
Worst Case Analysis of DRAM Latency
for Real-Time Multi-core Systems

Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni
Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

{zpwu, ykrish, rpellizz}@uwaterloo.ca

Abstract—As multi-core systems are becoming more popular
in real-time embedded systems, strict timing requirements for
accessing shared resources must be met. In particular, a detailed
latency analysis for Double Data Rate Dynamic RAM (DDR
DRAM) is highly desirable. Several researchers have proposed
predictable memory controllers to provide guaranteed memory
access latency. However, the performance of such controllers
sharply decreases as DDR devices become faster and the width
of memory buses is increased. In this paper, we present a novel,
composable worst case analysis for DDR DRAM that provides
improved latency bounds compared to existing works by explicitly
modeling the DRAM state. In particular, our approach scales
better with increasing number of requestors and memory speed.
Benchmark evaluations show up to 70% improvement in worst
case task execution time compared to a competing predictable
memory controller for a system with 8 requestors.

I. INTRODUCTION

In real-time embedded systems, the use of chip multipro-
cessors (CMPs) is becoming more popular due to their low
power and high performance capabilities. As applications run-
ning on these multi-core systems are becoming more memory
intensive, the shared main memory resource is turning into
a significant bottleneck. Therefore, there is a need to bound
the worst case memory latency caused by contention among
multiple cores to provide hard guarantees to real-time tasks.
Several researchers have addressed this problem by proposing
new timing analyses for contention in main memory and
caches [1], [2], [3]. However, such analyses assume a constant
time for each memory request (load or store). In practice,
modern CMPs use Double Data Rate Dynamic RAM (DDR
DRAM) as their main memory. The assumption of constant
access time in DRAM can lead to highly pessimistic bounds
because DRAM is a complex, stateful resource, i.e., the time
required to perform one memory request is highly dependent
on the history of previous and concurrent requests.

DRAM access time is highly variable because of two main
reasons: (1) DRAM employs an internal caching mechanism
where large chunks of data are first loaded into a row buffer
before being read or written. (2) In addition, DRAM devices
use a parallel structure; in particular, multiple operations target-
ing different internal buffers can be performed simultaneously.
Due to this characteristics, developing a safe yet realistic
memory latency analysis is very challenging. To overcome
such challenges, a number of other researches have proposed
the design of predictable DRAM controllers [4], [5], [6], [7].
These controllers simplify the analysis of memory latency by
statically pre-computing sequences of memory commands. The
key idea is that static command sequences allow leveraging
DRAM parallelism without the requirement to analyze dy-
namic state information. Existing predictable controllers have

been shown to provide tight, predictable memory latency for
hard real-time tasks when applied to older DRAM standards
such as DDR2. However, as we show in our evaluation,
they perform poorly in the presence of more modern DRAM
devices such as DDR3 [8]. The first drawback of existing
predictable controllers is that they do not take advantage of the
caching mechanism. As memory devices are getting faster, the
performance of predictable controllers is greatly diminished
because the difference in access time between cached and
not cached data in DRAM device is growing. Furthermore,
as memory buses are becoming wider, the amount of data that
can be transferred in each bus cycle increases. For this reason,
the ability of existing predictable controllers to exploit DRAM
access parallelism in a static manner is diminished.

Therefore, in this paper we consider a different approach
that takes advantage of the DRAM caching mechanism by
explicitly modeling and analyzing DRAM state information.
In addition, we dynamically exploit the parallelism in the
DRAM structure to reduce the interference among multiple
requestors. The major contributions of this paper are the
following. (1) We derive a worst case, DDR DRAM memory
latency analysis for a task executed on a core, in the presence
of multiple requestors contending for memory access (DMA
or other cores). Our analysis is composable, in the sense
that the latency bound does not depend on the activity of
the other requestors, only on their number. (2) We show that
latency on typical Commercial-Off-The-Shelf (COTS) memory
controllers could in fact be unbounded. We thus discuss a set
of minimal controller modifications to allow the derivation of
much improved bounds. (3) We evaluate our analysis against
previous predictable approaches using a set of benchmarks
executed on an architectural simulator. In particular, we show
that our approach scales significantly better with increasing
number of interfering requestors. For a commonly used DRAM
in a system with 8 requestors, our method shows 70% improve-
ments on task worst case execution time compared to [4].

The rest of the paper is organized as follows. Section
II provides required background knowledge on how DRAM
works. Section III compares our approach to related work in
the field. Section IV discusses required modifications to the
memory controller and Section V details our worst case latency
analysis. Evaluation results are presented in Section VI and
finally Section VII concludes the paper.

II. DRAM BACKGROUND

Modern DRAM memory systems are comprised of a mem-
ory controller and memory devices as shown in Figure 1. The
controller handles requests from requestors such as CPUs or
DMAs and memory devices store the actual data. The device

Command Data
Bus Bus

Memory ControllerRequestor

Memory Device

Rank 1 Rank M

Bank 1

Bank N

Bank 1

Bank N

Row Bu↵er Row Bu↵er

Fig. 1: DDR DRAM Organization

and controller are connected by a command bus and a data
bus, which can be used in parallel: one requestor can use the
command bus while another requestor uses the data bus at the
same time. However, no more than one requestor can use the
command bus (or data bus) at the same time. Modern memory
devices are organized into ranks and only one rank can be
accessed at a time. Furthermore, each rank is divided into
multiple banks, which can be accessed in parallel provided
that no collisions occur on either buses. Each bank comprises
a row-buffer and an array of storage cells organized as rows1

and columns. For simplicity, this paper only considers devices
with one rank.

Requestors can only access the content of the row buffer,
not the data in the array. To access a memory location, the
row that contains the desired data needs to be loaded into the
row buffer of the corresponding bank by an Activate (ACT)
command. If the controller wish to load a different row, the
row buffer must be first written back to the array by a Pre-
charge (PRE) command. A row that is cached in the row buffer
is considered open and access to an open row is considered a
row hit. A row that is not cached in the row buffer is considered
closed and access to a closed row is considered a row miss.
For the remainder of the paper, we refer to requests that access
open rows as Open Requests and to requests that access closed
rows as Close Requests. Note that each command takes one
clock cycle on the command bus to be serviced.

When a requestor makes a memory request, the controller
break down the request into different memory commands. For
open request, the request only consists of a read or write
command since desired row is already cached in row buffer.
For close request, if row buffer contains a row that is not the
desired row, then that row must first be written back to the
array by a PRE command. Then, an ACT command loads the
desired row into the row buffer and read/write commands can
be issued to access data. To avoid confusion, we categorize re-
quests as load or store while using the terms read and write to
refer to memory commands. Furthermore, based on literature,
we refer to both read and write commands as Column-Address-
Strobe (CAS) commands for short. Because the size of a row is
typically large (several kB), each request only access a small
portion of the row by selecting the appropriate columns. Each
CAS command access data in Burst Length BL and the amount
of data transferred is BL ·WBUS . Typical DRAM controllers
employ a burst length of 8; with a 64 bits data bus, the amount

1DRAM rows are also referred to as ’pages’ in the literature.

