitioned scheduling, we show that applying the
algorithm to each task in priority order leads to a solution
that is optimal for the task set.

The rest of the paper is organized as follows. Section II
summarizes existing research based on PREM. Section III
introduces our new conditional PREM model and extends
the existing schedulability analysis to cover such model.
Section IV describes our employed compilation framework,
and our program segmentation algorithm based on such
framework, while Section V then shows how to obtain
an optimal segmentation for a given task set. Section VI
compares our optimal segmentation approach versus both
a previous greedy approach, and a simple heuristic, using
task set parameters extracted from real programs. Finally, we
conclude in Section VII.
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II. BACKGROUND AND RELATED WORK

We consider a MPSoC platform comprising a set of possibly
heterogeneous processors. 2. Each processor has a fast
private local memory in the form of a last level cache 3 or
ScratchPad Memory (SPM); all processors share the same
main memory. As discussed in Section I, the goal of PREM
is to create a contentionless memory schedule. While the
seminal work in [23] first proposed to split the execution of
each application into a memory and a computation phase, the
approach has been refined in successive works [3], [32] into a
three-phase model. Here, two memory phases are considered:
an acquisition (or load) phase that copies data and instructions
from main memory into local memory, and a replication
(or unload) phase that copies modified data back to main
memory. While the computation phase is always executed
on a processor, memory phases can be either executed on
the processor itself [2], [3], [5], [9], [10], [21]–[24], [33],
[34], or on another hardware component [12], [13], such as a
programmable DMA module [4], [8], [27], [32]. In all cases,
memory phases are scheduled such that a single memory
phase is executed at any one time in the entire system.

When the data used by a program is small and deterministic,
the task can comprise a single sequence of load-computation-
unload phases. However, the code and data of the program
might be too large to fit in one partition of local memory.
which we find common for applications such as image/video
processing and deep neural networks. Second, it might be
difficult to predict the data accessed by a job before it starts
executing, as data accesses can be dependent on program
inputs. To address such issue, the works in [9], [21], [23],
[32] split a task into a sequence of PREM segments, where
each segment has its own memory and computation phases
and is executed non-preemptively.

A. Memory and Processor Schedule

The memory scheduling algorithm is different among
related work, based on their specific goals and system
assumption. Approaches targeted at multitasking systems
optimize task execution by overlapping the computation of
the current job with the memory phase for the next job to
be scheduled on that processor. In essence, one can pipeline
computation and memory phases using a double-buffering
technique [12], [13], [27], [32], at the cost of halving the
available local memory space. As an example, we detail the
approach in [27], [32], which has been designed to schedule
a set of fixed-priority, partitioned sporadic tasks, and fully
implemented on an automotive COTS platform. The local
memory of each processor is divided into two equal size
partitions. Memory phases are executed by a dedicated DMA
component using a TDMA memory schedule with fixed time
slots; the size of each slot is sufficient to either load or unload
the entirety of one partition. Figure 1 shows an example
schedule on one processor; the task under analysis (u.a.)

2A processor can either be a general purpose core, or in the case of SIMD
machine such as a GPU, a cluster of cores.

3A shared last level cache can still be used by partitioning it among the
processors [19], [30].
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Fig. 1: Example: TDMA memory schedule with M = 2 cores.
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) computes using data and instruction in
one partition. At the same time, the DMA unloads the content
of the previous segment (s1) and loads the next segment (s3)
in the other partition. Note that the length of each scheduling
interval is the maximum of the computation time for the
corresponding segment, and the time required for the load
and unload operations. In the figure, Interval
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is bounded
by the memory time, while all other intervals are bounded by
the computation time of the segment. Let M be the number
of cores, and � the size of each TDMA slot. Then as proven
in [27], the worst-case memory time is equal to � ⋅ (2M +1):
as again shown in Interval

3

, the previous interval can finish
right after the beginning of a TDMA slot assigned to the core
under analysis, forcing that slot to be wasted. To abstract
from the details of the memory schedule, in the rest of the
paper we assume a given bound � on the memory time for
any interval. Hence, the length of an interval is the maximum
of � and the computation time of the job in that interval.
Finally, note that two segments of the same task cannot run
back-to-back: in general, the data required by a segment
cannot be determined until the previous segment completes;
furthermore, to load a segment we might need to first evict
some data and code of the previous one. For both reasons, the
computation phase of a segment and the memory phase of
the next one cannot be executed in parallel. To avoid idling
the processor while a task loads its next segment, one or
more segments of (possibly lower priority) other tasks are
instead scheduled.

A downside of the described approach is that a high priority
job can suffer blocking by a low priority job due to the
non-preemptive interval schedule. The works in [22], [33],
[34] adopt preemptive scheduling, but this requires a number
of local memory partitions equal to the number of tasks:
otherwise, a memory phase could be “wasted” by loading a
job that is immediately preempted by a higher priority one.
Given that local memory is typically a limited resource, we
will not consider such fully-preemptive approaches.

B. Program Transformation

We next discuss how a program can be transformed to
be PREM-compliant. Most single-segment works do not
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require program transformation; instead, the entire memory
region allocated by the OS to the program is loaded in
local memory [5], [8], [27], [32]. The seminal work in [23]
introduces a set of macros, which the programmer could add
to the program to both segment it, and mark data structures
to be loaded / unloaded. Our experience with programs of
even medium complexity is that this places an undue burden
on the programmer, and it is likely to lead to a sub-optimal
transformation. The authors of [12], [13] discuss a compiler-
based approach to transform a GPU kernel. The approach
focuses on generating code for the memory phase. On the
other hand, our focus in this paper is how to automate data
usage analysis and task segmentation for sequential programs
running on a general purpose processor. Light-PREM [20]
uses run-time profiling to detect memory areas used by a
program to load during memory phases. We find the approach
suitable for programs with highly dynamic data structures,
but since it is based on profiling rather than static program
analysis, it cannot guarantee worst-case bounds. Also, it
does not discuss how to segment a task. In our previous
work [25], we proposed a program analysis and transformation
technique that uses static analysis to determine data accesses
and predictably load/unload data from SPM while the program
is executing. We reuse the same compiler framework in
Section IV to determine the data to load in each segment.
Note that [25] only deals with a single-task, single processor
case, and does not segment the program based on PREM.

The closest related work is [21], where the authors
introduce an automated task compilation and segmentation
tool. The approach is similar to our work in that is relies
on the LLVM compiler infrastructure, and employs loop
splitting and tiling [15] to break loops that are too large to
fit in local memory. However, the paper is focused on the
case of a parallel, single-task system, and the tool employs
a “greedy” segmenting approach that results in the longest
possible segments. As we discuss in Section III and show in
Section VI, such greedy approach is not suitable for multi-
tasking systems where blocking time due to non-preemptive
segments of lower priority tasks is a concern.

Finally, all related work assumes that a task comprises a
single segment or a fixed sequence of segments. However, a
program can have multiple execution paths whereas it accesses
different data along each path, and must be PREM-compliant
along all valid paths. Therefore, in Section III we introduce
a new conditional PREM model in which the fixed segment
sequence is replaced by a Directed Acyclic Graph (DAG) of
segments, and we then show how to compile the program to
execute segments conditionally. An important consequence
of the conditional model is that we cannot extract a single
worst-case path for the program: instead, the worst-case path
depends on the maximum blocking time imposed by lower
priority jobs. Hence, in Section III-A we also show how to
extend the analysis in [27], [32], which considers a partitioned
system with fixed per-task priorities, to the conditional model.
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Fig. 2: Example segment DAG with � = 5. In each node, the
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end.

III. SYSTEM MODEL AND SCHEDULABILITY ANALYSIS

We consider scheduling a set of sequential, conditional
PREM tasks on a multiprocessor. We assume non-preemptive
segment execution, with a fixed memory time � to
load/unload each segment. While in Section III-A we detail
the analysis for the specific case of a partitioned system
with fixed per-task priority, we point out that the task
model presented in this section, and the compiler framework
presented in Section IV, are independent of the specific
scheduling scheme and can thus be used with any PREM-
based approach. In details, we consider a set of sporadic
tasks � = {⌧

1

, . . . , ⌧

N

}. We use T

i

to denote the period (or
minimum inter-arrival time) of task ⌧

i

, and D

i

for its relative
deadline. We assume constrained deadline: D

i

≤ T

i

. ⌧

i

is
further characterized by a DAG of segments G

i

= (S
i

,E

i

),
where S

i

is a set of nodes representing segments, and E

i

is
a set of edges representing precedence constraints between
segments. We assume that the set S

i

contains unique source
and sink segments s

begin

, s

end, as we consider programs
with a single entry and exit point. We define the length
s.l of a segment s ∈ S

i

as the maximum length of any
scheduling interval for the segment, that is, the maximum
between the worst-case computation time t

s

of s (including
context-switch overheads) and the memory time �. In the
remaining of the paper, we use p to denote a DAG path,
that is, an ordered sequence of segments; p.I is the number
of segments in the path, p.L the sum of their lengths, and
p.end the length of the last segment in the path. We say
that a path is maximal if its first segment is s

begin and its
last segment is s

end. To avoid confusion, in the rest of the
paper we use uppercase letters (P ) to denote maximal paths.
Note that by definition P.end = s

end

.l. Figure 2 shows an
example DAG with three maximal paths: P = {s0

, s

1

, s

2

, s

7},
P

′ = {s0

, s

3

, s

4

, s

7}, and P

′′ = {s0

, s

3

, s

5

, s

6

, s

7}. Note that
we have P.L = 30, P.I = 4, P

′
.L = 28, P

′
.I = 4, P

′′
.L =

26, P

′′
.I = 5, and P.end = P

′
.end = P

′′
.end = 5. Finally, we

will use the notation p = {p
1

, ..., p

n

} to indicate that path p

can be obtained as a sequence of n (sub-)paths.
In general, a segment DAG could have a potentially large

number of maximal paths, and a task could be segmented
into many different DAGs. The following definitions will
allow us to restrict the number of paths / DAGs to find a
schedulable task system.

Definition 1: Given two maximal paths P,P

′, we say that
P

′ dominates (is worse than or equal to) P and write P

′ � P
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<latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit>
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<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

l

<latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit>

l

<latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit> l

<latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit>

⌧

1

<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧

1

<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧

2

<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>

l

<latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit>

⌧

2

<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>

⌧

2

<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>
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2

<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>

⌧

2

<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>
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3

<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>
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3

<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>

⌧

3

<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>

⌧

3

<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>

Interval3	Interval1	 Interval2	 Interval4	 Interval5	 Interval6	 Interval7	 Interval8	 Interval9	 Interval10	 Interval11	

⌧

1

<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit> l

<latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit><latexit sha1_base64="1bId/kPDt8vHLGRnvfvteyjJbUw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibp1KqeW/VaN5VGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/POYzg</latexit>

⌧

3

<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>
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Fig. 3: Example critical instant. Up arrows represent arrival
times. “low prio” denotes segments of lower priority tasks.

iff: P

′
.L ≥ P.L and P

′
.I ≥ P.I and P

′
.end ≤ P.end. If

neither P

′ � P nor P � P

′ holds, we say that the two paths
are incomparable.
Since the � relation defines a partial order between maximal
paths, we can characterize a task based on its set of
dominating paths. Formally, given segment DAG G, we use
G.C to denote the Pareto frontier 4 of all maximal paths
in G. Intuitively, for a task ⌧

i

, we will show that the set
G

i

.C replaces the concept of worst-case execution time. For
example, for Figure 2, G.C is the set P,P

′′; P

′ is not included
since P dominates it; but both P and P

′′ are included since
they are incomparable.

