
Worst Case Analysis of DRAM Latency
in Multi-Requestor Systems

Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni
Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

{zpwu, ykrish, rpellizz}@uwaterloo.ca

Abstract—As multi-core systems are becoming more popular
in real-time embedded systems, strict timing requirements for
accessing shared resources must be met. In particular, most
multicore systems utilize Double Data Rate Dynamic RAM (DDR
DRAM) as the shared off-chip main memory. Since there are mul-
tiple requestors in the system that can access DRAM, a detailed
latency analysis for timing contention and interference of DRAM
device is highly desirable. Several researchers have proposed
predictable memory controllers to provide guaranteed memory
access latency. However, the performance of such controllers
sharply decreases as DDR devices become faster and the width
of memory buses is increased. In this paper, we present a novel,
composable worst case analysis for DDR DRAM that provides
improved latency bounds compared to existing works by explicitly
modeling the DRAM state. In particular, our approach scales
better with increasing number of requestors and memory speed.
Benchmark evaluations show up to 72% improvement in worst
case task execution time compared to a competing predictable
memory controller for a system with 8 requestors.

I. INTRODUCTION

In real-time embedded systems, the use of chip multipro-
cessors (CMPs) is becoming more popular due to their low
power and high performance capabilities. As applications run-
ning on these multi-core systems are becoming more memory
intensive, the shared main memory resource is turning into
a significant bottleneck. Therefore, there is a need to bound
the worst-case memory latency caused by contention among
multiple cores to provide hard guarantees to real-time tasks.
Several researchers have addressed this problem by proposing
new timing analyses for contention in main memory and
caches[1], [2], [3]. However, such analyses assume a constant
time for each memory request (load or store). In practice,
modern CMPs use Double Data Rate Dynamic RAM (DDR
DRAM) as their main memory. The assumption of constant
access time in DRAM is highly unrealistic because DRAM is
a complex, stateful resource, i.e., the time required to perform
one memory request is highly dependent on the history of
previous and concurrent requests. In turn, considering the
worst-case memory state for each request as required in [1],
[2], [3] leads to highly pessimistic bounds. In contrast, in this
paper we argue for a more realistic analysis that takes memory
state into account.

DRAM access time is highly variable because of two main
reasons: (1) DRAM employs an internal caching mechanism
where large chunks of data are first loaded into a row buffer
before being read or written. Access time for data available
in a row buffer is over one order of magnitude smaller
compared to data that is not currently cached. (2) In addition,
DRAM devices use a parallel structure; in particular, multiple

operations targeting different internal buffers can be performed
simultaneously. Due to this characteristcs, developing a safe
yet realistic memory latency analysis is very challenging.
To overcome such challenges, a number of other researches
have proposed the design of predictable DRAM controllers
[4], [5], [6], [7]. These controllers simplify the analysis of
memory latency by statically pre-computing sequences of
memory commands (called access groups). The key idea is that
static access groups allow leveraging DRAM parallelism while
avoiding analyzing dynamic state information at same time.
Existing predictable controllers have been shown to provide
tight, predictable memory latency for hard real-time tasks when
applied to old DRAM standards such as DDR2 [?]. However,
as we show in our evaluation, they perform poorly in the pres-
ence of more modern DRAM devices such as DDR3. The first
drawback of existing predictable controllers is that they do not
take advantage of the caching mechanism. As memory devices
are getting faster, the performance of predictable controllers
is greatly diminished because the difference in access time
between cached and not cached data is growing. Furthermore,
as memory buses are becoming wider, the amount of data
that can be transferred in each bus cycle increases. For this
reason, the ability of existing predictable controllers to exploit
DRAM access parallelism in a static manner is diminished,
since they would otherwise waste a large number of bus cycles
transferring large portions of data that might not be used by
the task.

Therefore, in this paper we consider a different approach
that takes advantage of the DRAM caching mechanism by
explicitly modeling and analyzing DRAM state information.
In addition, we dynamically exploit the parallelism in the
DRAM structure to reduce the interferences among multiple
requestors. The major contributions of this paper are the
following. (1) We derive a worst-case, DDR DRAM memory
latency analysis for a task executed on a core, in the presence
of multiple requestors contending for memory access (DMA
or other cores). Our analysis is composable, in the sense that
the latency bound does not depend on the activity of the other
requestors, only on their number. (2) We show that latency
on typical Commercially Off The Shelf (COTS) memory
controllers can in fact be unbounded. We thus discuss a set
of minimal controller modifications to allow the derivation of
much improved bounds. (3) We evaluate our analysis against
previous predictable approaches using a set of benchmarks
executed on an architectural simulator. In particular, we show
that our approach scales significantly better with increasing
number of interfering requestors. For a commonly used DRAM
configuration in a system with 8 requestors, our method shows
improvements up to 70.4% on task worst-case execution time



compared to [4].

The rest of the paper is organized as follows. Section
II provides required background knowledge on how DRAM
works. Section III compares our approach to related work
in the field. Section IV discusses required modifications to
the memory controller and Section V details our worst-case
latency analysis. Evaluation results are presented in Section
VI and finally Section VII concludes the paper.

II. DRAM BACKGROUND

Modern DRAM memory systems are comprised of a mem-
ory controller and memory devices as shown in Figure 1. The
controller handles requests from requestors such as CPUs or
DMAs and memory devices store the actual data. The device
and controller are connected by command bus and data bus.
The command bus is used by memory controller to issue
memory commands to the DRAM device in order to access
desired data. The data bus is used for the actual transfer of
data. The size or width of the data bus (WBUS) varies between
devices but modern DDR have data buses that are 64 bits
or larger. The command and data bus can operate in parallel
but no collision is allowed on either buses. For example, one
requestor can use command bus while another requestor can
use data bus at the same time. However, no more than one
requestor can use the command bus (data bus) at the same
time. Modern memory devices are organized into ranks and
only one rank can be accessed at a time. Furthermore, each
rank is divided into multiple banks, which can be accessed
in parallel provided that no collisions occur on either buses.
Each bank has 1) a row-buffer and 2) an array of storage cells
organized as rows1 and columns. For simplicity, this paper only
consider devices with one rank.

Fig. 1: DDR DRAM Organization

A. Memory Commands

To access a memory location, the row that contains the
desired data needs to be loaded into the row buffer by an
Activate (ACT) command. A row that is in the row buffer
is considered open and access to an open row is considered
a row hit. A row that is not in the row buffer is considered
closed and access to a closed row is considered a row miss.
If the row buffer does not contain any rows, then it is empty.

1DRAM rows are also referred to as ’pages’ in the literature.