R P
Bank1:
(Load) A A Data

Bank2:
WA Data

Request 1 Request 3

Request 2

tRTP
tRAS

tRC

tRCD tRL tBUS tRP

tRRD tRTW

tRCD tBUStWL

Fig. 2: Timing Constraints for Load Request

W P
Bank1:
(Store) A A Data

Bank2:
R A Data

Request 1 Request 3

Request 2

tRCD tBUS tRP

tRRD

tRCD tBUStRL

tWL tWR

tWTR

tRAS

tRC

Fig. 3: Timing Constraints for Store Request

of data transferred is 64 bytes. Since DDR memory transfers
data on rising and falling edge of clock, the amount of time
for one transfer is BL/2 memory clock cycles, so 4 cycles for
a burst length of 8.

Finally, due to the fact that DRAM storage element con-
tains capacitors, the device must periodically be restored to
full voltage for proper function. Therefore, a periodic Refresh
(REF) command must be issued to all ranks and banks. The
result of REF is that all row buffers are written back to the
data array (i.e., all row buffers are empty after refresh).

A. Timing Constraints

The memory device takes time to perform different oper-
ations and therefore timing constraints between various com-
mands must be satisfied by the memory controller. The oper-
ation and timing constraints of memory devices are defined
by the JEDEC standard [8]. The standard defines different
families of devices, such as DDR2 and DDR32, as well as
different speed grades. As an example, Table I lists all timing
parameters of interest to our analysis, with typical values for
DDR3 and DDR2 devices.

To better illustrate the various constraints, Figures 2 and
3 show requests to different banks. Square boxes represent
commands issued on command bus (A for ACT, P for PRE
and R/W for Read and Write); we also show the data being
transferred on the data bus. Horizontal arrows represent timing
constraints between different commands while the vertical
arrow shows when each request arrives. For example, tRCD

represents the minimum interval of time that must elapse
between issuing an ACT and issuing the following CAS
command. Note that constraints are not drawn to actual scale
to make the figures easier to understand.

Figure 2 shows timing constraints related to load request.
Two requests are targeting Bank-1. Request 1 is a load and it
consists of ACT and read commands while Request 3 consists
of PRE, ACT and CAS (not shown) commands. Request 2

2Albeit JEDEC has finalized the specification for DDR4 devices in Septem-
ber 2012, DDR4 memory controllers are not yet commonly available.

is a store targeting Bank-2 and it consists of ACT and write
commands. Notice the write command of Request 2 can not be
issued immediately once the tRCD timing constraint of Bank-
2 has been satisfied. This is because there is another timing
constraint, tRTW between read command of Request 1 and
write command of Request 2, and the write command can only
be issued once all applicable constraints are satisfied. Similar
constraints are shown for a store request in Bank-1 and load
request in Bank-2 in Figure 3.

We make three observations. (1) The latency for a close
request is significantly longer than an open request. There
are long timing constraints involved with PRE and ACT com-
mands, which are not needed for open requests. (2) Switching
from servicing load to store requests and vice-versa incurs a
timing penalty. There is a constraint tRTW between issuing a
read command and a successive write command. Even worse,
the tWTR constraint applies between the end of the data
transmission for a write command and any successive read
command. (3) Different banks can be operated in parallel.
There is no constraint such as tRTW and tWTR between two
successive reads or two successive writes to different banks.
Furthermore, PRE and ACT commands to different banks can
be issued in parallel as long as the tRRD and tFAW constraints
are met.

B. Row Policy and Mapping

In general, the memory controller can employ one of two
different polices regarding the management of row buffers:
Open Row and Close Row Policy. Under open row policy, the
memory controller leaves the row buffer open for as long as
possible. The row buffer will be pre-charged if refresh period
is reached or another request needs to access a different row
(i.e., row miss). If a task has a lot of row hits, then only a CAS
command is needed for those requests, thus reducing latency.
However, if a task has a lot of row miss, each miss must issue
ACT and CAS command and possibly a PRE command as
well. Therefore, the latency of a request with open row policy
is dependent on the row hit ratio of a task and the status of the
DRAM device. In contrast, close row policy automatically pre-
charges the row buffer after every request. Under this policy,
the timing of every request is eminently predictable since all
requests have an ACT and a CAS command and thus incur
the same latency. Furthermore, the controller does not need
to schedule pre-charge commands. The downside is that the

JEDEC Specifications (cycles)
Parameters Description DDR3-

1333H
DDR2-
800E

tRCD ACT to READ/WRITE delay 9 6
tRL READ to Data Start 8 6
tWL WRITE to Data Start 7 5
tBUS Data bus transfer 4 4
tRP PRE to ACT Delay 9 6
tWR Data End of WRITE to PRE Delay 10 6
tRTP Read to PRE Delay 5 3
tRAS ACT to PRE Delay 24 18
tRC ACT-ACT (same bank) 33 24
tRRD ACT-ACT (different bank) 4 3
tFAW Four ACT Window 20 14
tRTW READ to WRITE Delay 7 6
tWTR WRITE to READ Delay 5 3
tRFC Time required to refresh a row 160 ns 195 ns
tREFI REF period 7.8 us 7.8 us

TABLE I: JEDEC Timing Constraints

overall latency for all requests performed by a task might
increase since the policy reduces row hit ratio to zero.

Furthermore, when a request arrives at the memory con-
troller, the incoming memory address must be mapped to
the correct bank, row and column in order to access desired
data. Note that embedded memory controllers, for example
in the Freescale p4080 embedded platform [9], often support
configuration of both the row policy and mapping. We dis-
cuss two common mappings, as employed in our paper and
other predictable memory controllers: interleaved banks and
private banks. Under interleaved bank, each request accesses
all banks. The amount of data transferred in one request is
thus BL ·WBUS · NumBanks. For example, with 4 banks
interleaved, burst length of 8 and data bus of 64 bits, the
amount of data transferred is 256 bytes. Although this mapping
allows each requestor to efficiently utilize all banks in parallel,
each requestor also shares all banks with every other requestor.
Therefore, requestors can cause mutual interference by closing
each other’s rows.

Under private banks, each requestor is assigned its own
bank or set of banks. Therefore, the state of row buffers
accessed by one requestor cannot be influenced by other
requestors. A separate set of banks can be reserved for shared
data that can be concurrently accessed by multiple requestors.
Under private banks, each request targets a single bank, hence
the amount of data transferred is BL ·WBUS . The downside
to this mapping is that bank parallelism cannot be exploited
by a single requestor; if the same amount of data as in
the interleaved bank case must be transferred, then multiple
requests to the same bank are required.

III. RELATED WORK

Several predictable memory controllers have been proposed
in the literature [4], [5], [6], [7]. The most closely related
work is that of Paolieri et al. [4] and Akesson et al. [5].
The Analyzable Memory Controller (AMC) [4] provides an
upper bound latency for memory requests in a multi-core
system by utilizing a round-robin arbiter. Predator [5] uses
credit-controlled static-priority (CCSP) arbitration [10], which
assigns priority to requests in order to guarantee minimum
bandwidth and provide a bounded latency. As argued in [4],
the round-robin arbitration used by AMC is better suited
for hard real-time applications, while CCSP arbitration is
intended for streaming or multimedia real-time applications.
Both controllers employ interleaved banks mapping. Since
under interleaved banks, there is no guarantee that rows opened
by one requestors will not be closed by another requestor, both
controllers also use close row policy.