Definition 2: Given two segment DAGs G,G

′, we say that
G

′ dominates (is worse than or equal to) G and write G

′ � G

iff: ∀P ∈ G.C,∃P ′ ∈ G

′
.C ∶ P ′ � P . If neither G

′ � G nor
G � G

′ holds, the two DAGs are incomparable.
Note that since G.C is the Pareto frontier, G

′ � G implies
that for every path in G, there is a corresponding path in G

′
that dominates it.

A. Schedulability Analysis

We now consider a partitioned system with fixed per-task
priority, and extend the analysis in [27], [32] to support
conditional task execution. Since tasks are partitioned among
cores and the effect of the memory schedule is captured by
the memory time �, each core can be analyzed independently.
Therefore, let � = {⌧

1

, . . . , ⌧

N

} represents the set of tasks
on the core under analysis, ordered by decreasing, distinct
priorities, and assume that each task ⌧

i

is associated with a
given segment DAG G

i

. The scheduling algorithm follows
the scheme in Figure 1, in details: at the beginning of each
scheduling interval, we execute on the processor the segment
loaded during the previous interval (if any). In parallel, we
unload and load the other local memory partition with the
next segment of the highest priority ready task.

An example critical instant (modified from [32]) for task
under analysis ⌧

3

is depicted in Figure 3. Here, the task under
analysis and all higher priority tasks arrive just after the
beginning of an interval for a lower priority task (Interval

1

in the figure). As a consequence, the task under analysis
suffers an initial blocking time B

i

equal to two intervals,
as another lower priority segment loaded during Interval

1

executes during Interval
2

. More in general, let ⌧

i

be the task

4Given a partial order over a set of distinct elements, the Pareto frontier
is the subset of elements that are not dominated by any other element.

under analysis, and let l

lmax

i

denote the maximum length of
any segment of a lower priority task. We have:

l

lmax

i

=max(�, max

j=i+1,N max

s∈Sj

s.l) (1)

B

i

=
�����������
2 ⋅ llmax

i

, if i ≤ N − 2.

l

lmax

N−1 +�, if i = N − 1.

�, if i = N.

(2)

For task ⌧

N−1, there is only one lower priority task; hence, the
first blocking interval has only a memory phase and no task
computation, while task ⌧

N

computes in the second blocking
interval. For ⌧

N

, there is only one initial blocking interval
consisting of a memory phase. Note that in the worst case,
each successive segment of ⌧

i

can suffer a blocking time
equal to l

lmax

i

since two segments of ⌧

i

cannot be executed
back-to-back (Interval

6

and Interval
8

in the figure). For ⌧

N

,
we set l

lmax

i

=� since there are no lower priority tasks, but
a scheduling interval with memory only would be needed
between successive segments of ⌧

N

.
Since higher priority tasks arrive synchronously with the

task under analysis, the interference suffered by ⌧

i

in an
interval of length t is equal to:

Inter
i

(t) = i−1�
j=1
�t�T

j

� ⋅L
j

, (3)

where L

j

is the length of the path taken by ⌧

j

. Since we
cannot make any assumption on path execution, we maximize
the interference by considering the path with maximum
length:

L

max

j

=max{P.L � P ∈ G

j

.C}. (4)

Note that it is sufficient to consider only the maximal paths
in G

j

.C since each maximal path in G

j

is dominated by a
path in G

j

.C, and by Definition 1 the dominating path has
longer or equal L. Finally, since segments are executed non-
preemptively, a task will complete by its deadline if its last
segment starts execution P.end time units before its deadline.
Therefore, for a maximal path P , the response time R

i

(P )
of ⌧

i

up to its last segment can be computed as a standard
iteration:

R

i

(P ) = B

i

+(P.I−1) ⋅llmax

i

+P.L−P.end+Inter
i

�
R

i

(P )�,
(5)

and the task is schedulable along that path if:

R

i

(P ) ≤D

i

− P.end. (6)

Here, P.L − P.end represents the length of intervals where
⌧

i

computes (excluding the last segment), B

i

is the blocking
suffered by the first segment, (P.I − 1) ⋅ llmax

i

is the
blocking suffered by other segments, and Inter

i

�
R

i

(P )� is
the interference of higher priority tasks. We next prove three
key properties of the analysis.

Property 1: Consider two paths P,P

′ with P

′ � P . If
Equation 6 holds for P

′, then it also holds for P .
Proof: Note that Equation 3 is increasing in t, and

Equation 5 is increasing in P.I and P.L and decreasing in
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P.end. Since it holds P

′
.L ≥ P.L, P

′
.I ≥ P.I , P

′
.end ≤

P.end, at convergence it must hold: R

i

(P ′) ≥ R

i

(P ).
Now by hypothesis it holds: R

i

(P ′) ≤D

i

−P

′
.end, which

is equivalent to: D

i

≥ B

i

+ (P ′.I − 1) ⋅ llmax

i

+ P

′
.L +

Inter
i

�
R

i

(P ′)�. But since we have: B

i

+ (P ′.I − 1) ⋅ llmax

i

+
P

′
.L + Inter

i

�
R

i

(P ′)� ≥ B

i

+ (P.I − 1) ⋅ llmax

i

+ P.L +
Inter

i

�
R

i

(P )�, we obtain: D

i

− P.end ≥ B

i

+ (P.I − 1) ⋅
l

lmax

i

+ P.L − P.end + Inter
i

�
R

i

(P )�, completing the proof.

Based on Property 1, to check the schedulability of ⌧

i

it is
sufficient to test the set of dominating maximal paths. Hence,
the following lemma immediately follows, where � denotes
a logical and.

Lemma 1: Task ⌧

i

is schedulable if:

�
P ∈Gi.C

R

i

(P ) ≤D

i

− P.end. (7)

Property 2: (A) The schedulability of task ⌧

i

depends on
the maximum length l

lmax

i

of any segment of lower priority
tasks ⌧

i

+ 1, . . . ⌧

N

, but not on any other parameter of those
tasks. (B) If ⌧

i

is schedulable for a value l of l

lmax

i

according
to the analysis, then it is also schedulable for any other value
l

′ ≤ l.
Proof: Part (A): by definition of Equations 5, 7. Part

(B): since R

i

is increasing in l

lmax

i

, the response time for
l

lmax

i

= l

′ cannot be larger than the one for l.
If the segment DAG G

i

for each task ⌧

i

∈ � is known,
then task set schedulability can be assessed by checking
Equation 7 for all tasks in the order ⌧

1

, . . . , ⌧

N

. However, we
are interested in using the response time of tasks ⌧

1

, . . . , ⌧

i

in order to optimize the segmentation of task ⌧

i+1, hence
G

i+1, . . . ,GN

are not known when analyzing ⌧

i

. Based
on Property 2, we instead use the analysis to determine
the maximum value l

lmax

i

of l

lmax

i

under which ⌧

i

is still
schedulable. Such value is then passed as an input to our
segmentation algorithm working on ⌧

i+1, as we detail in the
next section. Note that in theory, one could determine l

lmax

i

by performing a binary search over Equation 7. However, we
show Section III-B that an alternative formulation based on
the concept of scheduling points used in [6] can be used to
derive l

lmax

i

directly.
Property 3: Consider two DAGs G

j

,G

′
j

for task ⌧

j

where
1 ≤ j ≤ i and G

′
j

� G

j

. If ⌧

i

is schedulable for G

′
j

according
to the analysis, then it is also schedulable for G

j

.
Proof: Case j = 1, . . . i− 1: since G

′
j

� G

j

, the value of
L

max

j

for G

j

is no larger than for G

′
j

. Since the interference
Inter

i

(t) is increasing in L

max

j

, the resulting response time
of ⌧

i

for G

j

cannot be larger than the one for G

′
j

.
Case j = i: since G

′
i

� G

i

, for each maximal path P ∈ G

i

.C

there must exist a maximal path P

′ ∈ G

′
i

.C such that P

′ � P .
Now since ⌧

i

is schedulable for G

′
i

according to the analysis,
by Equation 7 it must hold R

i

(P ′) ≤D

i

− P

′
.end; then by

Property 1, it must also hold R

i

(P ) ≤ D

i

− P.end. This
means that Equation 7 holds for G

i

, concluding the proof.
Property 3 shows that the dominance relation indeed corre-
sponds to the notion of a DAG being better than another
from a schedulability perspective. Hence, the objective of our

segmentation algorithm is to find a set of “best” DAGs for a
task based on Definition 2.

B. Maximum Blocking Length Derivation

In this section, we show how to efficiently derive the
maximum value of l

lmax

i

for l

lmax

i

, based on the strategy
introduced in [6]. In details, define the set of points:

S
i

(P.end) = (D
i

− P.end)∪
{k ⋅ T

j

� j = 1 . . . i − 1, k = 1 . . . �(D
i

− P.end)�T
j

�}. (8)

Note that S
i

is the set of points where the interference value
Inter

i

(t) changes, together with the deadline D

i

−P.end for
the last segment to start computing. Then if for any time t,
the total demand (including blocking time, interference of
higher priority tasks and execution of ⌧

i

) is less than t, it
follows that ⌧

i

is schedulable. We have thus obtained the
alternative schedulability test:

�
P ∈Gi.C

�
t∈Si(P.end)

B

i

+(P.I−1)⋅llmax

i

+P.L−P.end+Inter
i

(t) ≤ t,

(9)
where � represents the or of the conditions. In practice, the
test can be efficiently evaluated because, as shown in [6],
it is sufficient to check a subset ¯S

i

(P.end) of the points inS
i

(P.end).
We can now express Equation 9 as a condition on the max-

imum value of l

lmax

i

through simple algebraic manipulation.
For a task ⌧

i

with i ≤ N − 2 we obtain:

�
P ∈Gi.C

�
t∈ ¯Si(P.end)

(P.I + 1) ⋅ llmax

i

+ P.L − P.end + Inter
i

(t) ≤ t

⇔ �
P ∈Gi.C

�
t∈ ¯Si(P.end)

l

lmax

i

≤ t − P.L + P.end − Inter
i

(t)
P.I + 1

⇔ l

lmax

i

= min

P ∈Gi.C
max

t∈ ¯Si(P.end)
t − P.L + P.end − Inter

i

(t)
P.I + 1

.