Requests access only the content of the row buffer, not the
data in the array. Therefore, in order to update changes, the
row buffer must be written back to the array by a Pre-charge
(PRE) command. For the remainder of the paper, we refer
to requests that access open rows as Open Requests and to
requests that access closed rows are Close Requests.

When a requestor makes a memory request, the request
is broken down into different memory commands. For open
request, the request only consists of a read or write command
since desired row is already loaded into row buffer. For close
request, if row buffer contains a row that is not the desired row,
then that row must first be written back to the array by a PRE
command. If the row buffer is empty, then a PRE command
is not needed. Then, an ACT command loads the desired row
into the row buffer and read/write commands can be issued
to access data. To avoid confusion, we categorize requests as
load or store while using the terms read and write to refer to
memory commands.

Based on literature, read and write commands are referred
to as a single Column-Address-Strobe (CAS) command for
short. Because the size of a row is typically large (several
kB), each request only access a small portion of the row by
selecting the appropriate columns. Each CAS command access
data in Burst Length BL and the amount of data transferred is
BL ·WBUS . Typical DRAM controllers employ a burst length
of 8; with a 64 bits data bus, the amount of data transferred
is 64 bytes. Since DDR memory transfers data on rising and
falling edge of clock, the amount of time for one transfer is
BL/2 memory clock cycles, so 4 cycles for a burst length of
8.

Moreover, due to the fact that DRAM storage element
contains capacitors, the device must periodically be restored to
full voltage for proper function. Therefore, a periodic Refresh
(REF) command must be issued to all ranks and banks. A
consequence of REF is that all row buffers are written back to
the data array (i.e., all row buffers are empty after the refresh
operation).

B. Timing Constraints

The memory device takes time to perform different oper-
ations and therefore timing constraints between various com-
mands must be satisfied by the memory controller otherwise
the device will not function. The operation and timing con-
straints of memory devices are defined by the JEDEC standard
[8] and most manufactures follow the specifications set in the
standard. The standard defines different families of devices,
such as DDR2 and DDR32, as well as different speed grades.
As an example, Table I lists all timing parameters of interest to
our analysis, with typical values for DDR3 and DDR2 devices.

To better illustrate the various constraints, Figures 2 and
3 show requests to different banks. Square boxes represent
commands issued on command bus (A for ACT, P for PRE
and R/W for Read and Write); we also show the data being
transferred on the data bus. Horizontal arrows represent timing
constraints between different commands while the vertical

2Albeit JEDEC has finalized the specification for DDR4 devices in Septem-
ber 2012, DDR4 memory controllers are not yet commonly available in the
market.



arrow shows when each request arrives. For example, tRCD

represents the minimum interval of time that must elapse
between issuing an ACT and issuing the following CAS
command. Note that constraints are not drawn to actual scale
to make the figures easier to understand.

Figure 2 shows timing constraints related to load request.
Two requests are targeting Bank-1. Request 1is a load and it
consists of ACT and read command while the request 3 consist
of PRE, ACT and CAS (not shown) commands. Request 2 has
is a store targeting Bank-2 and it consists of ACT and write
command. Notice the write command of request 2 can not be
issued immediately once the tRCD timing constraint of Bank-
2 has been satisfied. This is because there is another timing
constraint, tRTW between read command of request 1 and
write command of request 2, and the write command can only
be issued once all applicable constraints are satisfied. Similar
constraints are shown for a store request in Bank-1 and load
request in Bank-2 in Figure 3.

We make three fundamental observations. (1) The latency
for a close request is significantly longer than an open request.
There are long timing constraints involved with PRE and
ACT commands, which are not needed for open requests. (2)
Switching from servicing load to store requests and vice-versa
incurs a timing penalty. There is a constraint tRTW between
issuing a read command and a successive write command.
Even worse, the tWTR constraint applies between the end of
the data transmission for a write command and any successive
read command. (3) Different banks can be operated in parallel.
There is no constraint such as tRTW and tWTR between two
successive reads or two successive writes to different banks.
Furthermore, PRE and ACT commands to different banks can
be issued in parallel as long as the tRRD and tFAW constraints
are met. The remaining constraints are explained in more detail
in the analysis in Section V.

Fig. 2: Timing Constraints for Load Request

Fig. 3: Timing Constraints for Store Request

C. Row Policy

In general, the memory controller can employ one of two
different polices regarding the management of row buffers:

Open Row and Close Row Policy. Under open row policy, the
memory controller leaves the row buffer open for as long as
possible. The row buffer will be pre-charged if refresh period
is reached or another request needs to access a different row
(i.e., row miss). If a task has a lot of row hits, then only a CAS
command is needed for those requests, thus reducing latency.
However, if a task has a lot of row miss, each miss must issue
ACT and CAS command and possibly a PRE command as
well. Therefore, the latency of a request with open row policy
is dependent on the row hit ratio of a task and the status of the
DRAM device. In contrast, close row policy automatically pre-
charges the row buffer after every request. Under this policy,
the timing of every request is eminently predictable since all
requests have an ACT and a CAS command and thus incur
the same latency. Furthermore, the controller does not need
to schedule pre-charge commands. The downside is that the
overall latency for all requests performed by a task might
increase since the policy reduces row hit ratio to zero.

D. Address Mapping

When a request arrives at the memory controller, the
incoming memory address must be mapped to the correct bank,
row and column in order to access desired data. Note that
embedded memory controllers, for example in the Freescale
p4080 embedded platform [9], often support configuration of
both the row policy and mapping. We discuss two common
mappings, as employed in our paper and other predictable
memory controllers: interleaved banks and private banks.
Under interleaved bank, each request accesses all banks. The
amount of data transferred in one request is thus BL/2 ·
WBUS ·NumBanks. For example, with 4 banks interleaved,
burst length of 8 and data bus of 64 bits, the amount of
data transferred is 256 bytes. Although this mapping allows
each requestor to efficiently utilize all banks in parallel, each
requestors also shares all banks with every other requestor.
Therefore, requestors can cause mutual interference by closing
each other’s rows.

Under private banks, each requestor is assigned its own
bank or set of banks. Therefore, the state of row buffers
accessed by one requestor cannot be influenced by other
requestors. A separate set of banks can be reserved for shared
data that can be concurrently accessed by multiple requestors.
Under private banks, each request targets a single bank, hence
the amount of data transferred is BL/2 ·WBUS . The downside

JEDEC Specifications (cycles)
Parameters Description DDR3-

1333H
DDR2-
800E

tRCD ACT to READ/WRITE delay 9 6
tRL READ to Data Start 8 6
tWL WRITE to Data Start 7 5
tBUS Data bus transfer 4 4
tRP PRE to ACT Delay 9 6
tWR Data End to PRE Delay 10 6
tRTP Read to PRE Delay 5 3
tRAS ACT to PRE Delay 24 18
tRC ACT-ACT (same bank) 33 24
tRRD ACT-ACT (different bank) 4 3
tFAW Four ACT Window 20 14
tRTW READ to WRITE Delay 6 6
tWTR WRITE to READ Delay 5 3
tRFC Time required to refresh a row 160 ns 195 ns
tREFI REF period 7.8 us 7.8 us

TABLE I: JEDEC Timing Constraints



to this mapping is that bank parallelism cannot be exploited
by a single requestor; if the same amount of data as in
the interleaved bank case must be transferred, then multiple
requests to the same bank are required.