In contrast, our approach employs private bank mapping
with open row policy. By using a private bank scheme, we
eliminate row interferences from other requestors since each
requestor can only access their own banks. Although this
reduces the total memory available to each requestor compared
to interleaving, modern DRAM are often quite large. As we
demonstrate in Section VI, our approach leads to better latency
bounds compared to AMC and Predator because of two main
reasons: first, as noted in Section II-A, the latency of open
requests is much shorter than the one of close requests in
DDR3 devices. Second, as noted in Section II-B, interleaved
bank mapping requires the transfer of large amount of data. In
the case of a processor using cache, requests to main memory

are produced at the granularity of a cache block, which is 64
bytes on almost all modern platforms. Hence, reading more
than 64 bytes at once would lead to wasted bus cycles in the
worst case. This consideration effectively limits the number of
banks that can be usefully accessed in parallel in interleaved
mode.

Goossens et al. [6] have recently proposed a mix-row policy
memory controller. Their approach is based on leaving a row
open for a fixed time window to take advantage of row hits.
However, this time window is relatively small compare to an
open row policy. In the worst case their approach is the same
as close row policy if no assumptions can be made about the
exact time at which requests arrive at the memory controller,
which we argue is the case for non-trivial programs on modern
processors. Reineke et al. [7] propose a memory controller
that uses private bank mapping; however, their approach still
uses the close row policy along with TDMA scheduling. Their
work is part of a larger effort to develop PTARM [11], a
precision-timed (PRET [12], [13]) architecture. The memory
controller is not compatible with a standard, COTS, cache-
based architecture. To the best of our knowledge, our work
is the only one that utilizes both open row policy and private
bank scheme to provide improved worst case memory latency
bounds to hard real-time tasks in multi-requestor systems.

IV. MEMORY CONTROLLER

In this section, we formalize the arbitration rules of the
memory controller in such a way that a worst case latency
analysis can be derived. Our proposed memory controller is a
simpler version of typical COTS-based memory controllers,
with minimal modifications required to obtain meaningful
latency bounds. In particular, memory re-ordering features of
COTS memory controllers are eliminated since, as we show at
the end of this section, they could lead to unbounded latency.
Therefore, we argue that the described memory controller
could be implemented without significant effort, and due to
space limitations, in the rest of the paper we focus on the
analysis of worst case memory bounds rather than implemen-
tation details of the memory controller.

Figure 4 shows the basic structure of the proposed memory
controller. There is a private buffer for each requestor in the
system to store incoming memory requests. More specifically,
the private buffers store the set of memory commands asso-
ciated with each request since each request is made up of
different memory commands as discussed in Section II. In
addition, there is a global arbitration FIFO queue and memory
commands from the private buffers are enqueued into this
FIFO. The arbitration rules of the FIFO are outlined below.

1) Each requestor can only enqueue one command from
the private buffer into the FIFO and must wait until
that command is serviced (dequeued from FIFO)
before inserting another command. Since CAS com-
mands trigger data transmission, we do not allow a
requestor to insert a CAS command in the queue
before the data of its previous CAS command has
been transmitted.

2) A command can be enqueued into the FIFO only
if all timing constraints that are caused by previous
commands of the same requestor are satisfied. This
means the command can be serviced immediately if
no other requestors are in the system.

Per"Requestor"
Buffers"

Global"
FIFO"
Queue"

To/From"
Requestors"

Front" Command"Bus"

Data"Bus"

Fig. 4: Memory Controller

3) At the start of each memory cycle, the controller
scans the FIFO from front to end and service the first
command that can be issued. An exception is made
for CAS command as described in the next rule.

4) For CAS commands in the FIFO, if one CAS com-
mand is blocked due to timing constraints caused by
other requestors, then all CAS commands after the
blocked CAS in the FIFO will also be blocked. In
other words, we do not allow re-ordering of CAS
commands.

It is clear from Rule-1 that the size of the FIFO queue is
equal to the number of requestors. Note that once a requestor
is serviced, the next command from the same requestor will
go to the back of the FIFO. Intuitively, this implies that each
requestor can be delayed by at most one command for every
other requestor; we will formally prove this in Section V.
Therefore, this arbitration is very similar to a round robin
arbiter, as also employed in AMC [4].

To understand Rule-2, assume a requestor is performing
a close request consisting of ACT and CAS command. The
ACT command is enqueued and after some time it is serviced.
Due to the tRCD timing constraint (please refer to Figures 2
or 3), the CAS command cannot be enqueued immediately;
the private buffer must hold the CAS until tRCD cycles have
expired before putting the CAS in the FIFO. This rule prevents
other requestors from suffering timing constraints that are only
specific to one requestor, as it will become more clear in the
following discussion of Rule-4.

Finally, without Rule-4 the latency would be unbounded.
To explain why, in Figure 5a we show an example command
schedule where Rule-4 does not apply. In the figure, the state of
the FIFO at the initial time t = 0 is shown as the rectangular
box. Let us consider the chronological order of events. (1)
A write command from Requestor 1 (R1) is at the front of
FIFO and it is serviced. (2) A read command (R2) cannot be
serviced until t = 16 due to tWTR timing constraint (crossed
box in figure). (3) The controller then services the next write
command (R3) in the FIFO queue at t = 4 following Rule-
3. Due to tWTR constraint, the earliest time to service read
command is now pushed back from t = 16 to t = 20.
(4) Assume that another write command from Requestor 1
is enqueued at t = 17. The controller then services this
command, effectively pushing the read command back even
further to t = 33. Following the example, it is clear that if
Requestors 1 and 3 have a long list of write commands waiting
to be enqueued, the read command of Requestor 2 would be
pushed back indefinitely and the worst case latency would be
unbounded. By enforcing Rule-4, latency becomes bounded
because all CAS after read (R2) would be blocked as shown
in Figure 5b.

W Data

W Data

W Data

R

R1:W	

R2:R	

R3:W	

Front

t = 4 t = 20t = 16 t = 33t = 0

t = 0

tBUStWL tWTR tBUStWL tWTR

tBUStWL tWTR

(a) Unbounded Latency

W Data R1:W	

R2:R	

R3:W	

Front

W Data

R Data tBUStWL tWTR

tBUStWL

tRL

tRTW

tBUS

t = 16t = 0

t = 0

t = 34

(b) Bounded latency

Fig. 5: Importance of Rule-4

Note that no additional rule is required to handle the data
bus. Once a CAS command (read or write) is issued on the
command bus, the data bus is essentially reserved for that CAS
command for a duration of tBUS starting from tRL or tWL

cycles after the CAS is issued. Therefore, we simply consider
an additional constraint on CAS commands, where a CAS
cannot be issued if it causes conflict on the data bus.

V. WORST CASE ANALYSIS

In this section, we present the main contribution of the
paper: an analysis that captures the cumulative worst case
memory latency suffered by all requests performed by a given
task under analysis. We discuss our system model in Section
V-A. In Section V-B, we first derive the worst case latency for
a single memory request. Then in Section V-C, the cumulative
worst case latency over all task’s requests is analyzed.

A. System Model

We consider a system with M memory requestors. We
further assume that the requestor executing the task under
analysis is a fully timing compositional core as described in
[14]. In short, this implies that the core is in-order and it
will stall on every memory request including store requests. If
modern out of order cores are considered, then store requests
do not need to be analyzed because the architecture hides store
latency. However, a more detailed model of the core would be
needed for memory latency analysis but our focus is not on
modelling cores. Therefore, the task under analysis can not
have more than one request at once in the private buffer of
the memory controller, and the cumulative latency over all
requests performed by the task can simply be computed as the
sum of the latencies of individual requests. Other requestors
in the system could be out of order cores or DMAs. While
these requestors could have more than one request in their
private buffers, this does not affect the analysis since each
requestor can still enqueue only one command at a time in
the global FIFO queue. We make no further assumption on
the behavior of other requestors. Due to space limitations,
we assume that the task under analysis runs non-preemptively
on its assigned core; however, the analysis could be easily
extended if the maximum number of preemptions is known.
To derive a latency bound for the task under analysis, we need
to characterize its memory requests. Specifically, we need to
know: (1) the number of each type of request, as summarized

: Request Arrives : CMD Enqueued

Data

CMD

CAS

CAS

: CMD Serviced CMD

tAC

tReq

tCD

Fig. 6: Worst Case Latency Decomposition

in Table II; (2) and the order in which requests of different
types are generated.