(10)

Similarly, for task ⌧

N−1 we obtain:

l

lmax

i

= min

P ∈Gi.C
max

t∈ ¯Si(P.end)
t − P.L + P.end −� − Inter

i

(t)
P.I

,

(11)
while for the lowest priority task we have l

lmax

N

= B

N

=�,
such that the schedulability test is equivalent to:

0 ≤ min

P ∈Gi.C
max

t∈ ¯Si(P.end) t−P.L+P.end−P.I ⋅�−Inter
i

(t). (12)

IV. PROGRAM SEGMENTATION

In this section, we show how a task is compiled into
segments with the objective of optimizing the system schedu-
lability. We start by discussing the program structure based on
regions. After that, we define valid segmentations according to
our compiler framework, which is based on LLVM [18] and
the work in [25]. Finally, we detail our algorithm, which
segments the program and returns the set of all DAGs
that could be optimal. Similarly to [25], we assume that
the program follows common real-time coding conventions.
Therefore, the code should not use recursion or function
pointers and all loops in the program are bounded. We
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also assume that the WCET and footprint of any part
of the program are known either using static analysis or
measurement.

A. Program Structure

We adopt the region-based program structure introduced
in [25] which represents each function in the program as a
tree where each node is a region. A region encompasses a
sub-graph of the program control flow graph (CFG) with a
single entry and a single exit. A leaf node in the region-tree is
denoted as a trivial region and each trivial region comprises
a single basic block or a single function call. Two regions
r

1

and r

2

are sequentially-composed if the exit of r

1

is the
entry of r

2

. An internal node in the region-tree is a non-trivial
region that can represent a loop, a condition, or a maximal set
of sequentially-composed regions (i.e. a sequential region).
A non-trivial region r

i

is the parent of region r

j

if r

i

is
the closest region containing r

j

. Each loop region has one
child that represents a single iteration of the loop. The top
level region r

f

0

of function f can either be a basic block or
a sequential region. If r

f

0

is sequential, then the last region
in its children sequence must be a basic block that returns
from f . Each region r

i

in the region tree has WCET t

i

and
a data footprint D

i

.
Figure 4 shows an example of constructing the region

trees of a program with two functions main() and f().
Figure 4b shows the region tree of the pseudo-code of main()
in Figure 4a. Region r

0

, which is the top level region of
main(), is a sequential region with regions r

1

to r

4

as its
children. Region r

2

is a loop with child r

5

that represents
one iteration. All leaf regions r

1

, r

3

, r

4

and r

5

are trivial
regions. Region r

3

is a call to f() in Figure 4d. Figure 4e is
the region tree of f() where r

f

0

is the top level region with
r

f

1

to r

f

3

as its sequentially-composed children. Region r

f

2

is
an if-else conditional statement with region r

f

4

as the true
path and region r

f

5

as the false path.
Loop transformations can be applied to loop regions that

otherwise could not fit in a segment. A loop transformation
must be legal, i.e. it preserves the temporal sequence of
all dependencies and hence the result of the program. We
are interested in two transformations: loop splitting and loop
tiling. Loop splitting breaks the loop into multiple loops which
have the same bodies but iterate over different contiguous
portions of the index range. Figure 4c shows an example of
splitting loop region r

2

in main() that has N iterations by
expanding the loop region into three nodes: pre-loop node
with k

p

iterations, mid-loop node with N − k

p

− k

s

iterations,
and post-loop node with k

s

iterations. Loop tiling combines
strip-mining and loop permutation of a loop nest to create
tiles of loop iterations which may be executed together. A
tiled loop nest is divided into tiling loops that iterate over
tiles and element loops that executes a tile. Note that the
data footprint of a tile is derived in terms of the tile sizes.
An example for tiling a 1-level loop is depicted in Figure 4f;
however, note that multi-level (nested) loops can also be
tiled. In the figure, r

f

4

is a tiling loop region that has N

f

iterations with tile size k

t

. The number of tiles is �N
f

�k
t

�

with M

f

= �N
f

�k
t

�−1 complete tiles and a last tile k

last

t

≤ k

t

such that k

last

t

= N

f

−M

f

∗ k

t

. In Figure 4f, r

f

t

is the tiling
loop with M

f

iterations over the element loop r

f

e

. Note that,
adding a tiling loop adds an overhead which is represented as
r

f

o

; we use t

tile

to denote the WCET of the overhead region.
The last tile is separated in r

f

last

, where a tile of size k

last

t

is executed after all complete tiles.

B. Valid Segmentation

Program segmentation is the process of assigning each
part of the program code to a segment. In this paper, we
restrict the parts of the program that can be assigned to
a segment to be a region or a sequence of regions. A
segmentation is valid if it satisfies the footprint constraint, the
(optional) length constraint and the compilation constraints.
The footprint constraint states that the footprint of each
segment, i.e. the code and data of regions assigned to the
segment must fit in the available SPM size D

SPM

. The
length constraint states that the length of each segment must
be at most l

max. As discussed in Section III, this is done
to limit the blocking time imposed on higher priority tasks;
setting l

max = +∞ is equivalent to removing the constraint.
Note that creating a segment incurs a segmentation overhead
t

seg

which contributes to the segment length. That is, if
region r is assigned to segment s, then s.l = t

r

+ t

seg

. If
multiple regions in sequence are assigned to a segment s,
then s.l = (∑

r

t

r

)+ t

seg

. We further assume that the regions’
WCETs satisfy the following property, which we argue is
required for the WCET values to be sound:

Property 4: If r is a conditional region, then t

r

is equal to
the WCET of its longer children. If r is a sequential region
or tiled loop, then its WCET is less than or equal to the sum
of the WCETs of its children or tiles.

The compilation constraints are related to how the code is
modelled and transformed. A necessary compilation constraint
on a segment is that the data used by the segment is known
before executing the segment. This implies that if a pointer is
used to access a data object in a segment, the object(s) that
the pointer may refer to must be known before the segment. In
this paper, we add the following compilation constraints based
on the region structure to develop a systematic segmentation
process:
● A region cannot be assigned to more than one segment.

If a region is assigned to a segment, all its children are
assigned to the same segment.

● Each basic block region must be assigned to a segment.
● For all regions except function calls, we say that

a region is mergeable if it satisfies the length and
footprint constraints and all the children of the region
are mergeable.

● A function is mergeable if the top level region of the
function is mergeable. Accordingly, a function call region
is mergeable if the called function is mergeable.

● A set of mergeable regions that are sequentially-
composed can be combined in a multi-region segment
that satisfies the length and footprint constraints.
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main(){

X1;

for(..){

X2;

f(..);

X3;

}

}

r

3

r

5

r

4

r

2

r

1

r

0

(a) main pseudo-code

f()

N

= 1

0

t

1

=
8

t

5

=
5

t

4

=
15

r

5

r

4

r

3

r

2

r

0

r

1

(b) main region tree

k

s

N − k

p

− k

s

k
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Fig. 4: Region representation of program code

● A loop can be divided into multiple segments using loop
tiling and loop splitting. A loop region is splittable if
its child that represents a single iteration of the loop is
mergeable. A loop region that represents the outermost
loop of a loop nest is tileable if it is legal to tile and
a single iteration of the innermost loop of the tiling
loops is mergeable. Note that a splittable loop is always
tileable based on this definition. If a loop is tiled, then
each tile must be assigned to a segment that comprises
that tile only and the loop node represents a sequence
of segments. Tiling allows combining multiple iteration
of the loop in a repeatable segment by inserting the
segmentation instruction around the element loop.

Segmenting the region tree of a function results in a
segmented tree in which each region sequence R in the region
tree is substituted with a set of paths P . A region sequence
can be one mergeable region, a tiled loop, or a sequence
of mergeable regions and/or splittable regions and tiles. A
path p ∈ P for region R is a sequence of segments, to which
the regions and tiles in R are assigned. The segmented tree
is constructed inter-procedurally, i.e. if a call to a function
that is not mergeable, the segmented tree of that function is
duplicated in place of the call region. If there are multiple
calls to the function, the segmented tree for all the calls
must be the same. The segmented tree of the program is
accordingly the segmented tree of the main function.

A segmented tree represents a set of DAGs of segments,
such that a DAG is constructed from the segmented tree
by taking one path out of each path set and joining them
according to the tree hierarchy. This means that each maximal
path is obtained by joining a sequence of path {p

1

, p

2

, ..., p

n

}
for some n, where p

1

encompasses the source segment s

begin

and p

n

encompasses the sink segment s

end and hence the
last region in the program. Note that if a path for a region
sequence in a function is used to construct a DAG, the same

path must be used for all the calls to the function since the
region sequence represents the same code. We write T to
represent the segmented tree, or equivalently the set of DAGs
generated from it.

Figure 5 illustrates an example segmentation of the program
introduced in Figure 4. Let the maximum segment length
be l

max

= 35, the memory time � = 23, the segmentation
overhead t

seg

= 5, and the tiling overhead t

tiling

= 3. We
assume for this example that all the data of the program fits
in the SPM, so the footprint constraint is always satisfied.
Given the times for each basic block t in Figure 4b and
Figure 4d, regions {r

1

, r

4

, r

f

1

, r

f

3

, r

f

5

} are mergeable regions.
However, loop regions {r

2

, r

f

4

} are not mergeable. Assume
that we applied loop splitting on r

2

that has 10 iterations
such that it is split to two loops: pre-loop with 4 iterations
and mid-loop with 6 iterations. In Figure 5a, the region
sequence {r

1

, r

pre

2

, r

mid

2

} is replaced by a path set with a
single path that has 2 segments and a total length 67. The
first segment combines r

1

and r

2

pre

while the second segment
is r

2

mid

. As region r

3

is a call to a non-mergeable function,
it is replaced by a duplicate of the segmented tree of f .
The segmented tree of f has two regions r

f

1

and r

f

3

each
wrapped in a segment. Region r

f

2

is a conditional that is
not mergeable, so the false path r

f

5

is wrapped in a segment
while the true path r

f

4

which is a loop with 100 iterations
is tiled. There are many possible tiling options that would
satisfy the max segment length. We choose two of them
based on the tiling algorithm in the next section. The first
path has length p.l = 408 and number of segments p.I = 12.
The first 11 segments are complete tiles each with size k

t

= 9

and length max(9 ∗ 3 + t

tiling

+ t

seg

,23) = 35, and the last
segment is the last tile k

last

t

= 100 − 11 ∗ 9 = 1 with length
max(1 ∗ 3 + t

tiling

+ t

seg

,23) = 23. Similarly, the other path
has length p.l = 497 and number of segments p.I = 13. The
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Fig. 5: Segmentation Example

first 12 segments are complete tiles each with size k

t

= 8 and
with length max(8 ∗ 3 + t

tiling

+ t

seg

,23) = 32, and the last
segment is the last tile k

last

t

= 100 − 12 ∗ 8 = 4 with length
max(4∗3+ t

tiling

+ t

seg

,23) = 23. The two DAGs generated
from the segmented tree are shown in Figure 5b.