III. RELATED WORK

Several predictable memory controllers have been proposed
in the literature [4], [5], [6], [7]. The most closely related
work is that of Paolieri et al. [4] and Akesson et al. [5].
The Analyzable Memory Controller (AMC) [4] provides an
upper bound latency for memory requests in a multi-core
system by utilizing a round-robin arbiter. Predator [5] uses
credit-controlled static-priority (CCSP) arbitration [10], which
assigns priority to requests in order to guarantee minimum
bandwidth and provide a bounded latency. As argued in [4],
the round-robin arbitration used by AMC is better suited
for hard real-time applications, while CCSP arbitration is
intended for streaming or multimedia real-time applications.
Both controllers employ interleaved banks mapping. Since
under interleaved banks, there is no guarantee that rows opened
by one requestors will not be closed by another requestor, both
controllers also use close row policy.

In contrast, our approach employs private bank mapping
with open row policy. By using a private bank scheme,
we eliminate row interferences from other cores since each
core can only access their own banks. Although this reduces
the total memory available to each requestor compared to
interleaving, modern DRAM are often quite large: DRAM
devices are typically cheap, while the majority of the cost in
the main memory subsystem is dependent on the controller
and the width of the data bus. By using the open row policy,
we take advantage of row hits. As we demonstrate in Section
VI, our approach leads to better latency bounds compared to
AMC and Predator because of two main reasons: first, as noted
in Section II-B, the latency of open requests is much shorter
than the one of close requests in DDR3 devices. Second, as
noted in Section II-D, interleaved bank mapping requires the
transfer of large amount of data. In the case of a processor
using cache, requests to main memory are produced at the
granularity of a cache block, which is 64 bytes on almost
all modern platforms. Hence, reading more than 64 bytes at
once would lead to wasted bus cycles in the worst case. This
consideration effectively limits the number of banks that can
be usefully accessed in parallel in interleaved mode.

Goossens et al. [6] have recently proposed a mix-row policy
memory controller. Their approach is based on leaving a row
open for a fixed time window to take advantage of row hits.
However, this time window is relatively small compare to an
open row policy. In the worst case their approach is the same
as close row policy if no assumptions can be made about the
exact time at which requests arrive at the memory controller,
which we argue is the case for non-trivial programs on modern
processors. Reineke et al. [7] propose a memory controller
that uses the private bank scheme; however, their approach
still uses the close row policy along with TDMA scheduling.
Their work is part of a larger effort to develop PTARM [11],
a precision-timed (PRET [12], [13]) architecture. The memory
controller is not compatible with a standard, COTS, cache-
based architecture. To the best of our knowledge, our work
is the only one that utilizes both open row policy and private

bank scheme to provide improved worst-case memory latency
bounds to hard real-time tasks in multi-core systems.

IV. MEMORY CONTROLLER

In this section, we formalize the arbitration rules of the
memory controller in such a way that a worst-case latency
analysis can be derived. Our proposed memory controller is a
simpler version of typical COTS-based memory controllers,
with minimal modifications required to obtain meaningful
latency bounds. In particular, memory re-ordering features of
COTS memory controllers are eliminated since, as we show at
the end of this section, they could lead to unbounded latency.
Therefore, we argue that the described memory controller
could be implemented without significant effort, and due to
space limitations, in the rest of the paper we focus on the
analysis of worst case memory bounds rather than implemen-
tation details of the memory controller.

Figure 4 shows the basic structure of the proposed memory
controller. There is a private buffer for each requestor in the
system to store incoming memory requests. More specifically,
the private buffers store the set of memory commands asso-
ciated with each request since each request is made up of
different memory commands as discussed in Section II. In
addition, there is a global arbitration FIFO queue and memory
commands from the private buffers are enqueued into this
FIFO. The arbitration rules of the FIFO are outlined below.

1) Each requestor can only enqueue one command from
the private buffer into the FIFO and must wait until
that command is serviced (dequeued from FIFO) be-
fore inserting another command. CAS commands are
dequeued only after the associated data transmission
is complete.

2) A command can be enqueued into the FIFO only
if all timing constraints that are caused by previous
commands of the same requestor are satisfied. This
means the command can be serviced immediately if
no other requestors are in the system.

3) The controller will scan the FIFO starting at the front
and find the first command that can be issued and
service it. An exception is made for CAS command
as described in the next rule.

4) For CAS commands in the FIFO, if one CAS com-
mand is blocked due to timing constraints caused by
other requestors, then all CAS commands after the
blocked CAS in the FIFO will also be blocked. In
other words, we do not allow re-ordering of CAS
commands.

Fig. 4: Memory Controller



It is clear from Rule-1 that the size of the FIFO queue is
equal to the number of requestors. Note that once a requestor
is serviced, the next command from the same requestor will
go to the back of the FIFO. Intuitively, this implies that each
requestor can be delayed by at most one command for every
other requestor; we will formally prove this in Section V.
Therefore, this arbitration is very similar to a round robin
arbiter, as also employed in AMC [4].

To understand Rule-2, assume a requestor is doing a close
request consisting of PRE, ACT and CAS command. The first
command PRE is enqueued and after some time the PRE
is serviced. Due to the tRP timing constraint (please refer
to Figures 2 or 3), the second command, ACT, cannot be
enqueued immediately; the private buffer must hold the ACT
until tRP time units has expired before putting the ACT in
the FIFO. This rule prevents other requestors from suffering
timing constraints that are only specific to one requestor and
thus reducing the amount of interference.

Finally, without Rule-4 the latency would be unbounded.
To explain why, in Figure 5a we show an example command
schedule where Rule-4 does not apply. In the figure, the state of
the FIFO at the initial time t = 0 is shown as the rectangular
box. Let us consider the chronological order of events. (1)
A write command from Requestor 1 (R1) is at the front of
FIFO and it is serviced. (2) A read command (R2) cannot be
serviced until t = 15 due to tWTR timing constraint (crossed
box in figure). (3) The controller then services the next write
command (R3) in the FIFO queue at t = 5 following Rule-
3. Due to tWTR constraint, the earliest time to service read
command is now pushed back from t = 15 to t = 20. (4)
Assume that another write command from Requestor 1 is
enqueued between t = 15 and t = 20. The controller then
services this command, effectively pushing the read command
back even further to t = 30. Following the example, it is clear
that if Requestors 1 and 3 have a long list of write commands
waiting to be enqueued, the read command of Requestor 2
would be pushed back indefinitely and the worst case latency
would be unbounded. By enforcing Rule-4, latency becomes
bounded because all CAS after read (R2) would be blocked as
shown in Figure 5b.