There are two general ways of obtaining such characteri-
zation. One way is by measurement, running the task either
on the real hardware platform or in an architectural simulator
while recording a trace of memory requests. This method has
the benefit of providing us with both the number and the order
of memory requests. However, one can never be confident that
the obtained trace corresponds to the worst case. Alternatively,
a static analysis tool [15] can be employed to obtain safe upper
bounds on the number of each type of requests. However,
static analysis cannot provide a detailed requests order, since
in general the order is dependent on input values and code
path, initial cache state, etc. Since the analysis in Section V-B
depends on the order of requests, Section V-C shows how to
derive a safe worst case requests order given the number of
each type of requests. Regardless of which method is used,
note that the number of open/close and load/store requests
depend only on the task itself since private bank mapping is
used to eliminate row misses caused by other requestors.

B. Per-Request Latency

Let tReq be the worst case latency for a given memory
request of the task under analysis. To simplify the analysis,
we decompose the request latency into two parts, tAC and
tCD as shown in Figure 6. tAC (Arrival-to-CAS) is the worst
case interval between the arrival of a request at the memory
controller and the enqueuing of its corresponding CAS com-
mand into the FIFO. tCD (CAS-to-Data) is the worst case
interval between the enqueuing of CAS and the end of data
transfer. In all figures in this section, a bold arrow represents
the time instant at which a request arrives at the memory
controller. A dashed arrow represents the time instant at which
a command is enqueued into the FIFO; the specific command is
denoted above the arrow. Grey square box denotes interfering
requestors while white box denotes task under analysis. Note
that for a close request, tAC includes the latency required to
process a PRE and ACT command, as explained in Section II.
We now separately detail how to compute tAC and tCD; tReq

is then computed as the sum of the two components.

1) Arrival-to-CAS: We consider two cases for tAC ,
whether the request is an open or a close request.

a) Open Request: In this case, the memory request is
a single CAS command because the row is already open.
Therefore, tAC only includes the latency of timing constraints
caused by previous commands of the core under analysis

Notation Description
NOL Number of Open Load
NCL Number of Close Load
NOS Number of Open Store
NCS Number of Close Store

TABLE II: Notation for Request Types

W

R

Load:

Store:

Read

Write

Data

Data

tBUStWL

tBUStRL

tAC

tAC

tRTW

tWTR

Previous Request

Previous Request

Fig. 7: Arrival-to-CAS for Open Request

(arbitration Rule-2 in Section IV). Since the core is fully timing
compositional, the earliest time a request can arrive is after the
previous request has finished transferring data. If the previous
and current request are of the same type (i.e., both are load or
store), then tAC is zero because there are no timing constraints
between requests of the same type. If the previous and current
requests are of different types, we have two cases as shown
in Figure 7. 1) If the previous request is a store, then the
tWTR constraint comes into effect. 2) If the previous request
is a load, then tRTW comes into effect. In both cases, it is
easy to see that the worst case tAC occurs when the current
request arrives as soon as possible, i.e., immediately after the
data of the previous request, since this maximizes the latency
due to the timing constraint caused by the previous request.
Also note that tRTW applies from the time when the previous
read command is issued, which is tRL + tBUS cycles before
the current requests arrives. Therefore, Eq.(1) capture the tAC

latency for an open request, where cur denotes the type of the
current request and prev the type of the previous one.

tOpen
AC =


tWTR if cur-load, prev-store;

max{tRTW−tRL−tBUS ,0} if cur-store, prev-load;

0 otherwise.

(1)

b) Close Request: The analysis is more involved for
close requests due to the presence of PRE and ACT commands.
Therefore, we decompose tAC into smaller parts as shown in
Figure 8. Each part is either a JEDEC timing constraint shown
in Table I or a parameter that we compute, as shown in Table
III. tDP and tDA determine the time at which a PRE and
ACT command can be enqueued in the global FIFO queue,
respectively, and thus (partially) depend on timing constraints
caused by the previous request of the task under analysis. tIP
and tIA represent the worst case delay between inserting a
command in the FIFO queue and when that command is issued,
and thus capture interference caused by other requestors.
Similarly to the open request case, the worst case for tAC is
when the current request arrives immediately after the previous
request has finished transferring data.

tDP depends on the following timing constraints: 1) tRAS

if the previous request was a close request; 2) tRTP if the
previous request was a load; 3) tWR if the previous request was

Request Arrives

P

PRE ACT

A
CAS

Data
Previous
Request

tDP tIP tRP

tDA tIA

tAC

tRCD

Fig. 8: Arrival-to-CAS for Close request

a store; please refer to Figures 2, 3 and Table I for a detailed
illustration of these constraints. Eq.(2) then summarizes the
value of tDP . Similarly to Eq.(1), for terms containing tRAS

and tRTP , we need to subtract the time interval between
issuing the relevant command of the previous request and the
arrival of the current request.

tDP =

max{(tRTP − tRL − tBUS), Q(tRAS − tprev), 0} if prev-load;

max{tWR, Q(tRAS − tprev), 0} if prev-store,

(2)
where:

Q=

1 if prev-close;

0, if prev-open.
tprev=

tRCD + tRL + tBUS if prev-load;

tRCD + tWL + tBUS if prev-store.

We now consider tIP . In the worst case, when the PRE
command of the current request is enqueued into the FIFO,
there can be a maximum of M−1 preceding commands in the
FIFO due to arbitration Rule-1. Each command can only delay
PRE for at most one cycle due to contention on the command
bus; there are no other interfering constraints between PRE and
commands by other requestors, since they must target different
banks. In addition, any command enqueued after the PRE
would not affect it due to Rule-3. Therefore, the maximum
delay suffered by the PRE command is:

tIP = (M − 1). (3)

Let us consider tDA next. If the previous request was a
close request, tDA depends on the tRC timing constraint. In
addition, once PRE is serviced, the core buffer must wait for
tRP timing constraint to expire before ACT can be enqueued.
Hence, tDA must be at least equal to the sum of tDP , tIP ,
and tRP . We obtain tDA as the maximum of these two terms
in Eq.(4), where again tprev accounts for the time at which
the relevant command of the previous request is issued.

tDA = max{(tDP + tIP + tRP), Q(tRC − tprev)} (4)

We next analyze tIA. We prove that the ACT command of
the current request suffers maximal delay in the scenario shown
in Figure 9, where C denotes the core under analysis. Note that
two successive ACT commands must be separated by at least
tRRD cycles. Furthermore, no more that four ACT commands
can be issued in any time window of length tFAW , which
is larger than 4 · tRRD. The worst case is produced when all
M−1 other requestors enqueue an ACT command at the same
time t0 as the core under analysis, which is placed last in the
FIFO; furthermore, four ACT commands have been completed
immediately before t0; this forces the first ACT issued after
t0 to wait for tFAW − 4 · tRRD before being issued. Hence,
we compute the value of tIA as:

tIA = (tFAW − 4 · tRRD) +
⌊M − 1

4

⌋
· tFAW +

+
(
(M − 1) mod 4

)
· tRRD

(5)

Lemma 1: Eq.(5) computes the worst case value for tIA.