C. Segmentation Algorithm

The example in Section IV-B shows that different segmen-
tation decisions can result in incomparable maximal paths
according to Definition 1 as in Figure 5b: for the path P ,
we have P.L = 547, P.I = 17 and P.end = 23, while for the
path P

′, we have P

′
.L = 546, P

′
.I = 18 and P

′
.end = 23.

Since a DAG generated from the segmented tree T includes
either P or P

′, the resulting two DAGs G and G

′ are also
incomparable. This means that without considering the other
tasks in the system, we cannot determine whether G or G

′ is
better from a schedulability perspective. Hence, to guarantee
that we can find an optimal segmentation for the task set,
we need to consider both G and G

′. On the other hand, if
G

′ � G, we can safely ignore G

′ based on Property 3. This
is formally captured by the following definition.

Definition 3: Let G be the set of all valid DAGs for a
program according to the footprint, length and compilation
constraints, and let T be the segmented tree returned by a
segmentation algorithm for that program. We say that the
algorithm preserves optimality iff for any program: T is valid
according to the constraints, and ∀G′ ∈ G,∃G ∈ T ∶ G′ � G.
Based on Definition 4, a naive optimality-preserving algorithm
could proceeds as follows: first, enumerate all valid DAGs
in G. Then, cut dominating DAGs based on the domi-
nance relation. However, due to possible variations of loop
tiling/splitting and multi-region segments, this is practically
unfeasible as the set G is too large. Therefore, we propose
a much faster segmentation Algorithm 1 that preserves
optimality according to Definition 4 but removes dominating
DAGs without enumerating G; instead, the algorithm explores
the segmented tree recursively and removes unneeded paths
from the path set P of each region sequence R.

Function SEGMENT(r) segments a subtree of the region
tree and returns a segmented subtree with r as its root. The

Algorithm 1 Segmentation Algorithm
1: function SEGMENT(r)
2: Initialize R = � ▷ A set of sequential regions.
3: Initialize T to be the r-subtree
4: for all r

c

∈ children(r) do
5: if r is sequential and r

c

is mergeable or splittable
loop then

6: Add r

c

to R

7: else if r

c

is mergeable then▷ r is not sequential
8: Replace r

c

with P = {p}, where p is single-
segment path

9: else
10: Replace regions in R with

SEGMENTSEQUENCE(R), empty R

11: if r

c

is a tileable loop then
12: Replace r

c

with TILE(r
c

, N

r

).
13: else if r

c

is a call to f then
14: Replace r

c

with SEGMENT(rf
0

)
15: else
16: Replace r

c

with SEGMENT(r
c

)
17: If R ≠ �, replace regions in R with

SEGMENTSEQUENCE(R)
18: Return T
function traverses this subtree from its root r in depth-first
order preserving the topological order between sequentially-
composed children. If r is a sequential region, then a set of
children in sequence that are mergeable or splittable loops
may be combined in multi-region segments. This is achieved
by adding these children to a region sequence R until a
child that is not mergeable or splittable is found or until all
children are traversed. Note that based on the compilation
constraints, no children outside R can be combined with a
region in R to form a segment; hence, we say that such R is a
maximal region sequence. Then, the regions in R are replaced
by a set of valid paths P that are generated using function
SEGMENTSEQUENCE(R). If r is not sequential, a mergeable
child r

c

is directly replaced by a path of one segment, as
r

c

is a maximal region sequence by itself. If child r

c

is not

8



mergeable, then it has three cases: 1) r

c

is a tileable loop,
then a set of paths are generated by tiling the loop using
function TILE(r

c

); 2) r

c

is a call to a function f , then the
segmented tree of f is duplicated in place of r

c

; 3) r

c

is
not a tileable loop or a function call, then it is segmented
by recursively calling SEGMENT(r

c

). Algorithm 1 consists
of invoking SEGMENT(r

0

) on the top level region of main,
hence returning the segmented subtree for the whole program.
There is an exception if r

0

satsfies all the constraints, then
there is no need to construct the segmented tree as there is a
single path with r

0

as a segment.
Since Algorithm 1 depends on SEGMENTSEQUENCE and

TILE, we first state a key property of both functions, which
will be detailed in Algorithms 2 and 3. Since the functions
return a path set P , we begin by defining a concept of
domination among paths and path sets.

Definition 4: Given two paths p, p

′, we say that p

′ domi-
nates p and write p

′ � p iff: p

′
.L ≥ p.L and p

′
.I ≥ p.I .

Note that Definition 4 is similar to Definition 1 for maximal
paths, except that we do not consider the last segment, since
its length is only relevant in the case of s

end. We can relate
the two definitions through the following lemma.

Lemma 2: Consider two maximal paths P ={p
1

, ..., p

k

, ..., p

n

}, P ′ = {p′
1

, ..., p

′
k

, ..., p

′
n

} obtained by
joining n paths. If p

′
n

.end = p

n

.end and ∀k = 1...n ∶ p′
k

� p

k

,
then P

′ � P .
Proof: Note by construction P.L =∑

k=1...n p

k

.L,P

′
.L = ∑

k=1...n p

′
k

.L. From p

′
k

� p

k

it
follows p

′
k

.L ≥ p

k

.L, hence P

′
.L ≥ P.L. In the same manner,

we obtain P

′
.I ≥ P.I . Finally, since p

′
n

and p

n

contain
the last segments in their corresponding maximal paths P

′
and P , p

′
n

.end = p

n

.end implies P

′
.end = P.end. Then by

Definition 1 we have P

′ � P .
Definition 5: Given the region tree of main function in

the program, we define the last segment region set R

last

to
be the set of regions that may be included in the last segment
s

end of the program. This set is composed by traversing the
children of r

0

, the top level region of main, in reverse order
and adding them to R

last

until a constraint is violated; except
if r

0

is mergeable, in which case R

last

= {r
0

}.
Definition 6: Given two path sets P ,P ′ for the same

region sequence R, we say that P ′ dominates P and writeP ′ � P iff: ∀p′ ∈ P ′,∃p ∈ P ∶ p′ � p, and if R ⊇ R

last

, then
p

′
.end = p.end.
Property 5: Let R be a region sequence and P ′ the set of

all valid paths for R. Then SEGMENTSEQUENCE(R) returns
a set of paths P such that P ⊆ P ′ and P ′ � P .

Property 6: Let r

c

be a tilable loop with N

r

iterations andP ′ the set of all valid paths for r

c

. Then TILE(r
c

) returns a
set of paths P such that P ⊆ P ′ and P ′ � P .

Intuitively, this implies that TILE and SEGMENTSEQUENCE
return a set of best path for the corresponding region sequence
/ loop. Based on Properties 5, 6, we next prove in Theorem 1
that Algorithm 1 preserves optimality. We start by showing
that the algorithm can stop traversing the tree at mergeable
regions, i.e. if a region is mergeable we do not need to
segment its children.

Lemma 3: Consider a region r that is either mergeable
(possibly after splitting) or a tile, and a valid DAG G

′ for the
program where r is not assigned to a segment. Then there
exists a valid DAG G where r is assigned to a segment and
G

′ � G.
Proof: Consider any maximal path P ′ in G

′ of the
form P

′ = {p
begin

, p

′
, p

end

}, where p

′ is a path through
the descendants of r (note that no path of the form P

′ ={p
begin

, p

′} can exist, since the last region of main, and thus
the program, is a basic block with no descendants). Note that
in case of conditional regions, there could be multiple such
p

′, and hence maximal paths P ′ with the same p

begin

and
p

end

. Example: consider the conditional region r

f

2

in Figure
5; a valid DAG G

′ has two maximal paths P

′ through the
descendants of r

f

2

: one for the true path, and one for the false
path.

Now consider a valid DAG G obtained by replacing all such
maximal paths P

′ with a path P = {p
begin

, p, p

end

}, where
p comprises a single segment that includes r only; note the
DAG is valid since r is mergeable or a tile. Since p.I = 1, it
immediately follows p

′
.I ≥ p.I . Based on Property 4, there

must also exist one path p

′ with p

′
.L ≥ p.L. By Lemma 2,

we then proved that there must exist a maximal path P

′ such
that P

′ � P . By definition, this implies G

′ � G, completing
the proof.

Lemma 4: Consider a segmented tree T where all region
sequences are maximal, and the path set P ′ for each region
sequence R includes all valid paths for R. Then the DAGs
generated from T preserve optimality.

Proof: First note that by definition, each path p ∈ P ′ is
a sequence of segments, to which the regions and tiles in R

are assigned, i.e. P ′ does not include (still valid) paths that
would segment the descendants of a region in R.

By the compilation constraints and definition of maximal
region sequence R, it follows that any region that is in R

cannot be merged in a segment with a region that is not
in R. Hence, any valid maximal path for the program that
includes segments of n region sequences can be constructed
by joining n paths: P = {p

1

, ..., p

k

, ..., p

n

}. By Lemma 3, we
can restrict each p

k

to be a path in P ′ (where each region
r ∈ R is assigned to a segment) and for each valid DAG G

′,
generate a DAG G such that G

′ � G. By Definition 3, this
means that generating DAGs from T preserves optimality.

Lemma 4 shows that to preserve optimality, it is sufficient to
return a single segmented tree with maximal region sequences,
which is what Algorithm 1 builds by construction. Finally,
we show that instead of generating the set P ′ of all valid
paths for each region sequence R, we can use a dominated
subset P .

Lemma 5: Consider a segmented tree T as in Lemma 4. If
for any maximal region sequence R, we substitute the set P ′
of all valid paths with a set P such that P ⊆ P ′ and P ′ � P ,
the resulting segmented tree preserves optimality.

Proof: Let T to denote the segmented tree obtained
by replacing each path set P ′ with P . Since for all regionsP ⊆ P ′, DAGs generated from T are still valid. Consider any
DAG G

′ generated from T , and a maximal path P

′ of G

′

9
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Fig. 6: 2D Tiling Tree

through n region sequences: P

′ = {p′
1

, ..., p

′
k

, ..., p

′
n

}. Since
for all regions P ′ � P , then for every p

′
k

there exists another
path p

k

in T such that p

′
k

� p

k

, and furthermore p

′
n

.end =
p

n

.end since the last region sequence in any maximal path
must include R

last

. By Lemma 2, this means that we can
find a maximal path P = {p

1

, ..., p

k

, ..., p

n

} for T such that
P

′ � P . Since this is true for any maximal path through a
given set of region sequences, and both T and T have the
same set of (maximal) region sequences, we have shown
that T can generate a DAG G such that for every maximal
path P ∈ G, there is a maximal path P

′ ∈ G

′ with P

′ � P .
This implies G

′ � G, and since by Lemma 4 T preserves
optimality, it thus follows that T also preserves optimality
according to Definition 3.