Note that no additional rule is required to handle the data
bus. Once a CAS command (read or write) is issued on the
command bus, the data bus is essentially reserved for that
CAS command for a duration of tBUS starting from tRL or
tWL time units after the CAS is issued. Therefore, we simply
consider an additional constraint on CAS commands, where a
CAS cannot be issued if it causes conflict on the data bus.

V. WORST CASE ANALYSIS

In this section, we present the main contribution of the
paper: an analysis that captures the cumulative worst-case
memory latency suffered by all requests performed by a given
task under analysis. We discuss our system model in Section
V-A. In Section V-B, we first derive the worst-case latency for
a single memory request. Then in Section V-C, the cumulative
worst-case latency over all task’s requests is analyzed.

A. System Model(0.5p)

We consider a system with M memory requestors. We
further assume that the requestor executing the task under

(a) Unbounded Latency

(b) Bounded latency

Fig. 5: Importance of Rule-4

analysis is a fully timing compositional core as described in
[14]. In short, this implies that the core is in-order and it
will stall on every memory request including store requests. If
modern out of order cores are considered, then store requests
don’t need to be analyzed because the architecture hides store
latency. However, a more detailed model of the core would
be needed for analysis of load requests and our focus is
not on modelling cores. Therefore, the task can not have
more than one request at once in the private buffer of the
memory controller, and the cumulative latency over all requests
performed by the task can simply be computed as the sum
of the latencies of individual requests. Other requestors in
the system could be out of order cores or DMAs. While
these requestors could have more than one request in their
private buffers, this does not affect the analysis since each
requestor can still enqueue only one command at a time in
the global FIFO queue. We make no further assumption on
the behavior of other requestors. Due to space limitations,
we assume that the task under analysis runs non-preemptively
on its assigned core; however, the analysis could be easily
extended if the maximum number of preemptions is known.
To derive a latency bound for the task under analysis, we need
to characterize its memory requests. Specifically, we need to
know: (1) the number of each type of request, as summarized
in Table II; (2) and the order in which requests of different
types are generated.

There are two general ways of obtaining such characteri-
zation. One way is by measurement, running the task either
on the real hardware platform or in an architectural simulator
while recording a trace of memory requests. This method has
the benefit of providing us with both the number and the order
of memory requests. However, one can never be confident that
the obtained trace corresponds to the worst case. Alternatively,
a static analysis tool [15] can be employed to obtain safe upper
bounds on the number of each type of requests. However,
static analysis cannot provide a detailed request order, since

Notation Description
NOL Number of Open Load
NCL Number of Close Load
NOS Number of Open Store
NCS Number of Close Store

TABLE II: Notation for Request Types



Fig. 6: Worst Case Latency Decomposition

in general the order is dependent on input values and code
path, initial cache state, etc. Since the analysis in Section V-B
depends on the order of requests, Section V-C shows how to
derive a safe worst-case request order given the number of
each type of request. Regardless of which method is used, note
that the number of open/close and load/store requests depend
only on the task itself since private bank mapping is used to
eliminate row misses caused by other requestors.

B. Per-Request Latency

Let tReq be the worst-case latency for a given memory
request of the task under analysis. To simplify the analysis,
we decompose the request latency into two parts as shown in
Figure 6: tAC and tCD. tAC (Arrival-to-CAS) is the worst case
interval between the arrival of a request at the memory con-
troller and the enqueuing of its corresponding CAS command
into the FIFO. tCD (CAS-to-Data) is the worst case interval
between the enqueuing of CAS and the end of data transfer.
In all figures in this section, a bold arrow represents the time
instant at which a request arrives at the memory controller. A
dashed arrow represents the time instant at which a command
is enqueued into the FIFO; the specific command is denoted
above the arrow. Note that for a close request, tAC includes
the latency required to process a PRE and ACT command,
as explained in Section II. We now separately detail how to
compute tAC and tCD; tReq is then computed as the sum of
the two components.

1) Arrival-to-CAS: We consider two cases for tAC ,
whether the request is an open or a close request.

a) Open Request: In this case, the memory request is
a single CAS command because the row is already open.
Therefore, tAC only includes the latency of timing constraints
caused by previous commands of the core under analysis
(arbitration Rule-2 in Section IV). Since the core is fully
timing compositional, the earliest time a request can arrive
is after the previous request has finished transferring data. If
the previous and current request are of the same type (i.e.,
both are load or store), then tAC is zero because there are no
timing constraints between requests of the same type. If the
previous and current requests are of different types, we have
two cases. 1) If the previous request is a store, then the tWTR

constraint comes into effect. 2) If the previous request is a
load, then tRTW comes into effect. In both cases, it is easy to
see that the worst case tAC occurs when the current request
arrives as soon as possible, i.e., immediately after the data
of the previous request, since this maximizes the latency due
to the timing constraint caused by the previous request. Also
note that tRTW applies from the time when the previous read
command is issued, which is tRL + tBUS time units before
the current requests arrives. Therefore, Eq. 1 capture the tAC

latency for an open request, where cur denotes the type of the
current request and prev the type of the previous one.

tOpen
AC =


tWTR if cur-load,prev-store;
max{tRTW − tRL − tBUS , 0} if cur-store,prev-load;
0 otherwise.

(1)

Fig. 7: Arrival-to-CAS for Open Request

b) Close Request: The analysis is more involved for
close requests due to the presence of PRE and ACT commands.
Therefore, we decompose tAC into smaller parts as shown in
Figure 8. Each part is either a JEDEC timing constraint shown
in Table I or a parameter that we compute, as shown in Table
III. tDP and tDA determines the time at which a PRE and
ACT command can be enqueued in the global FIFO queue,
respectively, and thus (partially) depend on timing constraints
caused by the previous request of the task under analysis. tIP
and tIA represent the worst case delay between inserting a
command in the FIFO queue and when that command is issued,
and thus capture interference caused by other requestors.
Similarly to the open request case, the worst case for tAC is
when the current request arrives immediately after the previous
request has finished transferring data.

Fig. 8: Arrival-to-CAS for Close request

tDP depends on the following timing constraints: 1) tRAS

if the previous request was a close request; 2) tRTP if the
previous request was a load; 3) tWR if the previous request was
a store; please refer to Figures 2, 3 and Table ?? for a detailed
illustration of these constraints. Eq. (2) then summarizes the
value of tDP . Similarly to Eq. (1), for terms containing tRAS

and tRTP , we need to subtract the time interval between
issuing the relevant command of the previous request and the
arrival of the current request.