Timing Parameter Definitions
tDP End of previous DATA to PRE Enqueued
tIP Interference Delay for PRE
tDA End of previous DATA to ACT Enqueued
tIA Interference Delay for ACT

TABLE III: Timing Parameter Definition

R1:	
 A	

R2:	
 A	

R3:	
 A	

R4:	
 A	

R5:	
 A	

C:	
 	
 A	

Front

A

A

A

A

A

ACT
A

A

A

A

A

tRRD

tRRD

tRRD

tRRD

tRRD

tRRD

tRRD

tRRD

tRRD

tFAW tFAW

tIA

Fig. 9: Interference Delay for ACT command

Proof: Let t0 be the time at which the ACT command of
the core under analysis (ACT under analysis) is enqueued in
the global arbitration FIFO queue. We show that the worst case
interference on the core under analysis is produced when at
time t0 there are M−1 other ACT commands enqueued before
the ACT under analysis. First note that commands enqueued
after the ACT under analysis cannot delay it: if the ACT under
analysis is blocked by the tRRD or tFAW timing constraint,
then any subsequent ACT command in the FIFO would also
be blocked by the same constraint. PRE or CAS commands of
other requestors enqueued after the ACT under analysis can
execute before it according to arbitration Rule-3 if the ACT
under analysis is blocked, but they cannot delay it because
those requestors access different banks, and there are no timing
constraints between ACT and PRE or CAS of a different bank.

Each ACT of another requestor enqueued before the ACT
under analysis can contribute to its latency for at least a
factor tRRD, which is larger than one clock cycle on all
devices. Now assume by contradiction that a requestor has
a PRE or CAS command enqueued before the ACT under
analysis at time t0. Since again there are no timing constraints
between such commands, the PRE or CAS command can only
delay the ACT under analysis for one clock cycle due to
command bus contention. Furthermore, after the PRE or CAS
command is issued, any further command of that requestor
would be enqueued after the ACT under analysis. Hence, the
requestor would cause a total delay of one cycle, which is
less than tRRD. Next, we show that all requestors enqueue
their ACT command at the same time t0 is the worst case
pattern. Requestors enqueueing an ACT after t0 do not cause
interference as already shown. If a requestor enqueues an ACT
at time t0−∆ with ∆ < tRRD, the overall latency is reduced
by ∆ since the requestor cannot enqueue another ACT before
t0 due to arbitration Rule-2.

To conclude the proof, it remains to note that a requestor
could instead issue an ACT at or before t0 − tRRD and then
enqueue another ACT at t0 before the ACT under analysis. Due
to the tFAW constraint, the first CAS issued after t0 would then
suffer additional delay. Therefore, assume that x ∈ [1, 4] ACT
commands issued before t0 − tRRD delay the (4 − x + 1)th
ACT command issued after t0; as an example, in Figure 9
x = 4 and given 4 − x + 1 = 1, the 1st ACT command
after t0 is delayed. The latency of the ACT under analysis is
maximized when the x ACT commands are issued as late as
possible, causing maximum delay to the ACT commands after
t0; therefore, in the worst case, we assume that the x ACT
commands are issued starting at t0 − x · tRRD. Finally, the
total latency of the ACT under analysis is obtained as:⌊x + M − 1

4

⌋
·tFAW +

(
(x+M−1) mod 4

)
·tRRD−x·tRRD.

(6)

Note that since 4 · tRRD < tFAW for all memory devices,
Eq.(6) can be computed assuming that a delay of tFAW is
incurred for every 4 CAS; the remaining CAS commands add
a latency of tRRD each. To obtain tIA, we simply maximize
Eq.(6) over x ∈ [1, 4]. Let x̄ ∈ [1, 4] be the value such that(
(x̄ + M − 1) mod 4

)
= 0, and furthermore let x = x̄ + y. If

y ≥ 0, Eq.(6) is equivalent to:(⌊M − 1

4

⌋
+ 1
)
· tFAW + y · tRRD −

(
x̄ + y

)
· tRRD =

=
⌊M − 1

4

⌋
· tFAW + tFAW − x̄ · tRRD.

(7)
If instead y < 0, Eq.(6) is equivalent to:⌊M − 1

4

⌋
· tFAW + (4 + y) · tRRD −

(
x̄ + y

)
· tRRD =

=
⌊M − 1

4

⌋
· tFAW + 4 · tRRD − x̄.

(8)
Since again 4 · tRRD < tFAW , it follows that the latency in
Eq.(7) is larger than the latency in Eq.(8). Since furthermore
Eq.(7) does not depend on y, we can select any value x ≥ x̄;
in particular, substituting x = 4 in Eq.(6) results in Eq.(5),
thus proving the lemma.

Once the ACT command is serviced, the CAS can be
inserted after tRCD cycles, leading to a total tAC latency for
a close request of tDA + tIA + tRCD. Therefore, we have
obtained the following lemma:

Lemma 2: The worst case arrival-to-CAS latency for a
close request can be computed as:

tClose
AC = tDA + tIA + tRCD. (9)

Proof: We have shown that the computed tDA represents
a worst case bound on the latency between the arrival of the
request under analysis and the time at which its associated
ACT command is enqueued in the global FIFO arbitration
queue. Similarly, tIA represents a worst case bound on the
latency between enqueuing the ACT command and issuing
it. Since furthermore a CAS command can only be enqueued
tRCD clock cycles after issuing the ACT due to arbitration
Rule-2, the lemma follows.

Note that tAC , as computed in Eq.(1), (9), depends on
both the previous request of the task under analysis and the
specific values of timing constraints, which vary based on the
DDR device. We evaluated tAC for all DDR3 devices defined
in JEDEC; complete numeric results are provided in [16]. In
Table IV, we summarize the results based on the types of the
current and previous request, where for ease of comparison
we define tdev as the tAC latency of a close request preceded
by an open load. Note that tdev depends on the number M of
requestors, while all other parameters in the table do not. Also,
for all devices and numbers of requestors, tdev is significantly
larger than timing constraint tWTR. Finally, computed terms
∆tS and ∆tL are always positive, with ∆tS being larger than
∆tL for all devices.

2) CAS-to-Data: The CAS-to-Data delay depends on the
CAS command of the current request: read or write. We first
discuss the write case; the read case is similar. We prove that
the current request suffers worst case interference when all
other M−1 requestors enqueue a CAS command in the global

R1:R	

R2:W	

R3:R	

C:	
 W	

Front

R

R

W

W

Write

W

Data

Data

Data

Data

Data

tRL tBUS

tRL tBUS

Fig. 10: Interference Delay for Write

FIFO queue at the same time t0 as the core under analysis,
which is then placed last in the FIFO; furthermore, commands
queued in the FIFO form an alternating pattern of read and
write commands. The worst case pattern is shown in Figure 10
for a system with M = 4. Note that since there are M total re-
questors and the alternating pattern of commands ends with the
write command of the task under analysis, there are

⌊
M
2

⌋
reads

and
⌈
M
2

⌉
writes in the pattern. During the execution of the

pattern, each read command adds a latency of tWTR + tRTW

(from the end of the data transmission of the preceding write to
the issuing of the following write command), while each write
adds latency tWL + tBUS (from issuing the write command
itself to the end of the corresponding data). Therefore, we
compute tCD as:

tWrite
CD =

⌊M
2

⌋
(tWTR + tRTW) +

⌈M
2

⌉
(tWL + tBUS).