Theorem 1: If Properties 5, 6 hold, Algorithm 1 preserves
optimality.

Proof: By construction, the algorithm returns a seg-
mented tree T of maximal region sequences. Let P ′ to denote
the set of all valid paths for each region R. The actual path
set P used for R is generated at line 7, 11 or 13. At line 7,
region r

c

is not sequential. Hence, R = {r
c

} is a maximal
region. The algorithm generates a path comprising a single
segment for r

c

, which is the only valid path for R; thus we
have P = P ′. At line 11 and 17, the path set P is generated
by calling either SEGMENTSEQUENCE(R) or TILE(r

c

); by
Properties 5, 6 and Lemma 5, in both cases P ⊆ P ′ andP ′ � P hold. In summary, Lemma 5 applies to all maximal
regions, hence the algorithm preserves optimality.

D. 2-level Tiling

In this section, we discuss our Algorithm 2 to find
optimality-preserving tile sizes for a 2-level tileable loop.
While our framework is restricted to 2-level loops (deeper
levels of tiling are uncommon), in general the algorithm could
be extended to tile more levels. Note that 1-level tiling is a
special case of 2-level tiling in which the outer loop has a
single iteration.

Figure 6 shows an expanded region tree that represents
2-level tiling. Consider two nested loops: an inner loop with
N

1

iterations and an execution time of one iteration t

1

and
an outer loop with N

2

iterations and an execution time of one

iteration N

1

∗ t

1

+ t

2

. A 2-level tiling with tile sizes k

1

and
k

2

of the inner and outer loops will create 2 tiling loops with�N
1

�k
1

� and �N
2

�k
2

� iterations, and 2 element loops with k

1

and k

2

iterations. Let M

1

= �N
1

�k
1

�−1, then the outer tiling
loop has M

1

tiles with k

1

iterations of the outer element loop
and a last tile k

l

1

= N

1

−M

1

∗ k

1

. Similarly, the inner tiling
loop has M

2

= �N
2

�k
2

�−1 tiles with k

2

iterations of the inner
element loop and a last tile k

l

2

= N

2

−M

2

∗k
2

. Adding a tiling
loop incurs a tiling overhead for each iteration of the tiling
loop as discussed in Section IV-B; we indicate this as t

1

tile

and
t

2

tile

for the inner and outer loop, respectively. As shown in
Figure 6, there are 4 tile times: t

2

1

repeated M

1

∗M
2

times, t

2

1l

repeated M

2

times, t

2l

1

repeated M

1

times, and t

2l

1l

executed
one time. Based on these notation, a path p(k

2

, k

1

) that is
generated by the region sequence represented by the tiled
loop nest has number of segments p.I = (M

1

+ 1)(M
2

+ 1)
and length:

p.L =M

2

∗M

1

∗max(�, t

2

1

+ t

seg

)
+M

2

∗max(�, t

2

1l

+ t

seg

)
+M

1

∗max(�, t

2l

1

+ t

seg

)
+max(�, t

2l

1l

+ t

seg

). (13)

We can rewrite the length as p.L = t

loop

+ t

overhead

+ t

�

such
that t

loop

= N

2

.(N
1

.t

1

+t

2

) is the original loop time and does
not depend on the tile size, t

overhead

= (M
2

+ 1)[(M
1

+ 1)∗(t1
tile

+ t

seg

) + t

2

tile

] is the tiling and segmentation overhead,
and t

�

is the total segment under-utilization:

t

�

=M

1

∗M

2

∗max(� − (t2
1

+ t

seg

),0)+
+M

2

∗max(� − (t2
1l

+ t

seg

),0)
+M

1

∗max(� − (t2l
1

+ t

seg

),0)
+max(� − (t2l

1l

+ t

seg

),0). (14)

Note that the p.I and p.L are non-linear functions in k

1

and k

2

, as the expressions for M

1

and M

2

include ceiling
functions.

Algorithm 2 takes as input a region r and a number of
iterations N

2

for the outer loop5 and returns a set of valid
paths P for r. The algorithm starts by computing the upper
limit of the outer loop tile k

max

2

as the maximum k

2

such that
any tile segment s in p(k

2

, k

1

= 1) has length s.l ≤ l

max

and
footprint s.D ≤ s.D

SPM

. For each k

2

, k

max

1

(k
2

) is similarly
computed as the maximum k

1

such that any tile segment s in
p(k

2

, k

1

) has length s.l ≤ l

max

and footprint s.D ≤ D
SPM

.
A threshold k

�

1

(k
2

) is then computed; in Lemma 6, we
show that all segments generated from tile sizes (k

2

, k

1

)
with k

1

≤ k

�

1

(k
2

) are underutilized, meaning that the length
of the segment is less than or equal to �. Two variables
ˆ

t

�

,

ˆ

t

overhead

are used to track the valid solution with total
minimum under-utilization so far in k

1

loop such that ˆ

t

�

is
the minimum under-utilization and ˆ

t

overhead

is the overhead
due to tiling and segmentation for that solution. Note that the
solution with minimum under-utilization is not necessarily the

5Note that N2 is the number of iteration in the mid-loop node when
Algorithm 2 is called by Algorithm 3.
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Algorithm 2 2-Level Tiling
1: function TILE(r, N

2

)
2: P = �
3: Compute k

max

2

4: for all k

2

≤ k

max

2

do
5: Compute k

max

1

(k
2

)
6: k

�

1

(k
2

) =max{k
1

� t2
1

+ t

1

tile

+ t

seg

≤�}
7: k

1

= k

max

1

, ˆ

t

�

=∞, ˆ

t

overhead

= 0

8: repeat
9: Generate p(k

2

, k

1

)
10: if p(k

2

, k

1

) is valid then
11: Add p(k

2

, k

1

) to P
12: Compute t

overhead

, t

�

13: if t

�

> ˆ

t

�

then
14: ˆ

t

�

= t

�

, ˆ

t

overhead

= t

overhead

15: k

1

= k

1

− 1

16: until k

1

= k

�

1

or ˆ

t

�

= 0 or t

overhead

≥
ˆ

t

overhead

+ ˆ

t

�

17: Filter P by removing dominating paths based on
Definition 4

18: return P
solution with the minimum total length for all the tiles. That is
due to the non-linear relation between the tile size and the last
tile size. Then, we iterate over k

1

starting from k

max

1

. In each
iteration, if path p(k

2

, k

1

) is valid we add it to P , then we
compute the tiling and segmentation overhead t

overhead

and
under-utilization t

�

, and update ˆ

t

overhead

and ˆ

t

�

accordingly.
The loop exits if k

�

1

is reached or if the overhead of the
current solution t

overhead

exceeds ˆ

t

overhead

+ ˆ

t

�

, or if t

�

of
the current solution is 0. Finally, the path set P is filtered
and returned, in the same way as in Algorithm 2. We prove
in Lemma 8 that the algorithm preserves Property 6.

Lemma 6: All segments in a path p(k
2

, k

1

) with k

1

≤
k

�

1

(k
2

) have length �.
Proof: Note that t

2

1

is increasing in k

1

. Hence, by
definition of k

�

1

(k
2

), it must hold for k

1

: t

2

1

+ t

1

tile

+ t

seg

≤�.
By definition, we also have k

l

1

≤ k

1

and k

l

2

≤ k

2

. This implies
that t

2

1

+ t

seg

, t

2

1l

+ t

seg

, t

2l

1

+ t

seg

and t

2l

1l

+ t

seg

are all smaller
than or equal to t

2

1

+ t

1

tile

+ t

seg

, and thus �. Since the length
of a segment is the maximum of its computation (including
t

seg

) or �, it follows that all segments have length �.
Lemma 7: Consider two valid solutions (k

2

, k

1

) with
overhead t

overhead

and (k
2

, k

′
1

) with overhead t

′
overhead

.
If k

′
1

≤ k

1

then p(k
2

, k

′
1

).I ≥ p(k
2

, k

1

).I and t

′
overhead

≥
t

overhead

.
Proof: Follows directly by noticing that both p(k

2

, k

1

).I
and t

overhead

depends on M

1

, which is non-increasing in k

1

.

Lemma 8: Property 6 holds for Algorithm 2.
Proof: Note that r cannot be part of R

last

, since the
last region in a program must be a basic block and tiles
cannot be merged with other regions. By the compilation
constraints, every generated tile must be assigned to a segment
that comprises the tile only. Then by the footprint and length
constraints, the set of all valid paths P ′ comprises all valid

paths p(k
2

, k

1

) such that k

2

≤ k

max

2

and k

1

≤ k

max

1

(k
2

).
For a given value of k

2

, define ¯

k

1

as the value of k

1

for
which the algorithm break at line 16. Furthermore, let ˆ

k

1

be
the value of k

1

corresponding to ˆ

t

�

, ˆ

t

overhead

. We prove that
for every k

′
1

< ¯

k

1

, there exists a valid k

1

in ¯

k

1

, ..., k

max

1

such
that p(k

2

, k

′
1

) � p(k
2

, k

1

). Since furthermore the filtering on
line 17 respects Definition 6 (given that r is not R

last

), this
implies that Property 6 holds.

We have to consider three cases, based on which breaking
condition at line 16 evaluates to true. Note that we have
k

1

< ¯

k

1

≤ ˆ

k

1

. Furthermore, p(k
2

,

ˆ

k

1

) must be valid (otherwise
we would not have set the values of ˆ

t

�

, ˆ

t

overhead

at line 14),
and so must be p(k

2

, k

�

1

) (unless l

max

< � and then there
are no valid paths and the lemma trivially holds).
● Assume ¯

k

1

= k

�

1

. By Lemma 6, we have p(k
2

, k

�

1

).L =
p(k

2

, k

�

1

).I ∗ � and p(k
2

, k

′
1

).L = p(k
2

, k

′
1

).I ∗ �.
Given k

′
1

< ¯

k

1

, we also have p(k
2

, k

′
1

).I ≥ p(k
2

, k

�

1

).I
by Lemma 7 and thus p(k

2

, k

′
1

) � p(k
2

, k

�

1

).
● If ˆ

t

�

= 0, then it must hold t

′
�

≥ ˆ

t

�

. By Lemma 7, we
also have t

′
overhead

≥ ˆ

t

overhead

; therefore, p(k
2

, k

′
1

).L ≥
p(k

2

,

ˆ

k

1

).L. Also by Lemma 7 we have p(k
2

, k

′
1

).I ≥
p(k

2

,

ˆ

k

1

).I . Therefore p(k
2

, k

′
1

) � p(k
2

,

ˆ

k

1

).
● If t

overhead

≥ ˆ

t

overhead

+ ˆ

t

�

, then t

′
overhead

+ t

′
�

≥
t

overhead

≥ ˆ

t

overhead

+ ˆ

t

�

; this implies p(k
2

, k

′
1

).L ≥
p(k

2

,

ˆ

k

1

).L. Since again by Lemma 7 we have
p(k

2

, k

′
1

).I ≥ p(k
2

,

ˆ

k

1

).I , it holds p(k
2

, k

′
1

) � p(k
2

,

ˆ

k

1

).
1) Region Sequence Segmentation: Next, we consider

Algorithm 3 that generates a path set P from a set of
sequential regions. If we do not apply loop splitting, then
there are 2

m−1 possible paths for m mergeable regions in
sequence. An enumeration of these ways is possible as m is
usually small. However, adding loop splitting greatly increases
the number of paths. To tackle this complexity, the algorithm
works by incrementally constructing a set of partial paths. We
denote a path with segments that encompasses all the regions
in a region sequence R as a complete path. Consequently,
we define a partial path p̄ as a path that encompasses a sub-
sequence ¯