Timing Parameter Definitions
tDP End of previous DATA to PRE Enqueued
tIP Interference Delay for PRE
tDA End of previous DATA to ACT Enqueued
tIA Interference Delay for ACT

TABLE III: Timing Parameter Definition



tDP =

max{(tRTP − tRL − tBUS), Q(tRAS − tprev), 0} if prev-load;
max{tWR, Q(tRAS − tprev), 0} if prev-store,

(2)
where:

Q=

1 if prev-close;
0, if prev-open.

tprev=

tRCD + tRL + tBUS if prev-load;
tRCD + tWL + tBUS if prev-store.

We now consider tIP . In the worst case, when the PRE
command of the current request is enqueued into the FIFO,
there can be a maximum of M−1 preceding commands in the
FIFO due to arbitration Rule-1. Each command can only delay
PRE for at most one cycle due to contention on the command
bus; there are no other interfering constraints between PRE and
commands by other requestors, since they must target different
banks. In addition, any command enqueued after the PRE
would not affect it due to Rule-3. Therefore, the maximum
delay suffered by the PRE command is:

tIP = (M − 1). (3)

Let us consider tDA next. If the previous request was a
close request, tDA depends on the tRC timing constraint. In
addition, once PRE is serviced, the core buffer must wait for
tRP timing constraint to expire before ACT can be enqueued.
Hence, tDA must be at least equal to the sum of tDP , tIP ,
and tRP . We obtain tDA as the maximum of these two terms
in Eq. (4), where again tprev accounts for the time at which
the relevant command of the previous request is issued.

tDA = max{(tDP + tIP + tRP ), Q(tRC − tprev)}. (4)

We next analyze tIA. We prove that the ACT command
of the current request suffers maximal delay due to tRRD

and tFAW timing constraints generated by ACT commands
of other requestors, as shown in Figure 9, where C denotes
the core under analysis. In particular, we prove that the worst
case is produced when all M − 1 other requestors enqueue an
ACT command at the same time t0 as the core under analysis,
which is then placed last in the FIFO. Since furthermore tFAW

is larger than 4 · tRRD, the value of tIA under this scenario is
captured by the following equation:

tIA =
⌊M − 1

4

⌋
· tFAW +

(
(M − 1) mod 4

)
· tRRD (5)

Lemma 1: Eq. (5) computes the worst case value for tIA.

Proof: Let t0 be the time at which the ACT command of
the core under analysis (ACT under analysis) is enqueued in
the global arbitration FIFO queue. We show that the worst case
interference on the core under analysis is produced when at
time t0 there are M−1 other ACT commands enqueued before
the ACT under analysis. First note that commands enqueued
after the ACT under analysis cannot delay it: if the ACT under
analysis is blocked by the tRRD or tFAW timing constraint,
then any subsequent ACT command in the FIFO would also
be blocked by the same constraint. PRE or CAS commands of
other requestors enqueued after the ACT under analysis can
execute before it according to arbitration Rule-3 if the ACT
under analysis is blocked, but they cannot delay it because

those requestors access different banks, and there are no timing
constraints between ACT and PRE or CAS of a different
bank. Each ACT of another requestor enqueued before the
ACT under analysis can contribute to its latency for a factor
tRRD, which is larger than one clock cycle on all devices.
Now assume by contradiction that a requestor has a PRE or
CAS command enqueued before the ACT under analysis at
time t0. Since again there are no timing constraints between
such commands, the PRE or CAS command can only delay
the ACT under analysis for one clock cycle due to command
bus contention. Furthermore, after the PRE or CAS command
is issued, any further command of that requestor would be
enqueued after the ACT under analysis. Hence, the requestor
would cause a total delay of one unit, which is less that tRRD.
This concludes the first part of the proof.

It remains to be shown that the worst case is produced when
all ACT commands are enqueued at time t0. By contradiction,
assume that a requestor enqueues its ACT command at time
t0−Delta. Still needs work Now let’s prove why all requestor
must enqueue at the same time. Consider the opposite case
where some requestors enqueues ACT before t = t0. One
important point we need to prove is that regardless of what
time the other requestors enqueues ACT command (either
before or at same time), each requestor can have at most one
ACT command interfering with task under analysis. Assume
an ACT of requestor 1 (R1) is serviced at ∆t time units before,
another ACT from R1 can not be enqueued until tRC − ∆t
time units after t = t0 due to the ACT-to-ACT constraint.
Since tRC is greater than or equal to both tFAW and tRRD

for all devices, the earliest time another ACT from R1 can be
enqueued is at least tFAW −∆t or tRRD−∆t time units after
t = t0. Therefore, a maximum of M − 1 ACT can interfere
with ACT (under analysis). Then for the case when they are
enqueued before, the delay suffered by task under analysis is
tFAW −∆t or tRRD −∆t. This is clearly less than the delay
when they are enqueued at the same time, which is tFAW or
tRRD.

Fig. 9: Interference Delay for ACT command

Once the ACT command is serviced, the CAS can be
inserted after tRCD time units, leading to a total tAC latency
for a close request of tDA + tIA + tRCD. Therefore, we have
obtained the following lemma:

Lemma 2: The worst case arrival-to-CAS latency for a
close request can be computed as:

tClose
AC = tDA + tIA + tRCD. (6)

Note that tAC , as computed in Eq. (1), (6), depends on



both the previous request of the task under analysis and the
specific values of timing constraints, which vary based on the
DDR device. We evaluated tAC for all DDR3 devices defined
in JEDEC; complete numeric results are provided in [?]. In
Table IV, we summarize the results based on the types of the
current and previous request, where for ease of comparison
we define tdev as the tAC latency of a close request preceded
by an open load. Note that tdev depends on the number M of
requestors, while all other parameters in the table do not. Also,
for all devices and numbers of requestors, tdev is significantly
larger than timing constraint tWTR. Finally, computed terms
∆tS and ∆tL are always positive, with ∆tS being larger than
∆tL for all devices.

2) CAS-to-Data: The CAS-to-Data delay depends on the
CAS command of the current request: read or write. We first
discuss the write case; the read case is similar. We prove that
the current request suffers worst case interference when all
other M−1 requestors enqueue a CAS command in the global
FIFO queue at the same time t0 as the core under analysis,
which is then placed last in the FIFO; furthermore, commands
queued in the FIFO form an alternating pattern of read and
write commands. The worst case pattern is shown in Figure 10
for a system with M = 4. Note that since there are M total re-
questors and the alternating pattern of commands ends with the
write command of the task under analysis, there are

⌊
M
2

⌋
reads

and
⌈
M
2

⌉
writes in the pattern. During the execution of the

pattern, each read command adds a latency of tWTR + tRTW

(from the end of the data transmission of the preceding write to
the issuing of the following write command), while each write
adds latency tWL + tBUS (from issuing the write command
itself to the end of the corresponding data). Therefore, we
compute tCD as:

tWrite
CD =

⌊M
2

⌋
· (tWTR + tRTW )+

+
⌈M

2

⌉
· (tWL + tBUS).