(10)

Lemma 3: Eq.(10) computes the worst case value tCD for
a write command.

Proof: Let t0 be the time at which the CAS command of
the core under analysis (CAS under analysis) is enqueued in
the global arbitration FIFO queue. We show that the worst case
interference on the core under analysis is produced when at
time t0 there are M−1 other CAS commands enqueued before
the CAS under analysis. First note that commands enqueued
after the CAS under analysis cannot delay it: if the CAS under
analysis is blocked, then any subsequent CAS command is also
blocked due to arbitration Rule-4. PRE or ACT commands of
other requestors enqueued after the CAS under analysis can
execute before it according to arbitration Rule-3 if the CAS
under analysis is blocked, but they cannot delay it because
those requestors access different banks, and there are no timing
constraints between CAS and PRE or ACT of a different
bank. Each CAS of another requestor enqueued before the
CAS under analysis contributes to its latency for at least a
factor tBUS = 4 due to data bus contention. Now assume by
contradiction that a requestor has a PRE or ACT command
enqueued before the CAS under analysis at time t0. Since
again there are no timing constraints between such commands,
the PRE or ACT command can only delay the CAS under
analysis for one clock cycle due to command bus contention.

Case Current Request Previous Request tAC (ns)
1 close (load or store) (close or open) store tdev + ∆tS

2 close (load or store) close load tdev + ∆tL

3 close (load or store) open load tdev

4 open load (close or open) store tWTR

5 All other request 0

TABLE IV: Arrival-to-CAS latency

Furthermore, after the PRE or ACT command is issued, any
further command of that requestor would be enqueued after
the CAS under analysis. Hence, the requestor would cause a
total delay of one cycle, which is less than tBUS . Next, we
show that all requestors enqueue their CAS command at the
same time t0 is the worst case pattern. Requestors enqueueing
a CAS after t0 do not cause interference as already shown. If
a requestor enqueues a CAS at time t0 − ∆ but finishes its
data transmission after t0, the overall latency is reduced by ∆
since the requestor cannot enqueue another CAS before t0.

We next show that the worst case is produced by an alter-
nating pattern of read and write commands. By contradiction,
assume that the FIFO queue contains a sequence of CAS of
the same type. Since there are no timing constraints between
CAS commands of the same type, each command would only
add a latency term tBUS to the overall delay of the CAS under
analysis. Let us now compute the contribution to the latency of
CAS under analysis caused by a read command followed by
a write command, i.e., from the end of the data transmission
of a write command to the end of the data of the next write
command; as an example, consider interval [t′, t′′] in Figure
10. The data transmission of the read command finishes at time
t′ + tWTR + tRL + tBUS . The data transmission of the write
command starts at time t′+tWTR+tRTW +tWL. Now note that
for all DDR3 devices, it holds: tRTW + tWL > tRL + tBUS .
Hence, this schedule of CAS commands is legal because it
causes no data bus conflict. The combined latency t′′−t′ for the
read and write command is thus tWTR+tRTW +tWL+tBUS ,
which is larger than two times tBUS .

To conclude the proof, note that a requestor could finish its
previous data transmission exactly at time t0 and immediately
enqueue another CAS before the CAS under analysis, thus
delaying the first CAS command serviced after t0. If the first
CAS command after t0 is a read, then according to Eq.(1), the
command suffers a worst case delay tWTR; this case is shown
in Figure 10. If the first CAS command after t0 is a write, then
the delay is max{tRTW − tRL− tBUS , 0}, which evaluates to
0 for all DDR3 devices as shown in Table IV; this case is
shown in Figure 11. In summary, each read command adds a
latency term tWTR + tRTW from either t0 or the end of the
data transmission of the preceding write to the issuing of the
following write command, while each write command adds a
latency term tWL + tBUS from issuing the write command
itself to the end of the corresponding data. Since furthermore
the core under analysis issues a write command and is serviced
last, Eq.(10) holds.

Figure 11 shows the worst case pattern for a read command.
The pattern is the same as in the write case, except the last
read command contributes a latency of tWTR + tRL + tBUS

from the end of the data transmission of the previous write
to the end of the read data. For the other M − 1 requestors,
the same latency contributions used in Eq.(10) apply, leading
to the following expression for the worst case tCD value of a
read command:
tRead
CD = (tWTR + tRL + tBUS)+

+
⌊M − 1

2

⌋
(tWTR + tRTW) +

⌈M − 1

2

⌉
(tWL + tBUS).

(11)

Lemma 4: Eq.(11) computes the worst case value tCD for
a read command.

R1:R	

R2:W	

R3:R	

C:	
 W	

Front

R

R

W

W

Write
W

Data

Data

Data

Data

Data

tBUStWL tWTRtRTW

tWTR

tBUStWLtRTW

tCDt0

t = t0

tRL tBUS

tRL tBUS

Fig. 11: Interference Delay for Read

Proof: Following the proof of Lemma 3, the worst case
latency is produced when all requestors enqueue a CAS
command at time t0; furthermore, CAS in the queue form
an alternating pattern of read and write commands. Again
following the proof of Lemma 3, each read command issued
by one of the M − 1 other requestors adds a latency term
tWTR + tRTW , while each write command adds a latency
term tWL + tBUS . Since the CAS under analysis is a read, the
last command issued by another requestor is a write. Hence,
there are b(M −1)/2c writes and d(M −1)/2e reads by other
requestors. To complete the proof, it suffices to notice that the
CAS under analysis adds a latency of tWTR + tRL + tBUS

from the end of the data transmission of the previous write.

Combining Lemmas 2, 3, 4 then trivially yields our main
theorem:

Theorem 1: Assuming that the type of the previous request
of the task under analysis is known, the worst case latency of
the current request can be computed as:

tReq = tAC + tCD, (12)

where tAC is derived according to either Eq.(1) for an open
request or Eq.(9) for a close request, and tCD is derived
according to either Eq.(10) for a store request or Eq.(11) for
a load request.

Proof: We have shown that the tAC value computed
according to either Eq.(1) or Eq.(9) is an upper bound to
the arrival-to-CAS latency, while the tCD value computed
according to either Eq.(10) or Eq.(11) is an upper bound to
the CAS-to-Data latency. Hence, the sum of the two upper
bounds is also an upper bound to the overall latency tReq of
the current request from its arrival in the requestor buffer to
finishing transmitting its data.

C. Cumulative Latency

In this section, we detail how to compute the cumulative
latency over all requests generated by the task under analysis.
If the request order is known, then the cumulative latency
can be simply obtained as the sum of the latency for each
individual request, since we know the previous request based
on the order. If the request order is not known, then we need
to derive a worst case pattern. It is clear from the analysis in
Section V-B that tAC depends on the order of requests while
tCD does not. This allow us to decompose the cumulative
latency tTask into two parts similar to before: tTask

CD , the sum
of the tCD portion of all requests, which is independent of the
order; and tTask

AC , the sum of the tAC portion of all requests,
for which we need to consider a worst case request pattern.
tTask
CD is computed according to:

tTask
CD = (NOL +NCL) · tRead

CD + (NOS +NCS) · tWrite
CD . (13)

Now consider the five different possible cases for tAC sum-
marized in Table IV. We make three observations: first, open
stores incur no tAC latency. Second, both open load and close
load/store requests suffer higher latency when preceded by a
store request (Case-1 and Case-4 respectively). When a close
request is preceded by a load request instead, the latency is
maximized when the preceding request is a close load rather
than an open load (Case-2 rather than Case-3). Therefore,
intuitively a worst case pattern can be constructed by grouping
all close requests together, followed by open loads, and then
“distributing” store requests so that each store precedes either
an open load or a close load/store request: in the first case, the
latency of the open load request is increased by tWTR, while
in the second case, the latency of the close request is increased
by ∆tS−∆tL, i.e., the difference between Case-1 and Case-2.
We can then obtain a bound to the cumulative tAC latency as
the solution of the following ILP problem, where variable x
represents the number of stores that precede a close request
and y represents the number of stores that precede an open
load.