R ⊆ R that includes all regions from the beginning
of R up to region r. Since a partial path is still a valid
program path (just on a smaller region sequence), we use p̄.I ,
p̄.L and p̄.end with the usual meaning. However, we also use
p̄.t

end

to denote the WCET of the regions included in the
last segment of p̄, such that p̄.end = max(�, p̄.t

end

+ t

seg

).
The algorithm iterates over the regions in R, maintaining a
set of partial paths ¯P . For each region r with computation
time t

r

, a new set of partial paths is constructed by taking
each partial path p̄ in ¯P and adding r to it. Note that when
doing so, two new partial paths might be generated in the
following way:

1) Add r to a new segment and add it to p̄. This results
in a new partial path p̄

n

such that p̄

n

.I = p̄.I + 1,
p̄

n

.t

end

= t

r

, and p̄

n

.L = p̄.L+ p̄

n

.end. Note that p̄

n

is
always valid, since r is mergeable (or a tile).

2) Add r to the last segment of p̄. This results in a new
partial path p̄

m

such that p̄

m

.I = p̄.I , p̄

m

.t

end

= p̄.t

end

+
11



t

r

, and p̄

m

.L = p̄.L − p̄.end + p̄

m

.end. Note that p̄

m

might not be a valid path according to the constraints;
hence, it is only added to the new set of partial paths
if valid.

The process continues until after we reach the last region r in
R; at that point, the path in ¯P are complete, so we return a
path set P = ¯P . We next prove a set of conditions that allow
us to remove some partial paths from ¯P at each step. Given a
partial path p̄ for ¯

R, we say that p̄ generates a complete path
p if there are valid segmentation decisions for the remaining
regions in R � ¯

R that result in p.
Lemma 9: Given a sub-sequence ¯

R ⊆ R and two partial
paths p̄

′ and p̄ over ¯

R, then for any complete path p

′ for
R generated from p̄

′, there exists a complete path p for R

generated from p̄ such that p

′ � p if any of the following
conditions is satisfied:

1) p̄

′
.I ≥ p̄.I and p̄

′
.L−p̄′.end ≥ p̄.L−p̄.end and p̄

′
.t

end

≥
p̄.t

end

.
2) p̄

′
.I = p̄.I and p̄

′
.L ≥ p̄.L and p̄

′
.t

end

≥ p̄.t

end

>
� − t

seg

3) p̄

′
.I > p̄.I and p̄

′
.L−p̄′.end ≥ p̄.L and p̄

′
.t

end

≤ p̄.t

end

and p̄

′
.t

end

<� − t

seg

.
4) p̄

′
.I > p̄.I and p̄

′
.L ≥ p̄.L +� and p̄

′
.t

end

≤ p̄.t

end

and p̄

′
.t

end

>� − t

seg

.
Proof:

By induction on the number of remaining regions in R� ¯

R.
The base case is that R� ¯

R is empty (no remaining regions);
the induction case is that there is at least one remaining
region r that can be added to p̄

′ and p̄.
Base case: Since R � ¯

R = �, both p̄

′ and p̄ are already
complete paths. Hence, it suffices to prove that p̄

′
.I ≥ p̄

′
.I

and p̄

′
.L ≥ p̄.L, from which p̄

′ � p̄. By cases based on which
of Conditions 1-4 apply between p̄

′ and p̄.
1) We have p̄

′
.I ≥ p̄.I . Furthermore, from p̄

′
.L− p̄

′
.end ≥

p̄.L − p̄.end and p̄

′
.t

end

≥ p̄.t

end

we obtain p̄

′
.L ≥ p̄.L.

2) We have p̄

′
.I = p̄.I and p̄

′
.L ≥ p̄.L.

3) We have p̄

′
.I > p̄.I and from p̄

′
.L − p̄

′
.end ≥ p̄.L we

obtain p̄

′
.L ≥ p̄.L.

4) We have p̄

′
.I > p̄.I and from p̄

′
.L ≥ p̄.L+� we obtain

p̄

′
.L > p̄.L.

Induction case: let (p̄
m

, p̄

n

) / (p̄′
m

, p̄

′
n

) to denote the partial
paths generated by adding r to p̄/p̄′; note that p̄

m

/p̄′
m

could
be an invalid partial path, while p̄

n

/ p̄

′
n

is always valid.
Assuming that one of Conditions 1-4 apply between p̄

′ and
p̄, we then prove that after adding r, one of Conditions 1-
4 apply between p̄

′
n

and p̄

n

, and if p̄

′
m

is valid, then one
of Conditions 1-4 also apply either between p̄

′
m

and p̄

m

or
between p̄

′
m

and p̄

n

. By cases, based which of Conditions
1-4 apply between p̄

′ and p̄. Note that if p̄

′
.t

end

≥ p̄.t

end

, this
implies that D′

end

≥ D
end

. This is always true as p̄

′ and p̄ are
constructed from regions in sequence, and since the execution
time of last segment in p̄

′ is larger than the execution time of
last segment in p̄, then the set of regions and/or split in the
last segment of p̄ are part of the last segment of p̄

′. Hence,D′
end

≥ D
end

.
1) Since p̄

′
.t

end

≥ p̄.t

end

, then p̄

m

is valid if p̄

′
m

is valid.

We prove that Condition 1 applies between p̄

′
n

and p̄

n

,
and if p̄

′
m

is valid, Condition 1 also applies between
p̄

′
m

and p̄

m

.
● Condition 1 applies between p̄

′
m

and p̄

m

:
Since p̄

′
.L − p̄

′
.end ≥ p̄.L − p̄.end and p̄

′
.t

end

≥
p̄.t

end

, then Equation 15 holds:

p̄

′
m

.L − p̄

′
m

.end ≥ p̄

m

.L − p̄

m

.end (15)

And since p̄

′
.I ≥ p̄.I , then Equation 16 holds:

p̄

′
m

.I ≥ p̄

m

.I (16)

And since p̄

′
.t

end

≥ p̄.t

end

, then by adding t

r

to
both sides Equation 17 holds:

p̄

′
m

.t

end

≥ p̄

m

.t

end

(17)

Since Equations 15, 16 and 17 hold, then Condition
1 applies bewteen p̄

′
m

and p̄

m

.
● Condition 1 applies between p̄

′
n

and p̄

n

:
Since p̄

′
.L − p̄

′
.end ≥ p̄.L − p̄.end and p̄

′
.t

end

≥
p̄.t

end

, then Equation 18 holds:

p̄

′
n

.L − p̄

′
n

.end ≥ p̄

n

.L − p̄

n

.end (18)

And since p̄

′
.I ≥ p̄.I , then Equation 19 holds:

p̄

′
n

.I ≥ p̄

n

.I (19)

And since p̄

′
n

.t

end

= p̄

n

.t

end

and Equations 18 and
19 hold, then Condition 1 applies bewteen p̄

′
n

and
p̄.

2) Since p̄

′
.t

end

≥ p̄.t

end

, then p̄

m

is valid if p̄

′
m

is valid.
We prove that Condition 1 applies between p̄

′
n

and p̄

n

,
and if p̄

′
m

is valid, Condition 2 also applies between
p̄

′
m

and p̄

m

.
● Condition 2 applies between p̄

′
m

and p̄

m

: Since
p̄

′
.I = p̄.I , then Equation 16 holds.

Since p̄

′
.t

end

≥ p̄.t

end

>�−t
seg

, Equation 17 holds.
Since p̄

′
.t

end

≥ p̄.t

end

> � − t

seg

, then Equations
20 and 21 hold:

p̄

′
m

.end − p̄

′
.end = t

r

(20)

p̄

m

.end − p̄.end = t

r

(21)

From Equations 20 and 21 and since p̄

′
.L ≥ p̄.L,

hence p̄

′
.L − p̄

′
.end + p̄

′
m

.end ≥ p̄.L − p̄.end +
p̄

m

.end and Equation 22 holds:

p̄

′
m

.L ≥ p̄

m

.L (22)

Since Equations 16, 17 and 22 hold, then Condition
2 applies bewteen p̄

′
m

and p̄

m

.
● Condition 1 applies between p̄

′
n

and p̄

n

:
Since p̄

′
.I = p̄.I , then Equation 19 holds. And

since p̄

′
.L ≥ p̄.L, then Equation 18 holds. Since

p̄

′
n

.t

end

= p̄

n

.t

end

and Equations 18 and 19 hold,
then Condition 1 applies bewteen p̄

′
n

and p̄

n

.
3) Since p̄

′
.t

end

≤ p̄.t

end

, then p̄

m

may not be valid. We
prove that Condition 1 applies between p̄

′
n

and p̄

n

, and

12



if p̄

′
m

is valid, Condition 1 also applies between p̄

′
m

and p̄

n

.
● Condition 1 applies between p̄

′
m

and p̄

m

:
Since p̄

′
m

.end ≥ p̄

n

.end, then p̄

′
.L − p̄

′
.end +

p̄

′
m

.end ≥ p̄.L + p̄

n

.end and Equation 23

p̄

′
m

.L ≥ p̄

n

.L (23)

Since p̄

′
.I > p̄.I , then Equation 24 holds:

p̄

′
m

.I ≥ p̄

n

.I (24)

And since, p̄

′
.t

end

+t

r

> t

r

, then Equation 25 holds:

p̄

′
m

.t

end

≤ p̄

n

.t

end

(25)

Since Equations 23, 24 and 25 hold, then Condition
1 applies bewteen p̄

′
m

and p̄

n

.
● Condition 1 applies between p̄

′
n

and p̄

n

:
Since p̄

n

.end = p̄

′
n

.end and p̄

′
.L − p̄

′
.end ≥ p̄.L,

then Equation 18 holds. And since p̄

′
.I > p̄.I , then

Equation 19 holds. From Equations 18 and 19 and
since p̄

n

.end = p̄

′
n

.end, then Condition 1 applies
bewteen p̄

′
n

and p̄

n

.
4) Since p̄

′
.t

end

≤ p̄.t

end

, then p̄

m

may not be valid. We
prove that Condition 1 applies between p̄

′
n

and p̄

n

, and
if p̄

′
m

is valid, Condition 1 also applies between p̄

′
m

and p̄

n

.
● Condition 1 applies between p̄

′
m

and p̄

n

:
Since p̄

′
.I > p̄.I and p̄

′
.L ≥ p̄.L+� and p̄

′
.t

end

≤
p̄.t

end

and p̄

′
.t

end

>� − t

seg

:
Since p̄

′
m

.end ≥ p̄

n

.end, then Equation 26 holds:

p̄

′
m

.L− p̄

′
m

.end+ p̄

′
.end ≥ p̄

n

.L− p̄

n

.end+� (26)

And since p̄

′
.t

end

≥ � − t

seg

, then Equation 27
holds:

� − p̄

′
.t

end

≤ 0 (27)

From Equations 26 and 27, then Equation 28 holds:

p̄

′
m

.L − p̄

′
m

.end ≥ p̄

n

.L − p̄

n

.end (28)

And since, p̄

′
.I > p̄.I , then Equation 23 holds.