(7)

Fig. 10: Interference Delay for Write

Lemma 3: Eq. (7) computes the worst case value tCD for
a write command.

Case Current Request Previous Request tAC (ns)
1 close (load or store) (close or open) store tdev + ∆tS

2 close (load or store) close load tdev + ∆tL

3 close (load or store) open load tdev

4 open load (close or open) store tWTR

5 All other request 0

TABLE IV: Arrival-to-CAS latency

Proof: Let t0 be the time at which the CAS command of
the core under analysis (CAS under analysis) is enqueued in
the global arbitration FIFO queue. We show that the worst case
interference on the core under analysis is produced when at
time t0 there are M−1 other CAS commands enqueued before
the CAS under analysis. First note that commands enqueued
after the CAS under analysis cannot delay it: if the CAS under
analysis is blocked, then any subsequent CAS command is also
blocked due to arbitration Rule-4. PRE or ACT commands of
other requestors enqueued after the CAS under analysis can
execute before it according to arbitration Rule-3 if the CAS
under analysis is blocked, but they cannot delay it because
those requestors access different banks, and there are no timing
constraints between CAS and PRE or ACT of a different
bank. Each CAS of another requestor enqueued before the
CAS under analysis contributes to its latency for at least a
factor tBUS = 4 due to data bus contention. Now assume by
contradiction that a requestor has a PRE or ACT command
enqueued before the CAS under analysis at time t0. Since
again there are no timing constraints between such commands,
the PRE or ACT command can only delay the CAS under
analysis for one clock cycle due to command bus contention.
Furthermore, after the PRE or ACT command is issued, any
further command of that requestor would be enqueued after
the CAS under analysis. Hence, the requestor would cause a
total delay of one unit, which is less that tBUS . This concludes
the first part of the proof.

this can be shortened in the tech report if we have the
proof for lemma 1.

We next show that the worst case is produced by an alter-
nating pattern of read and write commands. By contradiction,
assume that the FIFO queue contains a sequence of CAS of
the same type. Since there are no timing constraints between
CAS commands of the same type, each command would only
add a latency term tBUS to the overall delay of the CAS
under analysis. Let us now compute the latency of a read
command followed by a write command, i.e., from the end
of the data transmission of a write command to the end of
the data of the next write command; as an example, consider
interval [t′, t′′′] in Figure 10. The data transmission of the
read command finishes at time t′ + tWTR + tRL + tBUS .
The data transmission of the write command starts at time
t′+tWTR+tRTW +tWL. Now note that for all DDR3 devices,
it holds: tRTW + tWL > tRL + tBUS . Hence, this schedule of
CAS commands is legal because it causes no data bus conflict.
The combined latency t′′′− t′ for the read and write command
is thus tWTR + tRTW + tRL + tBUS , which is larger than two
times tBUS .

We finally need to show that all requestors enqueue their
CAS command at the same time t0 in the worst case pattern.
Requestors enqueueing a CAS after t0 do not cause interfer-
ence as already shown. If a requestor enqueues a CAS at
time t0 − ∆ but finishes its data transmission after t0, the
overall latency is reduced by ∆ since again the requestor
cannot enqueue another CAS before t0. However, a requestor
could finish its previous data transmission exactly at time t0
and immediately enqueue another CAS before the CAS under
analysis, thus delaying the first CAS command serviced after
t0. If the first CAS command is a read, then according to
Eq. (1), the command suffers a worst case delay tWTR; this



case is shown in Figure 10. If the first CAS command is a
write, then the delay is max{tRTW − tRL − tBUS , 0}, which
evaluates to 0 for all DDR3 devices as shown in Table IV; this
case is shown in Figure 10. In summary, each read command
adds a latency term tWTR+tRTW from either t0 or the end of
the data transmission of the preceding write or to the issuing of
the following write command, while each write command adds
a latency term tWL + tBUS from issuing the write command
itself to the end of the corresponding data. Since furthermore
the core under analysis issues a write command and is serviced
last, Eq. (7) holds.

Figure 11 shows the worst case pattern for a read command.
The pattern is the same as in the write case, except the last
read command contributes a latency of tWTR + tRL + tBUS

from the end of the data transmission of the previous write
to the end of the read data. For the other M − 1 requestors,
the same latency contributions used in Eq. (7) apply, leading
to the following expression for the worst case tCD value of a
read command:

tRead
CD = tWTR + tRL + tBUS+

+
⌊M − 1

2

⌋
· (tWTR + tRTW )+

+
⌈M − 1

2

⌉
· (tWL + tBUS).

(8)

Lemma 4: Eq. (8) computes the worst case value tCD for
a read command.

Fig. 11: Interference Delay for Read

Combining Lemmas 2, 3, 4 then trivially yields our main
theorem:

Theorem 1: Assuming that the type of the previous request
of the core under analysis is known, the worst case latency of
the current request can be computed as:

tReq = tAC + tCD, (9)

where tAC is derived according to either Eq. (1) for an open
request or Lemma 2 for a close request, and tCD is derived
according to either Lemma 3 for a write request or Lemma 4
for a read request.

C. Cumulative Latency

In this section, we detail how to compute the cumulative
latency over all requests generated by the task under analysis.
If the request order is known, then the cumulative latency
can be simply obtained as the sum of the latency for each
individual request, since we know the previous request based
on the order. If the request order is not known, then we need
to derive a worst case pattern. It is clear from the analysis in
Section V-B that tAC depends on the order of requests while

tCD does not. This allow us to decompose the cumulative
latency tTask into two parts similar to before: tTask

CD , the sum
of the tCD portion of all requests, which is independent of the
order; and tTask

AC , the sum of the tAC portion of all requests,
for which we need to consider a worst-case request pattern.
tTask
CD is computed according to:

tTask
CD = (NOL +NCL) · tRead

CD + (NOS +NCS) · tWrite
CD . (10)

Now consider the five different possible cases for tAC

summarized in Table IV. We make three observations: first,
open stores incur no tAC latency. Second, both open load and
close load/store requests suffer higher latency when preceded
by a store request (Case-1 and Case-4 respectively). When a
close request is preceded by a load request instead, the latency
is maximized when the preceding request is a close load rather
than an open load (Case-2 rather than Case-3). Therefore,
intuitively a worst-case pattern can be constructed by grouping
all close requests together, followed by open loads, and then
“distributing” store requests so that each store precedes either
an open load or a close load/store request: in the first case, the
latency of the open load request is increased by tWTR, while
in the second case, the latency of the close request is increased
by ∆tS−∆tL, i.e., the difference between Case-1 and Case-2.
We can then obtain a bound to the cumulative tAC latency as
the solution of the following ILP problem, where variable x
represents the number of stores that precede a close request
and y represents the number of stores that precede an open
load.