Maximize:
(NCL+NCS)·(tdev+∆tL)+(∆tS−∆tL)·x+tWTR·y (14)

Subject to:
y ≤ NOL (15)
x ≤ NCL + NCS (16)
x + y ≤ NOS + NCS + 1 (17)
x ∈ N, y ∈ N (18)

Lemma 5: The solution of ILP problem (14)-(18) is a valid
upper bound to tTask

AC .

Proof: By definition, the number of store requests x that
can precede an open load is at most the total number of open
loads. Similarly, the number of store request y that can precede
a close request is at most the total number of close requests.
Finally, notice that the total number of stores x + y is at
most equal to NOS + NCS + 1; the extra store is due to the
fact that we do not know the state of the DRAM before the
start of the task, hence we can conservatively assume that a
store operation precedes the first request generated by the task.
Hence, Constraints (15)-(18) holds.

We can then obtain an upper bound on tTask
AC by simply

summing the contribution of each case according to Table IV:
(1) open stores add no latency; (2) y open loads add latency
tWTR · y; the remaining NOL − y requests add no latency;
(3) x close requests add latency (tdev + ∆tS) · x; in the worst
case, the remaining NCL + NCS − x requests add latency
(tdev + ∆tL) · (NCL +NCS − x), since the latency for Case-
2 is higher than for Case-3. The sum of all contributions is
equivalent to Eq.14. Since furthermore Eq.14 is maximized
over all possible values of x, y, the Lemma holds.

While we used a ILP formulation to simplify the proof
of Lemma 5, it is easy to see based on Eq.(14) that the
problem can be solved in a greedy manner: if ∆tS − ∆tL
is larger than tWTR, then the objective function is maximized
by maximizing the value of x (i.e., we allocate stores before
close requests as much as possible); otherwise, by maximizing
the value of y.

The final DRAM event that we need to consider in the
analysis is the refresh. A refresh command is issued periodi-
cally with a period of tREFI . The time it takes to perform the

refresh is tRFC , during which the DRAM cannot service any
request. An added complexity is that all row buffers are closed
upon a refresh; hence, some requests that would be categorized
as open can be turned into close requests. To determine how
many open requests can be changed to close requests, we need
to compute how many refresh operations can take place during
the execution of the task. However, the execution time of the
task depends on the cumulative memory latency, which in turn
depends on the number of open/close requests. Therefore, we
have a circular dependency between the number of refreshes
and the cumulative latency tTask. Hence, we adapt an iterative
approach to determine the number of refresh operations as
shown in Eq.(19)-(20).

k0 = 0, (19)

ki+1 =
⌈ tTask

AC (ki) + tTask
CD + tcomp + ki · tRFC

tREFI

⌉
, (20)

where,

tTask
AC (ki)= upper bound on tTask

AC computed after

changing ki open requests to close requests

tcomp= task computation time, i.e., execution time assuming

that memory requests have zero latency

ki·tRFC= time taken to perform ki refresh operations

At each iteration i + 1, we compute the execution time
of the task as texec = tTask

AC (ki) + tTask
CD + tcomp + ki · tRFC

based on the number of refresh operations ki computed during
the previous iteration. The new number of refreshes ki+1 can
then be upper bounded by

⌈
texec

tREFI

⌉
. Hence, the fix point of

the iteration k̄ represents an upper bound on the worst case
number of refreshes suffered by the task under analysis.

It remains to compute tTask
AC (ki); in particular, when com-

puting tTask
AC (ki) according to ILP problem (14)-(18), we

need to determine whether the latency bound is maximized
by changing open store requests to close store or open load
requests to close load.

Lemma 6: Consider computing an upper bound to tTask
AC

according to ILP problem (14)-(18), after changing up to
k open requests to close requests. The solution of the ILP
problem is maximized by changing l = min{k,NOS} open
store to close store requests and max

{
min{k − l, NOL}, 0

}
open load to close load requests.

Proof: First notice that obviously, no more than NOS

open store requests can be changed to close store and no
more than NOL open load requests can be changed to close
load. We examine the effect of changing an open store to a
close store. The first, constant term in the objective function
increases by tdev + ∆tL. Constraints (15) and (17) remain
unchanged but the upper bound of Constraint (16) increases
by one. By comparison, if we change an open load to a close
load, the objective function and Constraint (16) are modified
in the same way, but the upper bound of Constraint (15)
decreases by one. Hence, the resulting optimization problem
is more relaxed in the case of an open store to close store
change, meaning that the ILP result is maximized by first
changing up to min{k,NOS} open store requests to close
store. Furthermore, if NOS < k, then notice that the ILP result
is maximized by changing up to min{k − NOS , NOL} open
load requests to close load: each time an open load is changed

into a close load, the constant term in the objective function
increases by tdev +∆tL, but the ILP result might be decreased
by a factor at most tWTR due to the change to Constraint (15).
However since tdev + ∆tL > tWTR for all devices as pointed
out in Section V-B, this is still a net increase.

The derivations of tTask
CD , k̄ and tTask

AC then trivially yield
the following theorem:

Theorem 2: An upper bound to the cumulative latency of
all memory requests generated by the task under analysis is:

tTask = tTask
AC + tTask

CD + k̄ · tRFC , (21)

where tTask
CD is computed according to Eq.(13), k̄ is obtained

as the fixed point of the iteration in Eq.(19)-(20), and tTask
AC

is the solution of the ILP problem (14)-(18) after changing up
to k̄ open requests to close requests according to Lemma 6.

VI. EVALUATION

In this section, we directly compare our approach against
the Analyzable Memory Controller (AMC) [4] since AMC
employs a fair round robin arbitration that does not prioritize
the requestors, similarly to our system. We do not compare
against [5], [6] because they use a non-fair arbitration that
requires knowledge about the characteristics of all requestors.
We show results for two data bus sizes, 64 bits and 32 bits,
since we argue that smaller bus sizes are now uncommon on
all embedded systems but the simplest microcontrollers. Since
AMC uses interleaved bank, for 64 bits data bus, it does not
make sense to interleave any banks together because the size of
each request would be too large compared to cache block size
(64 bytes) and this can be wasteful as discussed in Section III.
For 32 bits data bus, AMC interleaves over two banks while
our approach needs to make two separate requests as discussed
in Section II-B. We perform experiments with both synthetic
and real benchmarks; the former are used to show how the
latency bound varies as task parameters are changed.