From Equations 28 and 23 and since p̄

′
m

.t

end

≥
p̄

′
n

.t

end

, then Condition 1 applies between p̄

′
m

and
p̄

n

.
● Condition 1 applies between p̄

′
n

and p̄

n

:
Since p̄

′
n

.end = p̄

n

.end and p̄

′
.L ≥ p̄.L +� then

Equation 18 holds. And since p̄

′
.I > p̄.I , then

Equation 19 holds. From Equations 18 and 19 and
since p̄

′
n

.t

end

≥ p̄

′
n

.t

end

, then Condition 1 applies
between p̄

′
n

and p̄

n

.

Algorithm 3 traverses the regions in R in topological
order generating partial paths using the current region r.
If r is not a splittable loop, then new partial paths p̄

m

and p̄

n

are generated by adding r to each previous partial
path in function CREATEPARTIALPATHS. The new partial
paths are placed in ¯P

next

, which is then filtered based on
Lemma 9 before becoming the set of partial paths ¯P at the

Algorithm 3 Segment a Sequence of Regions
Require: A set of sequential regions R and the set of last

segment regions R

last

1: function SEGMENTSEQUENENCE(R)
2: ¯P = [p̄ = �], ¯P

last

= �, P
next

= �, ¯

R

last

= R

last

3: for all r ∈ R do ▷ Traverse the sequence in
topological order.

4: if r is a splittable loop then
5: for all k

p

, k

s

do:
6: Split r to r

p

, r

t

and r

s

7: ¯P
loop

= CREATEPARTIALPATHS(r
p

,

¯P)
8: Filter ¯P

loop

using Lemma 9
9: ¯P

loop

= all path by joining ¯P
loop

with
TILE(r

t

, N

r

− k

p

− k

s

)
10: ¯P

loop

= CREATEPARTIALPATHS(r
s

,

¯P
loop

)
11: if r

s

∈ ¯

R

last

then
12: Create s

end from all regions in ¯

R

last

13: For each p̄ ∈ P
loop

, create p̄

last

by
adding s

end to p̄, add p̄

last

to ¯P
last

14: ¯P
next

= ¯P
next

�P
loop

15: else ▷ r is a mergeable region that is not a
splittable loop

16: ¯P
next

= CREATEPARTIALPATHS(r, ¯P)
17: if r ∈ ¯

R

last

then
18: Create s

end from all regions in ¯

R

last

19: For each p̄ ∈ ¯P , create p̄

last

by adding
s

end to p̄, add p̄

last

to ¯P
last

20: Filter ¯P
next

using Lemma 9, ¯P = ¯P
next

, P
next

=�, ¯

R

last

= ¯

R

last

� r

21: Filter ¯P by removing dominating paths based on
Definition 4

22: return P = (P
last

if R ⊇ R

last

else ¯P)
23: function CREATEPARTIALPATHS(r, ¯P)
24: ¯P

tmp

= �
25: for all p̄ in ¯P do
26: Create p̄

m

by adding r to the last segment in p̄,
add p̄

m

to ¯P
tmp

if valid
27: Create p̄

n

by adding new segment using r to p̄,
add p̄

n

to ¯P
tmp

28: return ¯P
tmp

next iteration. If r is a splittable loop, then before generating
new partial path, the loop must be split to pre-loop region
r

p

, mid-loop region r

t

and post-loop region r

s

. Note that all
combinations of pre-loop k

p

and post-loop k

s

splits are visited.
For each (k

p

, k

s

), partial paths ¯P
loop

for r

p

are generated
using CREATEPARTIALPATHS, then r

t

is tiled and each tile
path is sequenced with the paths in ¯P

loop

. Then, partial paths
are created using k

s

for all paths in ¯P
loop

. All paths ¯P
loop

are finally accumulated in ¯P
next

.
The final complexity regards the case where R ⊇ R

last

. In
this case, Definition 6 requires us to consider all possible
combinations of the last segment s

end. If the current region
r ∈ R

last

and r is mergeable, there is a last segment s

end

composed of all regions in ¯

R

last

such that ¯

R

last

is the set
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of all regions starting from r to the end of R

last

. Then s

end

is combined with partial paths ¯P to form complete paths in
¯P
last

. If r is a splittable loop, then the part that contribute to
s

end is the post-loop split (tiles cannot be merged with other
regions). Hence for each (k

p

, k

s

), we generate the partial
paths using r

p

and add tile paths from r

t

, then a last segment
s

end is composed from the post-loop split r

s

and all the
regions after r until the end of R

last

. Complete paths are
generated by adding s

end to each partial path in ¯P
loop

to
produce a complete path in ¯P

last

. Finally, the path set P for
R is ¯P

last

if R ⊇ R

last

, otherwise it is ¯P .
Lemma 10: Algorithm 3 satisfies Property 5.

Proof: By construction, the algorithm explores all
possible combinations for the parameters of a splittable loop,
all possible valid assignments of sequential regions in R to
segments, and tiling decisions based on Algorithm 2 (note
that on Lines 12,18, adding the regions in ¯

R

last

⊆ R

last

to a
single segment s

end must be valid based on the definition of
R

last

). Therefore, it must hold P ⊆ P ′. It remains to show
that if a path p

′ is discarded (i.e., the path is in P ′ but not
in P), then there exists a path p such that p

′ � p, and if
R ⊇ R

last

, then p

′
.end = p.end. A path can be discarded for

three reasons: (1) Algorithm 2 removes a tiling solution; (2) a
partial path is discarded based on the conditions in Lemma 9;
(3) a complete path is filtered based on Definition 4.

Case (1): Assume that Algorithm 2 removes a path p

′
t

from
the returned path set; by Property 6, it must return another
path p

t

such that p

′
t

� p

t

. Then if we consider any complete
path p

′ = {p
1

, ..., p

′
t

, ..., p

n

} for R, there must exist another
path p = {p

1

, ..., p

t

, ..., p

n

}, and by Lemma 2, it must hold
p

′ � p. Next consider the case R ⊇ R

last

: by the compilation
constraints, a tiled loop cannot generate the last segment in
the program (the last region is a basic block, and tiles cannot
be merged with another region). Therefore p

n

is not empty
and it must hold p

′
.end = p.end = p

n

.end.
Case (2): We first consider the sub-case when R

last

is not
contained in R. If a partial path is discarded, then a path p

′ inP ′ might be removed from P ; however, by Lemma 9, there
must be a path p ∈ P such that p

′ � p. Next, consider the
sub-case where R ⊇ R

last

. Each complete path p

′ can then
be written as p

′ = �p′
1

,{send}�, where s

end is a segment
made of the regions in some ¯

R

last

⊆ R

last

, and p

′
1

is a
partial path for R � ¯

R

last

. Then by applying Lemma 9 to
R � ¯

R

last

, if a partial path is discarded causing p

′
1

to be
removed, then there must still be a path p

1

for R� ¯

R

last

such
that p

′
1

� p

1

. This implies that we can find a complete path
p = �p

1

,{send}� in P , where by Lemma 2 it holds p

′ � p,
and p

′
.end = p.end = s

end

.l.
Case (3): Note this applies only if R

last

is not contained
in R. It thus suffices to notice that by Definition 4 p

′ � p

must hold.

V. OPTIMAL TASK SET SEGMENTATION

Based on the analysis Properties 2, 3 introduced in
Section III-A and segmentation Algorithm 1, we now show
that we can obtain an optimal task set segmentation using

Algorithm 4 Task Set Segmentation
Require: Task set �, source code for each task in �

1: SEGMENTTASKSET(�, i,+∞,�)
2: Terminate with FAILURE
3: function SEGMENTTASKSET(i, lmax

,{G
1

, . . . ,G

i−1})
4: T

i

is the result of Algorithm 1 on ⌧

i

using l

max

5: if i < N then
6: for all G

i

∈ T
i

do
7: Compute the maximum value l

lmax

i

of l

lmax

i

based on analysis
8: SEGMENTTASKSET(�, i +

1,max

�
l

max

, l

lmax

i

�
,{G

1

, . . . ,G

i

})
9: else

10: for all G

N

∈ T
i

do
11: If analysis returns schedulable on{G

1

, . . . ,G

N

}, terminate with SUCCESS

Algorithm 4. The algorithm recursively calls function SEG-
MENTTASKSET for task index i from 1 to N by keeping track
of the DAGs G

1

, . . .G

i−1 selected for the previous tasks. The
function maintains a maximum segment length l

max, which
is provided as a constraint to Algorithm 1 to generate the
segmented tree T

i

for ⌧

i

. If i < N , the function iterates over
all possible G

i

∈ T
i

; the schedulability analysis is used to
determine l

lmax

i

, the maximum schedulable value of l

lmax

i

,
and the function is then invoked recursively for task i + 1

after updating l

max based on the computed value. Note that
if G

i

is not schedulable, then we obtain l

max < 0; hence,
there will be no valid DAG for ⌧

i+1 (T
i

is empty), and the
recursive call will immediately return. Once we reach task
⌧

N

, the function checks if ⌧

N

is schedulable for any DAG
G

N

∈ T
N

, in which case we terminate by finding a solution{G
1

, . . . ,G

N

}. If no solution can be found, the algorithm
eventually terminates on Line 2.

We now prove the optimality of Algorithm 4 for a program
segmentation obeying the footprint and program constraints
in Section IV-B. We start with a corollary of the properties.

Corollary 1: Consider two DAGs G

j

,G

′
j

for task ⌧

j

where

1 ≤ j ≤ i and G

′
j

� G

j

. Let l

lmax

i

, l

lmax

i

′
be the maximum

value of l

lmax

i

under which ⌧

i

is schedulable for G

j

and G

′
j

,
respectively, according to an analysis satisfying Properties 2, 3.
Then l

lmax

i

≥ l

lmax

i

′
.