Maximize:
(NCL+NCS)·(tdev+∆tL)+(∆tS−∆tL)·x+tWTR·y (11)

Subject to:
y ≤ NOL (12)
x ≤ NCL + NCS (13)
x + y ≤ NOS + NCS + 1 (14)
x ∈ N, y ∈ N (15)

Lemma 5: The solution of ILP problem (11)-(15) is a valid
upper bound to tTask

AC .

Proof: By definition, the number of store requests x that
can precede an open load is at most the total number of open
loads. Similarly, the number of store request y that can precede
a close request is at most the total number of close requests.
Finally, notice that the total number of stores x + y is at
most equal to NOS + NCS + 1; the extra store is due to the
fact that we do not know the state of the DRAM before the
start of the task, hence we can conservatively assume that a
store operation precedes the first request generated by the task.
Hence, Constraints (12)-(15) holds.

We can then obtain an upper bound on tTask
AC by simply

summing the contribution of each case according to Table IV:
(1) open stores add no latency; (2) y open loads add latency
tWTR · y; the remaining NOL− y requests add no latency; (3)
x close requests add latency (tdev + ∆tS) · x; in the worst-
case, the remaining NCL + NCS − x requests add latency
(tdev + ∆tL) · (NCL +NCS − x), since the latency for Case-
2 is higher than for Case-3. The sum of all contributions is



equivalent to Eq.11 . Since furthermore Eq.11 is maximized
over all possible values of x, y, the Lemma holds.

While we used a ILP formulation to simplify the proof
of Lemma 5, it is easy to see based on Eq.(11) that the
problem can be solved in a greedy manner: if ∆tS − ∆tL
is larger than tWTR, then the objective function is maximized
by maximizing the value of x (i.e., we allocate stores before
close requests as much as possible); otherwise, by maximizing
the value of y.

The final DRAM event that we need to consider in the
analysis is the refresh. A refresh command is issued periodi-
cally with a period of tREFI . The time it takes to perform the
refresh is tRFC , during which the DRAM cannot service any
request. An added complexity is that all row buffers are closed
upon a refresh; hence, some requests that would be categorized
as open can be turned into close requests. To determine how
many open requests can be changed to close requests, we need
to compute how many refresh operations can take place during
the execution of the task. However, the execution time of the
task depends on the cumulative memory latency, which in turn
depends on the number of open/close requests. Therefore, we
have a circular dependency between the number of refreshes
and the cumulative latency tTask. Hence, we adapt an iterative
approach to determine the number of refresh operations as
shown in Eq.(16)-(17).

k0 = 0, (16)

ki+1 =
⌈ tTask

AC (ki) + tTask
CD + tcomp + ki · tRFC

tREFI

⌉
, (17)

where,

tTask
AC (ki)= upper bound on tTask

AC computed after

changing ki open requests to close requests

tcomp= task computation time, i.e., execution time assuming

that memory requests have zero latency

ki·tRFC= time taken to perform ki refresh operations

At each iteration i + 1, we compute the execution time
of the task as texec = tTask

AC (ki) + tTask
CD + tcomp + ki · tRFC

based on the number of refresh operations ki computed during
the previous iteration. The new number of refreshes ki+1 can
then be upper bounded by

⌈
texec

tREFI

⌉
. Hence, the fix point of

the iteration k̄ represents an upper bound on the worst-case
number of refreshes suffered by the task under analysis.

It remains to compute tTask
AC (ki); in particular, when com-

puting tTask
AC (ki) according to ILP problem (11)-(15), we need

to determine whether the latency bound is maximized by
changing open store request to close store or open load request
to close load.

Lemma 6: Consider computing an upper bound to tTask
AC

according to ILP Problem (11)-(15), after changing up to
k open requests to close requests. The solution of the ILP
problem is maximized by changing l = min{k,NOS} open
store to close store request and max

{
min{k − l, NOL}, 0

}
open load to close load requests.

Proof: First notice that obviously, no more than NOS

open store requests can be changed to close store and no

more than NOL open load requests can be changed to close
load. We examine the effect of changing an open store to a
close store. The first, constant term in the objective function
increases by tdev + ∆tL. Constraints (12) and (14) remain
unchanged but the upper bound of Constraint (13) increases
by one. By comparison, if we change an open load to a close
load, the objective function and Constraint (13) are modified
in the same way, but the upper bound of Constraint (12)
decreases by one. Hence, the resulting optimization problem
is more relaxed in the case of an open store to close store
change, meaning that the ILP result is maximized by first
changing up to min{k,NOS} open store requests to close
store. Furthermore, if NOS < k, then notice that the ILP result
is maximized by changing up to min{k − NOS , NOL} open
load requests to close load: each time an open load is changed
into a close load, the constant term in the objective function
increases by tdev +∆tL, but the ILP result might be decreased
by a factor at most tWTR due to the change to Constraint (12).
However since tdev + ∆tL > tWTR for all devices as pointed
out in Section V-B, this is still a net increase.

The derivations of tTask
CD , k̄ and tTask

AC then trivially yield
the following theorem:

Theorem 2: An upper bound to the cumulative latency of
all memory requests generated by the task under analysis is:

tTask = tTask
AC + tTask

CD + k̄ · tRFC , (18)

where tTask
CD is computed according to Eq.(10), k̄ is obtained

as the fixed point of the iteration in Eq.(16)-(17), and tTask
AC

is the solution of the ILP Problem (11)-(15) after changing up
to k̄ open requests to close requests according to Lemma 6.

VI. EVALUATION

In this section, we will compare our approach against the
Analyzable Memory Controller (AMC) [4] because they use a
fair round robin arbitration that do not prioritize the requestors.
Thus we don’t compare our method against [5] and [6] because
they use a non-fair arbitration. However, if a fair arbitration is
used in [5] and [6], they are the same as AMC because they all
utilize interleaved bank with close row policy. We show results
for two data bus sizes, 64 bits and 32 bits, since we argue that
smaller bus sizes are now uncommon on all embedded systems
but the simplest microcontrollers. Since AMC uses interleaved
bank, for 64 bits data bus, it does not make sense to interleave
any banks together because the size of each request would be
too large compared to cache block size (64 bytes) and this
can be wasteful as discussed in Section III. For 32 bits data
bus, it makes sense to interleave two banks together in order
to transfer 64 bytes of data and thus our approach need to
make two separate requests as discussed in Section II-D. We
perform experiments with both synthetic and real benchmarks;
the former are used to show how the latency bound varies as
task parameters are changed.