A. Synthetic Benchmark

In Figure 12 and 13, we compare our approach against
AMC as we vary the row hit ratio and the number of requestors
in the system. The x-axis is row hit ratio and y-axis is the
average worst case latency in nano-seconds. The average worst
case latency is obtained by dividing the total memory access
time by total number of requests. In addition, the memory
request pattern is calculated according to Section V-C. The
memory device used in these figures is 2GB DDR3-1333H.
The solid lines are for 64 bits data bus and dashed lines are
for 32 bits data bus. In addition, we fix the store percentage to
20% of total requests. From the figure, we can see that AMC
is a straight line in the graph since they use close row policy,
therefore the latency does not depend on row hit ratio. In our
approach, the latency improves as row hit ratio increases. In
addition, as the number of requestors increase, our approach
performs better compared to AMC.

Table V shows the average worst case latency for a few
DDR3 devices of different speed. The number of requestors
is fixed at 4, row hit is 50% and store percentage is 20%.
As the speed of DRAM devices becomes faster, our approach
improves rapidly compared to AMC. For example, comparing
800D and 2133M devices, the worst case latency decreases
by 35% using our approach (125.2ns to 92.85ns) while only

by 14% for AMC (185ns to 163ns). This is because as
clock frequency increases in memory devices, the difference
in the latency between open and close requests is increasing.
Therefore, close row policy becomes too pessimistic, while
we argue that open row policy is better suited for current and
future generations of memory devices. Finally, we fixed store
percentage to 20% in our experiments but the effect of store
percentage does not change the general trends discussed above.

0	

20	

40	

60	

80	

100	

120	

140	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Av
g	

W
or
st
	
 C
as
e	

La
te
nc
y	

(n
s)
	

Row	
 Hit	
 %	

Synthe:c:	
 2	
 Requestors	

AMC-­‐64bit	

AMC-­‐32bit	

Our-­‐64bit	

Our-­‐32bit	

Fig. 12

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Av
g	

W
or
st
	
 C
as
e	

La
te
nc
y	

(n
s)
	

Row	
 Hit	
 %	

Synthe:c:	
 8	
 Requestors	

AMC-­‐64bit	

AMC-­‐32bit	

Our-­‐64bit	

Our-­‐32bit	

Fig. 13

B. Benchmark Results

The CHStone benchmark suite [17] was used for eval-
uation. All twelve benchmarks were ran on the Gem5 [18]
simulator to obtain memory traces, which are used as inputs
to our analysis. The CPU was clocked at 1 GHz with private
LVL1 and LVL2 cache. LVL1 cache is split 32 kB instruction
and 64 kB data. LVL2 is unified cache of 2 MB and cache
block size is 64 bytes. Each trace contains the amount of
execution time between each memory requests. Our analysis
adds the worst case memory latency for each request and
produces the final execution time of the benchmark including
both computation and memory access time.

The results are shown in Figure 14 and 15. The y-axis
is the worst case execution time in nano-seconds but the
results were normalized against our approach. Our approach
is between 0.3% to 11% and 5% to 70% better than AMC for
two and eight cores respectively. The highest improvement is
shown by gsm and motion while the lowest improvement is

Devices 800D 1066F 1333H 1600K 1866L 2133M
AMC-64bits 185 185.27 180.9 178 169.84 163
Our-64bits 125.2 112.47 104.85 102.18 96.97 92.85

TABLE V: Average Worst Case Latency (ns) of DDR3 Devices

shown by jpeg. The amount of improvement depends on the
benchmark itself. Specifically, it depends on both the row hit
ratio as well as the stall ratio, i.e., the percentage of time that
the core would be stalled waiting for memory access when
the benchmark is executed in isolation without other memory
requestors. The row hit ratio ranges from 29% (jpeg) to 52%
(sha) and stall ratio ranges from 3% (jpeg) to 36% (motion)
for all benchmarks.

0.90	

0.95	

1.00	

1.05	

1.10	

1.15	

ad
pc
m	
 ae

s	
 bf	
 gsm
	

jpe
g	

mi
ps
	

mo
4o
n	
 sh

a	

dfa
dd
	

dfd
iv	

dfm
ul	

dfs
in	

N
or
m
.	
 E
xe
cu
,o

n	

Ti
m
e	

(n
s)
	

CHStone:	
 2	
 Requestors	

AMC	

Ours	

Fig. 14

0.90	

1.00	

1.10	

1.20	

1.30	

1.40	

1.50	

1.60	

1.70	

1.80	

ad
pc
m	
 ae

s	
 bf	
 gsm
	

jpe
g	

mi
ps
	

mo
:o
n	
 sh

a	

dfa
dd
	

dfd
iv	

dfm
ul	

dfs
in	

N
or
m
.	
 E
xe
cu
,o

n	

Ti
m
e	

(n
s)
	

CHStone:	
 8	
 Requestors	

AMC	

Ours	

Fig. 15

VII. CONCLUSION

This paper presented a new worst case latency analysis
that takes DRAM state information into account to provide
a composable bound. Our approach utilize both open row
policy and private bank mapping to provide a better worst case
bound for memory latency. Our approach depends on the row
hit ratio of the benchmark as well as how memory intensive
the benchmark is. Evaluation results show that our method
scales better with increasing number of requestors and is more
suited for current and future generations of memory devices
as memory speed becomes increasingly faster. Furthermore,
as data bus width becomes larger, our approach minimize the
amount of wasteful data transferred. As future work, we will
examine other scheduling techniques to improve the bound and
investigate load and store request optimization to minimize the
switching overhead. Finally, we plan to implement the derived
optimized memory controller on FPGA.

REFERENCES

[1] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo,
“Timing analysis for resource access interference on adaptive resource
arbiters,” in (RTAS), 2011.

[2] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared re-
source load for the performance analysis of multiprocessor systems,” in
(DATE), 2010.

[3] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst,
“Reliable performance analysis of a multicore multithreaded system-
on-chip,” in CODES+ISSS, 2008.

[4] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An analyzable
memory controller for hard read-time cmps,” in IEEE Embedded
Systems Letters, vol. 1, no. 4, 2010, pp. 86–90.

[5] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in (CODES+ISSS), 2007.

[6] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-page
policy for mixed time-criticality memory controllers,” in (DATE), 2013.

[7] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM
Controller: On the Virtue of Privitization,” in (CODES/ISSS), 2011.

[8] JEDEC, “DDR3 SDRAM Standard JESD79-3F,” July 2012.
[9] Freescale, P4080 website. [Online]. Available: http://www.freescale.

com
[10] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-

time scheduling using credit-controlled static-priority arbitration,” in
(RTCSA), 2008.

[11] I. Liu, J. Reineke, and E. A. Lee, “A PRET Architecture Supporting
Concurrent Programs with Composable Timing Properties,” in (ACSSC),
2010.

[12] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed
(PRET) Machine,” in (DAC), 2011.

[13] D. Bui, E. A. Lee, I. Liu, H. D. Patel, and J. Reineke, “Temporal
isolation on multiprocessing architectures,” in (DAC), 2011.

[14] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future ar-
chitectures in time-critical embedded systems,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 7,
pp. 966–978, 2009.

[15] R. Bourgade, C. Ballabriga, H. Cass, C. Rochange, and P. Sainrat,
“Accurate analysis of memory latencies for WCET estimation (regular
paper),” in (RTNS), 2008.

[16] Z. P. Wu, Y. Krish, and R. Pellizzoni, Worst Case Analysis Results of
DDR3 Devices. [Online]. Available: http://ece.uwaterloo.ca/∼rpellizz/
techreps/analysisresults.xlsx

[17] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone:
A benchmark program suite for practical C-based high-level synthesis,”
in (ISCAS), 2008, pp. 1192–1195.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
2011.