Proof: By Property 2, l

lmax

i

and l

lmax

i

′
are well defined

(i.e., there must exist such maximum values). Since ⌧

i

is
schedulable with l

lmax

i

≤ l

lmax

i

′
for G

′
j

, based on Property 3

it is also schedulable with l

lmax

i

≤ l

lmax

i

′
for G

j

; this implies
l

lmax

i

≥ l

lmax

i

′
.

Theorem 2: Algorithm 4 is an optimal segmentation algo-
rithm for a conditional PREM task set � according to any
(sufficient) schedulability analysis satisfying Properties 2, 3
and based on the footprint and compilation constraints.

Proof: We have to show that if there exists a set of
segment DAGs G

′
1

, . . . ,G

′
N

for � that is valid according to
the footprint and compilation constraints and is schedulable
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according to the analysis, then Algorithm 4 finds a (same
or different) DAG set G

1

, . . . ,G

N

that is also valid and
schedulable.

By induction on the index i. We show that for every i,
there exists a recursive call sequence of function SEGMENT-
TASKSET that results in a DAG set G

1

, . . .G

i

such that
G

′
j

� G

j

for every j = 1 . . . i; by Property 3 with i = N ,
this proves the theorem (note that ⌧

N

is schedulable by
Property 3, while all other tasks are schedulable because the
recursion reaches G

N

). We also show that for every j = 1 . . . i

it holds l

lmax

j

′ ≤ l

lmax

j

, where l

lmax

j

′
is the maximum

schedulable value of l

lmax

j

computed by the analysis with
DAGs G

′
1

, . . . ,G

′
j

, and l

lmax

j

is the same value for DAGs
G

1

, . . . ,G

j

.
Base Case (i = 1): note l

max = +∞, meaning that only the
footprint and compilation constraints apply when invoking
Algorithm 1. Hence, by Definition 3 the algorithm must find
a DAG G

1

∈ T
1

such that G

′
1

� G

1

. By Corollary 1, this also
implies l

lmax

1

′ ≤ l

lmax

1

.
Induction Step (i = 2...N ): consider the recursive call

sequence that results in G

′
j

� G

j

and l

lmax

j

′ ≤ l

lmax

j

for each
j = 1 . . . i− 1 (such sequence exists by induction hypothesis);
we have to show that we can find a DAG G

i

∈ T
i

such that
G

′
i

� G

i

and l

lmax

i

′ ≤ l

lmax

i

.
Based on the recursive call at line 7 of the algorithm, it must

hold: l

max = min

i−1
j=1 l

lmax

j

. Define l

max

′ = min

i−1
j=1 l

lmax

j

′
;

since the task set is schedulable for G

′
1

, . . . ,G

′
N

, the max-
imum length of any segment in G

′
i

is at most l

max

′. By
induction hypothesis, it must be l

max

′ ≤ l

max, which means
that the maximum segment length in G

′
i

is also no larger than
l

max. Hence, if we define G
i

to be the set of all valid DAGs
for a program according to the constraints with maximum
segment length l

max, we have G

′
i

∈ G
i

. By Definition 3, this
implies that Algorithm 1 finds a valid DAG G

i

with maximum
segment length l

max such that G

′
i

� G

i

. l

lmax

i

′ ≤ l

lmax

i

then
again follows by Corollary 1.

A. Discussion

Complexity: since it iterates over all G

i

∈ T
i

, Algorithm 4
is exponential. Intuitively, it might seem sufficient to only
use the DAG in T

i

that results in the highest value of l

lmax

i

;
however, given two DAGs G

i

and G

′
i

with l

lmax

i

≥ l

lmax

i

′
,

it might be that L

max

i

≥ L

′
max

i

, that is, G

i

results in larger
slack for ⌧

i

, but it increases the interference caused by ⌧

i

on lower priority tasks based on Equations 4. In this case,
we have to test both G

i

and G

′
i

. However, if L

max

i

≤ L

′
max

i

,
then we can safely ignore G

′
i

. As we show in Section VI, in
practice this results in an acceptable runtime considering the
algorithm is an offline optimization.
Composability and Generality: since Algorithm 4 requires
to segment tasks in priority order, any code change in a
program will not affect higher priority tasks, but it might
force a recompilation of all lower priority tasks. This might be
undesirable, especially if the priority ordering does not match
criticality levels. Therefore, in Section VI we also explore

a simpler and faster (but non-optimal) heuristic that uses
the same value of l

max for all tasks, thus ensuring that each
program can be compiled independently. In this sense, we
would like to stress that even if the optimality of Algorithm 4
depends on analysis Properties 2, 3, our compiler framework
in conjunction with Algorithm 1 can still be used to produce
a set of valid program segmentations for any PREM-based
system.

VI. EVALUATION

We implemented our segmentation framework using LLVM
to analyze and generate the region trees for the program as
in [25], and estimate the data footprint for each part of the
program. Poly [14] is used to handle loop transformations.
For code generation, we target a simple MIPS processor
model with 5-stages pipeline and no branch prediction. We
assume that there are data SPM, and code SPM and that
the task code fits in the code SPM. Note that the WCET of
each region in a program is statically estimated using the
simple MIPS processor model similar to [26]. For the data
SPM, we vary its size from 4 kB to 512 kB. For the memory
transfer, we assume that the DMA needs 1 cycle per word (4
bytes). The segmentation overhead t

seg

includes the DMA
intialization and the context switching, and it is assumed to
be 100 cycles.

We evaluate the segmentation and scheduling algorithms
using a set of synthetic and real benchmarks. We used
applications from UTDSP [1], TACLeBench [11] and Cortex-
Suite [28] benchmark suites. The application are chosen to
represent a variety of sizes, complexities and data footprints
(see Table I). The applications are used to generate sets
of random tasks. Each task set is composed of a random
number of tasks between 4 and 12 tasks. Given a system
utilization and the number of tasks, the utilization of each task
is generated with uniform distribution [7], and then a period is
assigned to each task. The period of ⌧

i

is computed as u

i

∗c

i

where u

i

is the generated utilization and c

i

is the WCET of
the application if executed without premption from the SPM.
We assume deadlines equal to periods. Schedulability tests
are conducted for 250 task sets.

We report the results in terms of the system schedulability
and the weighted utilization. The system scheduability is
the proportion of the schedulable task sets out of the total
tested task sets. We define the weighted utilization µ of a
system as: µ = ∑u sched(u)∗u∑u u

where sched(u) is the system
schedulability for system utilization u. We compare our
optimal algorithm with ideal, greedy and heuristic algorithms.
The ideal algorithm assumes no restriction on SPM size and
that the program code can be segmented at any arbitrary point
without any increased overhead. Hence, the only constraint is
l

max

which is produced from Algorithm 4 6. The greedy and
heuristic algorithms do not depend on Algorithm 4 to drive
the segmentation of each task based on the schedulability
analysis. The greedy algorithm resembles the algorithm used

6Note that the ideal algorithm is still compliant with the PREM model,
i.e. the next segment has to be decided and loaded while the current segment
is executing.
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Fig. 7: Schedulability vs Utilization

(a) tseg = 100 (b) tseg = 1000, footprint > 24 kB

Fig. 8: Weighted Utilization VS SPM Size

Benchmark Suite LOC Data(B)

adpcm dec TACLeBench 476 404

cjpeg transupp TACLeBench 474 3459

↵t TACLeBench 173 24572

compress UTDSP 131 136448

lpc UTDSP 249 8744

spectral UTDSP 340 4584

disparity CortexSuite 87 2704641

TABLE I: Benchmarks
(LOC: lines of code)

in [21] and assumes l

max

= ∞ for all tasks. The heuristic
algorithm uses the same l

max

for all tasks by varying l

max

between � and 10 ∗� with step 0.5 ∗�, and picking the
value of l

max

that achieves the highest weighted utilization.
Figure 7 shows the system schedulability for the four

algorithms for SPM sizes of 16, 64 and 256 kB. For the
heuristic algorithm, the value of l

max

with the best weighted
utilization is showed in the figure for each SPM size. The
graphs show that the optimal algorithm performs much better
than the greedy and the heuristic algorithms and close to the
ideal algorithm for different SPM sizes. This is confirmed in
Figure 8a that shows the weighted utilization for the compared
algorithms for SPM sizes between 4 kB and 512 kB. Note that
the ideal algorithm may suffer from segmentation overhead,
the interference and blocking overhead from other tasks in
the system, and also segment under-utilization. This leads to
lower schedulability at high system utilization.

We can notice in Figure 8a that the weighted utilization
does not increase as SPM size increases. This might be
counter-intuitive as increasing the SPM size allows more data
to be loaded for each segment which leads to decreased seg-
mentation overhead. However, the tasks suffer from a higher
under-utilization penalty as � increases. The second effect
is dominant since the segmentation overhead is relatively
small and 4 benchmarks have data footprints of less than
8kB. For this reason, we show in Figure 8b the weighted
utilization using only applications with data footprint greater
than 24 kB and t

seg

= 1000. The figure shows that the system
schedulability ascents at first and then declines around SPM

Fig. 9: Weighted Utilization VS DMA Speed Factor

size of 48 kB.

The DMA speed is an main factor in the schedulability
of the system. In order to illustrate its effect, we show in
Figure 9 the change of the weighted utilization vs the DMA
speed factor when SPM size is 64 kB. The DMA speed factor
is relative to the base speed of 1 cycle per word, i.e. a factor
of 0.5 means the DMA speed is 2 cycles per word. We can
see that the weighted utilization improves as the DMA speed
factor increases which is intuitive. The figure also shows that
the optimal algorithms is superior to the greedy and heuristic
algorithms for all the tested speed factors.
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Fig. 10: Segmentation Time VS Number of Tasks

The segmentation algorithm takes a few seconds to finish
with a maximum of a minute compared to few hours for the
naive segmentation algorithm with exhaustive search. Running
the scheduling algorithm for one of the tested task sets takes
an average of a minute to segment the tasks and apply the
schedulability test with a maximum of few minutes. We show
in Figure 10 the min/mean/max time in seconds to segment
a task set with number of tasks per set varying between 5
and 35. The numbers were obtained by collecting the time
of segmentation 100 task sets for each number of tasks.

VII. CONCLUSIONS AND FUTURE WORK

PREM-based scheduling schemes have recently attracted
significant attention in the literature, but to make the approach
applicable to industrial practice, there is a stringent need for
automated tools. To this end, we have proposed a compiler-
level framework that automatize the process of analyzing a
program and transforming it into a conditional sequence of
PREM segments. Furthermore, for the case of fixed-priority
partitioned scheduling with fixed-length memory phases,
which has been fully implemented and tested in [27], we
have shown that it is possible to find optimal segmentation
decisions within reasonable time for realistic programs.

This work could be extended in two main directions: first,
by applying it to other PREM-based scheduling schemes.
Note that since searching for an optimal segmentation solution
might become too expensive, we might have to resort to a
heuristic instead. Second, by extending it to other task and
platform models. In particular, we are highly interested in
looking at parallel tasks executed on heterogeneous multicore
devices.
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