A. Synthetic Benchmark

In Figure 12 and 13, we compare our approach against
AMC as we vary the row hit ratio and the number of requestors
in the system. The x-axis is row hit ratio and y-axis is the
average worst case latency in nano-seconds. The average worst
case latency is obtained by dividing the total memory access



time by total number of requests. In addition, the memory
request pattern is calculated according to Section V-C. The
memory device used in these figures is 2GB DDR3-1333H.
The solid lines are for 64 bits data bus and dashed lines are
for 32 bits data bus. In addition, we fix the store percentage to
20% of total requests. From the figure, we can see that AMC
is a straight line in the graph since they use close row policy,
therefore the latency does not depend on row hit ratio. In our
approach, the latency improves as row hit ratio increases. In
addition, as the number of requestors increase, our approach
performs better compared to AMC.

Table V shows the average worst case latency for a few
DDR3 devices of different speed. The number of requestors
is fixed at 4, row hit is 50% and store percentage is 20%.
As the speed of DRAM devices becomes faster, our approach
improves rapidly compared to AMC. For example, comparing
800D and 2133M devices, the worst case latency decreases
by 39% using our approach (125.2ns to 90.35ns) while only
by 14% for AMC (185ns to 163ns). This is because as
clock frequency increases in memory devices, the difference
in the latency between open and close requests is increasing.
Therefore, close row policy becomes too pessimistic, while
we argue that open row policy is better suited for current and
future generations of memory devices. Finally, we fixed store
percentage to 20% in our experiments but the effect of store
percentage does not change the general trends discussed above.

Fig. 12

Fig. 13

B. Benchmark Results

The CHStone benchmark suite [16] was used for eval-
uation. All twelve benchmarks were ran on the Gem5 [17]

simulator to obtain memory traces, which are used as inputs
to our analysis. The CPU was clocked at 1 GHz with private
LVL1 and LVL2 cache. LVL1 cache is split 32 kB instruction
and 64 kB data. LVL2 is unified cache of 2 MB and cache
block size is 64 bytes. Each trace contains the amount of
execution time between each memory requests. Our analysis
adds the worst case memory latency for each request and
produces the final execution time of the benchmark including
both computation and memory access time.

The results are shown in Figure 14 and 15. The y-axis
is the worst case execution time in nano-seconds but the
results were normalized against our approach. Our approach
is between 0.42%-13.49% and 5%-72% better than AMC for
two and eight cores respectively. The highest improvement is
shown by gsm and motion while the lowest improvement is
shown by jpeg. The amount of improvement depends on the
benchmark itself. Specifically, it depends on both the row hit
ratio as well as the stall ratio, i.e., the percentage of time that
the core would be stalled waiting for memory access when
the benchmark is executed in isolation without other memory
requestors. The row hit ratio ranges from 29% (jpeg) to 52%
(sha) and stall ratio ranges from 3% (jpeg) to 36% (motion)
for all benchmarks.

Fig. 14

Fig. 15

Devices 800D 1066F 1333H 1600K 1866L 2133M
AMC-64bits 185 185.27 180.9 178 169.84 163
Our-64bits 125.2 108.72 101.85 99.18 93.47 90.35

TABLE V: Average Worst Case Latency (ns) of DDR3 Devices



VII. CONCLUSION

This paper presented a new worst case latency analysis
that takes DRAM state information into account to provide
a composable bound. Our approach utilize both open row
policy and private bank mapping to provide a better worst case
bound for memory latency. Our approach depends on the row
hit ratio of the benchmark as well as how memory intensive
the benchmark is. Evaluation results show that our method
scales better with increasing number of requestors and is more
suited for current and future generations of memory devices
as memory speed becomes increasingly faster. Furthermore,
as data bus width becomes larger, our approach minimize the
amount of wasteful data transferred. For future work, we will
examine other scheduling techniques to improve the bound and
investigate load and store request optimization to minimize
the switching overhead. Finally, we are also interested in
implementing a memory controller on a FPGA as well.

REFERENCES

[1] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo,
“Timing analysis for resource access interference on adaptive resource
arbiters,” in (RTAS) 17th IEEE, 2011.

[2] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared re-
source load for the performance analysis of multiprocessor systems,” in
(DATE), 2010.

[3] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst,
“Reliable performance analysis of a multicore multithreaded system-
on-chip,” in CODES+ISSS, 2008.

[4] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An analyzable
memory controller for hard read-time cmps,” in IEEE Embedded
Systems Letters, vol. 1, no. 4, 2010, pp. 86–90.

[5] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in (CODES+ISSS). ACM, 2007, pp.
251–256.

[6] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-page
policy for mixed time-criticality memory controllers,” in (DATE), 2013.

[7] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM
Controller: On the Virtue of Privitization,” in (CODES/ISSS), 2011, pp.
99–108.

[8] JEDEC, “DDR3 SDRAM Standard JESD79-3F,” July 2012.
[9] Freescale, P4080 website, http://www.freescale.com. [Online].

Available: http://www.freescale.com
[10] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-

time scheduling using credit-controlled static-priority arbitration,” in
(RTCSA). IEEE, 2008, pp. 3–14.

[11] I. Liu, J. Reineke, and E. A. Lee, “A PRET Architecture Supporting
Concurrent Programs with Composable Timing Properties,” in 44th
Asilomar Conference on Signals, Systems, and Computers, November
2010, pp. 2111–2115.

[12] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed
(PRET) Machine,” in Proceedings of the 44th Design Automation
Conference, June 2011, pp. 264–265.

[13] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke, “Temporal
isolation on multiprocessing architectures,” in proceedings of IEEE
Design Automation Conference (DAC). IEEE, jun 2011, pp. 274–279.

[14] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future ar-
chitectures in time-critical embedded systems,” in IEEE TCAD, vol. 28,
no. 7. IEEE, 2009, pp. 966–978.

[15] R. Bourgade, C. Ballabriga, H. Cass, C. Rochange, and P. Sainrat,
“Accurate analysis of memory latencies for WCET estimation (regular
paper),” in International Conference on Real-Time and Network Systems
(RTNS), Rennes, 16/10/2008-17/10/2008. IRISA, octobre 2008, pp.
161–170.

[16] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone: A
benchmark program suite for practical C-based high-level synthesis,” in
ISCAS 2008. IEEE International Symposium on, 2008, pp. 1192–1195.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5

simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.


